
EFFECTS OF MAGNETISM ON POROUS RECTANGULAR FINS WITH
CONVECTION AND RADIATION

Sharif Ullaha, Obaid J. Algahtanib Zia Ud Dinc and Amir Alia,∗
aDepartment of Mathematics, University of Malakand Chakdara Dir(L), Khyber Pakhtunkhwa, Pakistan

b Department of Mathematics, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
cHigher Education, Archives and Libraries Department, Khyber Pakhtunkhwa, Pakistan

Abstract

A fin is an extended surface used to enhance the surface area of a heat transfer surface between a hot source and the
outside environment. To maximise the rate of heat transportation, the exterior surface of heated equipment is equipped
with fins of various geometries. Heat is exchanged using fins in radiators, refrigeration systems, superheaters, com-
bustion engines, electrical equipment, electric transformers, space vehicles, and aircraft engines. Reflecting these
applications, we analyse the effect of a magnetic field on the thermal properties of radiating porous rectangular fins.
The proposed model is numerically analysed using the shooting method under the influence of radiation and convec-
tion, then compared with the DTM solution and both the solution found closer to each other. The effect of various
dimensionless parameters on temperature transmission in magnetized rectangular-shaped porous fins is revealed using
numerical results. It is revealed that, when the Raleigh, Hartmann, Peclet numbers, convective and radiative param-
eters increase, the fin’s thermal profile decreases, whereas the thermal profile increases with an increase in surface
temperature, porosity, and ambient temperature. It is observed that the magnetic effect increases the heat transfer rate
from porous rectangular fin surfaces. Accordingly, efficiency increases as Hartmann number, Raleigh number, and
radiative parameter rise. Increasing Peclet number, surface temperature, and ambient temperature leads to a reduction
in efficiency.
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1. Introduction

