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5G communication technology has been skyrocketing, and has changed everything 
in our daily lives, and its applications in various fields are also promising. How-
ever, the thermal conductivity/dissipation problems of highly integrated electronic 
devices and electrical equipment are becoming more and more prominent, and 
thermodynamics offers a solution, and fractal meta-surfaces provides an extremely 
efficient approach to transfer the generated waste heat, which can be used for ther-
mal energy harvesting, and a fractal thermodynamic model is developed for ther-
mal management. 
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Introduction 

We have entered an unprecedented era with 5G communications technology [1], the 

trend towards 6G is now on the horizon [2], and the 7G era [3] is also approaching rapidly. It 

has changed everything in our daily lives. According to the 2023 China Internet Development 

Report, by June 2023, the total number of mobile base stations in China reached 11.29 million, 

of which 2.937 million 5G base stations were built and opened, where energy consumption has 

become a Gordian knot [4]. Communication equipment often generates high temperature 

alarms [5], and many cooling technologies [6], and thermal energy harvesting technologies [7, 

8] have become hot spots in the communication field, this paper offers a promising thermody-

namic solution to the emerging problem. 

Thermal conductivity and thermal efficiency 

Thermal management has become a critical issue for high power density equipment 

and devices [9, 10]. The high temperature due to high power dissipation and poor thermal con-

ductivity will not only greatly affect the reliable operation of equipment and devices in 5G base 

stations, but also significantly increase the cost of controlling the temperature of the stations. 
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Materials scientists have been searching for new materials with high thermal conduc-

tivity and thermal efficiency for 5G base stations [11-13], among which nanomaterials are ex-

tremely promising, and bubble electrospinning [14-18] is one of the best candidates for mass 

fabrication of various functional nanomaterials, it has the ability to fabricate a single nanofiber 

with two or more interfaces[18]. This breakthrough in fiber technology has opened a new win-

dow for designing internal interfaces in a single nanofiber to embody various attractive func-

tionalities for broad applications in 5G systems [19]. Another promising technology for 5G 

inspired materials is 3-D printing, which can produce various microdevices with special shapes 

and properties [20-22]. 

Advanced nanomaterials with excellent thermal conductivity can quickly transfer the 

waste heat proposed by the equipment and devices in 5G base stations to their surroundings, 

the thermal efficiency can not only improve the reliability and efficiency of the equipment and 

devices, but also simply the thermal management. 

Waste heat and thermal energy harvesting 

The equipment and devices in 5G base stations produce a large amount of waste heat 

[23], and energy harvesting is a key technology that provides a viable solution to the challenge 

at hand [24], and nanofluids can greatly enhance their efficiency and heat transfer capabilities 

[25-27]. 

Interconnections in a micro/nano-scale integrated device leave no room for traditional 

heat transfer, such as that of air conditioning and heating equipment for the home, only nanoflu-

ids can be used. Nanofluids can form a nanoscale boundary layer with metal nanoparticles, 

which is also called fractal boundary layer [28] and can be modelled by the fractional thermal 

model [28, 29]. 

Figure 1 shows a schematic diagram for temperature control in a 5G base station [30], 

much waste heat is proposed by the electrical components, and can be used by thermal energy 

harvesting devices. To achieve high thermal efficiency, the nanoscale boundary layer shown in 

fig. 1 is a nano/micro film embedded with metal nanoparticles, which can greatly enhance the 

heat transfer from the electrical component to its surroundings. 

Figure 1. Micro-channel flow with multiple e electronic components as 

heat sources; the nano-scale boundary-layer can be a 
fractal metasurface containing metal nanoparticles with 
good thermal conductivity 
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Nature-inspired nanomaterials 

Some natural fibers, such as wool fibers [31] and polar animal hairs [32], have unique 

thermal properties, and nature-inspired nanomaterials with hierarchical structure are also prom-

ising, which are called as fractal metamaterials or meta-fractal [33, 34], fractal metasurface [35], 

and the fractal dimensions are the main key for applications [36-38]. A thin film with hierar-

chical metamaterial structure can be used to improve waste heat transfer and also for thermal 

energy harvesting. 

Fractal thermodynamics 

The 1-D heat equation for fig. 1 can be written as: 
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where T is the temperature, k – the thermal conductivity coefficient, Q – the heat source. Equa-

tion (1) is simple, but it cannot model the effect of the electric components’ size and distribution 

on the heat transfer, and a 3-D model has to be considered: 
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where kx, ky, and kz are, respectively, thermal conductivity coefficients in x-, y-, and z-directions, 

u, v, and w – the air velocity components in x-, y-, and z-directions, p – the pressure, and r – 

the density. 

The system is complex, furthermore, the zig-zag boundary makes the numerical sim-

ulation even more complex. To solve the problems, the fractal thermodynamical model [39] is 

simple and reliable. 

Consider the fluid problem in a fractal space, and we have establish a 1-D fractal-

fractional model: 
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where the two-scale fractal derivative is defined as [39]: 

 
0

0

0

0

( , ) ( , )
( ) (1 ) lim

( )x x L

T x t T x tT
x

x x x



 


− →

−
=  +

 −
 (7) 

 
0

0

0

0

( , ) ( , )
( ) (1 ) lim

( )t t t

T x t T x tT
t

t t t



 


− →

−
=  +

 −
 (8) 



Zhao, L., et al.: Thermodynamics for 5G Technology and Energy Harvesting and … 2012 THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 2009-2014 

where L is the distance between two adjacent electric components, and assume L < S, S – the 

width of the components as illustrated in fig. 1,  – the gamma function, and Dt – the time for 

the air moving through the adjacent distance, it can be calculated as: 

 
0

L
t t t

u
 = − =  (9) 

where u is the nanofluid’s velocity. The fractional order can be calculated as: 

 0V V

V


−
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where V is the total volume of the inner tube and V0 – the volume occupied by the electric 

components. 

We give an explanation of the simplified eq. (6). According the definition of the frac-

tal derivative, we have: 
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So eq. (6) can be written as: 
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  (13) 

Finally, we obtain the following model: 
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It is obvious from eq. (14) that 1-D fractal-fractional model involves nanofluid’s ve-

locity, u, and electric components’ distribution, L, and electric components’ volume, a, so eq. 

(14) is much more reasonable than eq. (1). The nanofluid’s velocity can be calculated by Ber-

noulli equation: 

 21

2

p
u B


+ =   (15) 

where B is the Bernoulli constant, p – the pressure, and r – the density. 

The fractal thermodynamical model is much attractive for engineering applications, 

for examples, fractal Schrodinger equation [40], fractal Camassa-Holm and Degasperis-Procesi 

models [41], and fractal variational principles [42]. 

Conclusion 

We can now look forward with optimism that fractal thermodynamics opens a whole 

new window for 5G communication technology and its higher generations (6G or 7G), nano-

fibers with metal nanoparticles prove to be a good medium for electronic components to dissi-

pate the wasted heat to their surroundings. This issue invites professors from Zhongyuan Uni-

versity of Technology, Zhengzhou, China to address the prominent problem arising in 5G base 
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stations, and Yancheng Polytechnic College, China to address another hot topic on nanoscale 

fluid mechanics and nanomaterials. 
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