In engineering applications, various fin structures are widely used to elevate heat transportation within the temperature
limits of the systems. The investigation of fins is applicable to multiple appliances such as air conditioners, gas tur-
bines, refrigeration, gas turbines, automobiles, electrical chips, vehicle radiators, and CPUs [1–4]. In this mechanism,
heat is first transferred by conduction to the surface of the fins and then transported through convection and radiation
to the outside medium. Here, we investigate magnetised porous rectangular fins for escalation of efficiency and heat
transfer.
In various engineering appliances, nanofluids and cooling fluids were used to enhance heat transmission [5, 6]. To pro-
vide valuable thermal performance in various cooling processes, researchers use fins of different geometrical shapes.
When the effectiveness of circular and star-shaped fins is compared, it is discovered that heat transfer through star-
shaped fins increases more than heat transfer through annular fins [7]. Through experimental and mathematical results,
the behaviour of a W-shaped fin was compared to that of straight parallel plate fins [8]. The thermal influences of
longitudinal fins with a trapezoidal profile are investigated [9]. Heat loss through rectangular fins with low Reynolds
numbers and forced convection was investigated using numerical and experimental results [10]. The enhancement in
heat transfer from the rectangular extended surfaces was determined experimentally through an Electrohydrodynam-
ics method [11]. The non-Fourier influence on the thermal transfer problem of fins was numerically described using
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the Boltzmann method [12]. Thermal properties and entropy production in moving exponential and rectangular fins
considering variable thermal conductivity were numerically discussed by [13]. It has been concluded that the entropy
of exponential fins is higher than that of rectangular fins.
The porous extended mediums are made up of high thermal conductivity substances such as metal foams, which
enhance thermal transfer [14]. Recently, the effectiveness of thermal systems, i.e., inflated power semiconductors, heat
exchangers, photovoltaic-thermal and thermal insulators, etc., has been improved by including the porous parameter
in fins [15–17]. Many researchers were interested in improving various systems using porous fins. Based on an
analytical methodology, [18] analyses the effects of Peclet number, thermal transmission parameters, and moving
conditions on the efficiency of a convecting longitudinal-type porous fin. To demonstrate regular heat loss by porous
fins, [19] proposed a weighted residual method. They concluded that the capability of the fin is enhanced through
amplifying porosity and also by enhancing the Darcy, Nusselt, and Rayleigh numbers of the fin. In the study by
[20], the least squares method was used as a tool for examining the heat distribution involved in different types
of longitudinal fins, accounting for porosity and variable heat generation. They obtained comparative results due
to thermal transfer parameters like convection, conduction, and conduction in fin competence. In concentric tubes,
the impact and significance of porous fins are examined for magnifying heat exchange utilising the finite volume
method [21, 22]. They concluded that heat transmitter performance is highly impacted by thermal conductivity and
fin spacing. The DTM has been used by [23] to present a heat exchange model of porous fins, which is assumed
to be in motion. It has been revealed that Peclet number enhancement resulted in higher transmission of heat, and
the rectangular fin is scrutinised as more effective as compared to the hyperbolic exchanger. The effects of gray gas
radiation on the transfer of heat and mass in an annular cavity are analyzed numerically in [24]. Their numerical
results indicate that gas radiation modifies flow structure, temperature, and concentration distributions in cavities. The
[25] has numerically simulated the heat transfer and flow characteristics of a plate fin-and-tube heat exchanger along
with slit fins on the ring bridge. The fin pitch was found to be the most significant factor affecting the heat transfer and
flow characteristics of the ring-bridge slit fins, and reducing the front slit angle of the sample improved heat transfer.
The effect of triangular ribs on the flow and heat transfer characteristics of a heat exchanger tube was presented in
[26]. They reported that the performance evaluation criteria of the triangular rib enhanced tube can be improved by
reducing the dimensionless pitch ratio and appropriately increasing the area of the triangular ribs.
The importance of the magnetic field on porous fin thermal exchange was studied in [27–29]. The work was further
extended through the Adomian Decomposition Technique [30]. Further, in [31], the significant behaviour of the
magnetic field on the effectiveness of porous fins for the transference of heat was carried out by applying the finite
volume method. They found that enhancement of the magnetic field improved the heat transfer capability of fins.
Then, the internal heat generation effect was added to the longitudinal fins’ performance along with the magnetic
field and analyzed by an iterative method [32]. The magneto-hydrodynamic impact on fins in different situations was
studied in [33]. Time fractional order derivatives model are calculated using a caputo derivative in [34]. A comparison
and analysis with other approaches demonstrate that the suggested approach is effective and precise. In [35], Fibonacci
wavelet (FW) algorithms are used to approximate fractional order electrical circuits. Using the proposed method,
electrical engineers are able to analyze and design fractional order systems with improved accuracy. An algorithm
based on fractional order Fibonacci wavelets and block pulse functions is presented to solve the fractional Bagley-
Torvik equation (BTE) [36]. In their numerical analysis, they demonstrate that their approach produces extremely
precise results and is computationally more effective than previous ones. In [37], Wavelets collocation method is used
for singularly perturbed differential–difference equations in control systems. It was found to be a reliable tool for
solving SPDDEs in control systems through numerical experiments. A porous space is investigated numerically to
determine the influence of variable density and magnetohydrodynamics on Williamson fluid [38]. They stated that the
enhancing of the density variation parameter confirmed the reduction in velocity field and an increase in temperature
of the fluid, while when the Williamson fluid parameter increased, both fluid velocity and temperature increased
correspondingly. In [39, 40], the thermal case study on non-Newtonian fluids magnetized thermally and first-order
chemical reactions was conducted. In this study the researchers found that for Eckert, Prandt numbers, curvature, heat
generation, and Casson fluid parameters, the Nusselt number is higher in the presence of thermal radiation, whereas
for positive variations in thermal conductivity, it is the opposite.
To investigate the effect of magnetic field and convection on radial porous fins with radiation, [41] applied the Runge
Kutta method. They also presented the problem with a magnetic field versus the model without a magnetic field and
concluded that the magnetic field improved the performance of the radial fin surface. The combined effects of thermal
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Figure 1: Schematic diagram of a magnetised porous rectangular fin.

radiations and temperature-dependent thermal conductivity are studied in stagnation point magnetized Casson fluid
flow [42, 43]. The authors reported that higher thermal radiation values result in increased temperature of the Casson
fluid, while positive variations in variable thermal conductivity result in greater temperature.
The significance of stretching or shrinking effects on rectangular fins is comparatively studied using existing different
parameters with non-stretching rectangular fins by [44]. As measured in this study, the fin’s performance decreases
with stretching, while it provides high effectiveness when shrinking. Further, [45] applied the stretching/shrinking
mechanism to different fin profiles with moving effects for valuable results. [46] considered the exponential fin model
with stretching/shrinking effects for a numerical investigation of better thermal exchange. Later, in study [47], the
performance of shrinking and stretching fins of a rectangular profile considering radiation is numerically examined,
implying shooting technique, and then compared with the analytical solution of the differential transform method for
validation.
Here, the uniform magnetic field is considered in the radiating, porous, and convecting rectangular-shaped fin. The
governing equation is converted into a non-dimensionalized form, and then the numerical solution is obtained to
interpret the behaviour of including parameters on a magnetised fin graphically.

2. Problem Formulation

As illustrated in Figure 1, we investigate heat exchange, convection, and radiation parameters using porous longitudi-
nal rectangular fins of length L f . A number of different parameters are used, including: h is a heat transfer coefficient,
ϕ is porosity, Ts surface temperature, Tb shows fin base temperature, Ta ambient temperature, ρ density of fin material,
and T temperature distribution. The emissivity of the material is ε , the specific heat is Cp, and the Stefan-Boltzmann
constant is σ . It is important to note that fins have a fixed thermal conductivity ka, a constant coefficient of heat
transfer h for simplification of the model, and a uniform magnetic field is applied. Based on the assumption, the
proposed model of the moving fin with a rectangular shape along with a porosity parameter, a heat-generating source,
and thermal transmission via radiation and convection can be obtained in the form of [47–49].

qx −

[
qx +

∂qx

∂x
dx

]
−hPf (1−ϕ)

[
T −Ta

]
dx− ṁCp

[
T −Ta

]
− εσ Pf

[
T 4 −T 4

s

]
dx− Jcd × Jcd

σ

[
T −Ta

]
dx = 0, (1)

as dx → 0, Eq. (1) becomes [32, 54]

∂qx

∂x
−hPf (1−ϕ)

[
T −Ta

]
− ṁCp

[
T −Ta

]
− ε σ Pf

[
T 4 −T 4

s

]
− Jcd × Jcd

σ

[
T −Ta

]
= 0, (2)

The mass flow rate ṁ of the fluid flowing through the porous material can be written as

ṁ = ϕ ρ W vw△x, (3)
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where ϕ represents the porosity of the fin. The amount of ϕ ranges from 0 to 1 for a compact medium ϕ = 0. It should
be stated that for ϕ = 1 no solid portion exist. Further, vw correspond to the Darcy formula defined as [50]

vw =
β gK

ν

[
T −Ta

]
. (4)

The conduction current intensity Jcd can be written as

Jcd = σ (V ×B + E), (5)

where Jtd is the total current intensity which can be stated as

Jtd = Jcd +σ V. (6)

Using Fourier’s law of heat conduction as

qx =−ke f f A f
dT
dx

, (7)

where, ke f f indicates effective thermal conductivity.

d2T
dx2 +

U f ρ Cp

ke f f

dT
dx

−
hPf (1−ϕ)

A f ke f f

[
T −Ta

]
−

ε σ Pf

A f ke f f

[
T 4 −T 4

s

]
− Jcd × Jcd

σ
= 0. (8)

Here the thermal diffusivity of the fin’s material is given by λ = ke f f /(ρ Cp).

Jcd × Jcd

σ
= σ B2

0 u2. (9)

Here, B0 represents the magnetic field intensity. Using Eq. (9) in Eq. (8), we have

d2T
dx2 +

U f ρ Cp

ke f f

dT
dx

−
hPf (1−ϕ)

A f ke f f

[
T −Ta

]
−

ε σ Pf

A f ke f f

[
T 4 −T 4

s

]
−

σ B2
0 u2

ke f f

[
T −Ta

]
= 0. (10)

Incorporating the following boundary conditions

At x = 0, T = Tb, At x = L f ,
dT
dx

= 0. (11)

For non-dimensionalization, we consider

X =
x

L f
, θ =

T
Tb

, θa =
Ta

Tb
, θs =

Ts

Tb
, Ra =

gβ K t
[
Tb −Ta

]
λ ν ke f f

, H =
σ B2

0 u2

ke f f t
,

Pe =
U f L f

λ
, Nr =

ε σ Pf L2
f T 3

b

A f ke f f
, N2

c =
h(1−ϕ)Pf L2

f

A f ke f f
,

and obtained

d2θ

dX2 +Pe
dθ

dX
−Raθ(X)2 −Nc

[
θ(X)−θa

]
−Nr

[
θ(X)4 −θ

4
s

]
−H θ(X) = 0, (12)

with boundary conditions
X = 0, θ(X) = 1, and X = 1, θ

′(X) = 0. (13)

It should be noted that Pe,Ra,Nc,H,Nr denotes Peclet number, Rayleigh number, convective parameter, Hartmann
number, radiative parameter respectively.
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3. The shooting method

The problem is solved using the shooting method. Shooting is a numerical technique for solving boundary value
problems that consists of converting the boundary value problem into an initial value problem. To solve the cor-
responding initial value problem, the shooting method uses numerical techniques such as Euler and Runge-Kutta.
The computed boundary value is then compared with the desired boundary value, and the initial guess is adjusted
accordingly. Until a certain range of boundary values is achieved, the process is repeated. This method is useful
when boundary conditions (BCs) are defined at both ends of an interval, but the solution behaviour between them
is unknown. In general, we describe multiple paths until we identify the one with the best boundary value. Firstly,
calculate the Dirichlet BVP of a linear differential equation.

d2G
dy2 = F(y)

dG
dy

+L(y)G+M(y) subject to G(l) = ε, G(m) = γ, (14)

over the interval [l,m], where, F and L are arbitrary functions and M is considered as the source term. The solution
can be derived from the linear combination of the functions ϕ(y) and µ(y), which are also the solutions to IVPs.

G(q) = µ(q)+
γ −χ(m)

ϕ(m)
·ϕ(q), (15)

where χ(q) is the IVP solution.

d2χ

dq2 = p(q)
dχ

dq
+ s(q)χ +h(q), subject to χ(l) = ε,

dχ(l)
dq

= 0. (16)

Similarly, ϕ(q) is another initial value problem solution.

d2ϕ

dq2 = p(q)
dϕ

dq
+ s(q)ϕ +h(q), subject to ϕ(l) = ε,

dϕ(l)
dq

= 0. (17)

4. Differential Transform Method (DTM)

For understanding fundamentals of DTM, let φ(x) is an analytic function in the domain D and y = yi represents an
arbitrary point. A function ψ(z) can be expressed by a power series with its centre at zi. The expansion of ψ(z) can
be written as [51]

Ψ(ℓ) =
1
ℓ!

[dℓψ(y)
dyℓ

]
y=yℓ

∀y ∈ D, (18)

The Maclaurin series for a function ψ(y) can be obtained by putting yℓ = 0 in Eq.(18)

ψ(y) =
∞

∑
ℓ=0

(y− yi)
ℓ
ψ(ℓ) ∀y ∈ D. (19)

The differential transformation of ψ(y) gives [52]

Ψ(ℓ) =
∞

∑
ℓ=0

(y− yi)
ℓ

ℓ!

[dℓψ(y)
dyℓ

]
y=yi

, (20)

where ψ(y) represents a primary function and Ψ(ℓ) is transform function. The differential spectrum Ψ(ℓ) is bounded
by an interval y ∈ [0,M], where M ∈ R.
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Figure 2: Comparison between DTM and numerical solutions.

5. Applications of Differential Transform Method

To evaluate model (12), we apply DTM as discussed in previous section and rearranging the terms, we obtain

Θ(ℓ+2) =
1

(ℓ+1)(ℓ+2)

[
−Pe(ℓ+1)Θ(ℓ+1)+Ra

b

∑
c=0

[
Θ(c)Θ(b− c)

]
−Nr θs δ (ℓ)+(N2 +H)Θ(ℓ)

+Nr

ℓ

∑
a=0

a

∑
b=0

b

∑
c=0

ψ(c)φ(b− c)φ(a−b)φ(ℓ−a)−N2
θaδ (ℓ)

]
. (21)

The boundary conditions can be transformed as

Θ(0) = γ, Θ(1) = 1. (22)

Similarly

Θ(2) =
1
2

[
(Nc +H)a−Nr θ

4
s −Nc θa +Nr a4 −Pe+Ra γ

2
]
, (23)

Θ(3) =
1
6

[
Nc +H +Nr (4γ

3 + γ
4)−2PeΘ(2)+ γ Ra (−γ +1)

]
, (24)

Θ(4) =
1

12

[
(Nc +H)Θ(2)+Nr(4γ

3 +4γ
3
Θ(2)+ γ

4 +6γ
2)−3PeΘ(3)

]
+Ra

[
2γΘ(2)−2γ +1+2γ

2
]
, (25)

Θ(5) =
1

20

[
(Nc +H +4Nr γ

3)Θ(3)+Nr
[
(4γ

3 +12γ
2)Θ(2)+ γ

4

+6γ
2 +4γ

3 +4γ
]
−4PeΘ(4)+Ra

[
2γ Θ(3)−2Θ(2)−2γ Θ(2) + γ − 1

6
γ

2
]]
. (26)

The final solution can be written as

θ(x) =
n

∑
l=0

Θ(l)xl . (27)

The numerical solution are compared with DTM solution in Figure 2, where good agreement is obtained.
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6. Results and Discussion

Various parameters are used to investigate the heat transfer in magnetised porous rectangular fins. The thermal
profile θ(x) for six dimensionless parameters is computed, and the results are presented graphically. The curves shown
are obtained by evaluating the code of the final solution provided through shooting technique using “Mathematica
Software” code and furnished by using “Tecplot software”. As shown in Figure 3(a), temperature distribution steps
up with boosted ambient temperature. Increasing θa leads to a decline in convection heat loss, which results in a
higher temperature at the fin’s surface. Similarly, Figure 3(b) shows that the thermal profile rises when the surface
temperature θs value becomes higher because a low amount of heat is absorbed from the magnetised fin surface when
the surrounding temperature and surface temperature are raised. In actuality, as θa and θS increase, less convective
heat is dissipated from the moving fin’s surface, which maintains greater temperatures at the fin’s exterior.
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Figure 3: Thermal distribution computation for magnetised rectangular fin at θa and θS.
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Figure 4: Thermal distribution computation for magnetised rectangular fin at Nr and Nc.

Fig. 4(a) demonstrated the temperature profile behaviour versus length of the magnetised porous fin with the
impact of the radiative parameter Nr. Clearly, by increasing the radiative parameter Nr, the temperature profile di-
minishes. Physically, heat is carried from the fin surface by radiation, causing the temperature profile to step down.
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Thermal transmission improves when the radiative parameter rises. Also, the effect of the convective parameter Nc on
the temperature profile behaviour of the magnetised fin is depicted in Figure 4(b), which illustrates that the thermal
profile lowers with the growing convective parameter. Because of the convection effect surrounding the fin, more heat
is lost from the fin, and it gets colder. Therefore, enhancement in heat transference occurs at the fin’s surface with
upgraded convective parameters.
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Figure 5: Thermal distribution computation for magnetised rectangular fin at Ra and H.

The thermal distribution of the porous magnetised fin is due to the effects of the porous variable Ra value as dis-
played in Figure 5(a). It shows that the fin thermal profile highly diminishes with the upgrade of the porosity variable;
consequently, high transmission of heat from the fin surface occurs. In fact, elevating the Raleigh number causes
an increase in the relative permeability value of the magnetised porous fin, subsequently enhancing the penetration
competence of single-phase fluid via the pores of the fin. This phenomenon resulted in intensifying the impact of the
buoyancy force, and hence the fin started to convect more temperature. As a result, thermal transportation is enhanced
by the magnetised fin. Similarly, Figure 5(b) portrays the Hartmann number H effect on the thermal profile of the fin.
In the figure, thermal profile decay is observed when the Hartmann number increases, so heat loss from the magnetised
fin increases. Because with ameliorating the Hartmann number or magnetic number, magnetic field strength steps up,
which improves thermal convection. Thus, the temperature profile becomes lower.
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The porosity number ϕ impact on the behaviour of the thermal profile of a magnetised fin is declared in Figure
6(a). It is exhibited that when the porosity number ϕ value enhances, the fin thermal profile grows. Figure 6(b) reveals
the Peclet number or dimensionless speed influence on the temperature profile of the investigated fin. In fact, when
Peclet number Pe grows, the movement of materials becomes faster, which means that in a very short time, materials
on the fin are exposed to the outside medium, and hence heat loss from the fin surface improves. The cooling process
takes longer when Pe = 0, which shows a static fin. As a result, temperatures are higher than when a fin is moving. It
is therefore recommended to use a higher Peclet number when cooling is required.

Furthermore, various parameters are compared with the literature [32, 47, 53, 54]. According to their findings, the
temperature profiles of rectangular, triangular, and trapezoidal fins decline as Hartmann number, porosity parameter,
radiation, and convection parameters grow, but they rise as ambient temperature, Peclet number, and internal heat
generation enhance. Figs. 3-6 also show the same result for rectangular fins considering magnetic field.
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Figure 7: Fin’s tip temperature computation for a magnetised rectangular fin at Pe and Nc.
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Figure 8: Fin’s tip temperature computation for a magnetised rectangular fin at θS and Ra.
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Figure 9: Fin’s tip temperature computation for a magnetised rectangular fin at Nr and θa.

Further, Figures 7-9 illustrate the porous rectangular fin’s tip temperature along the Hartmann number. These fig-
ures demonstrate the repercussions of Hartmann number, showing that the rectangular fin’s tip temperature decreases
as Hartmann number increases. Figs. 7(a) and 7(b) show that fin’s tip temperature is exceeding due to amplifying Pe
from 0.1 to 1.2 and decreasing due to enhancing Nc from 0.1 to 0.9. In addition, Figures 8(a) and 8(b) show that the
tip temperature upgrades when θs increases from 0.3 to 0.9, while the outcome is contrasted when Ra increases from
0.3 to 0.9. In Figure 9(a), amplification of Nr causes a reduction in the fin’s tip temperature, while θa improvement
causes a rise in the fin’s temperature, as displayed in Figure 9(b).
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Figure 10: Efficiency computation for a magnetised rectangular fin at Ra and Pe.

The efficiency along with the Hartmann number for a porous rectangular fin with considered parameters can be
seen in Figures 10-12. These figures show a rise in fin efficiency with the amplification of Hartmann number H.
Furthermore, increasing Nr and Ra from 0.1 to 0.7 causes the efficiency η to increase, as shown in Figures 10(a)
and 11(a). Figs. 10(b), 11(b), 12(a), and 12(b) demonstrate the declining efficiency η , resulting from a continuous
increase of Pe from 0.1 to 0.7, θS from 0.3 to 0.95, θa from 0.1 to 0.7, and Nc from 0.1 to 0.16.
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Figure 11: Efficiency computation for magnetised rectangular fin at Nr and θS.
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Figure 12: Efficiency computation for a magnetised rectangular fin at θa and Nc.

As the physical effects of the porous parameter Ra, convection Nc, radiation Nr, and magnetic number H increase, the
temperature distribution declines as these parameters are subtracted from the equation. The mathematical equation
therefore validates the physical parameters. From the above results, it is clear that with the enhancement of uniform
magnetic field, porosity parameter and radiation parameter increases the heat transfer and efficiency of the fin.

7. Comparison with Experimental Results

In order to validate the results with the experimental published results. In experimental analysis [55], fin porosity
affects heat transfer. As the number of perforations increases (24 to 60), the heat dissipation rate increases by 20% to
70% . Further increases in perforation numbers result in a reduction of fin heat dissipation. Experimentally, annular
porous fins attached to a heated vertical cylinder were investigated in [56]. With a 10 mm thick fin, the heat transfer
coefficient was enhanced by 7.9%, and with a porous layer, it was enhanced by 131%. In this study, porous fins were
found to improve heat transfer significantly. The thermal performance of an annular fin-shell tube storage system using
magnetic fluid is experimentally investigated in [57]. When a magnetic fluid is added to an annular fin geometry, the
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fin efficiency increases by 20%. In this study, the magnetic ring of a small magnet with a thickness of 1 mm and a
diameter of 2.5 mm was used to maintain the thin layer of magnetic fluid on the fins. With a thin magnetic fluid layer
over the top surface of the fin, the relative heat transfer rate is significantly enhanced 35%, resulting in a significant
improvement in fin performance. Furthermore, the temperature distribution along the length of the fin shows a sharp
decline. The present numerical results illustrates the similar trend with the experimental study.

8. Conclusions

The thermal study of magnetised, porous, and moving rectangular fins suggesting mechanisms of convection and
radiation is addressed. The temperature profile of the fin is numerically analysed by shooting method via graphical
plots for considering parameters. The numerical result is compared with the DTM solution and good agreement is
observed. The investigated results declared that the temperature profile upgrading occurs by growing ambient temper-
ature, surface temperature, and porosity number, but when a radiative parameter, a convective parameter, the Raleigh
number, the Hartmann number (a magnetic number), and the Peclet number enhance, the fin’s temperature profile
declines. The rectangular fin’s tip temperature decreases as the Hartmann number, Raleigh number, and radiative
parameters grow. In contrast, as ambient temperature, surface temperature, and Peclet number rise, the fin’s tip tem-
perature increases. When the Hartmann number is continuously increasing, rectangular fins’ efficiency improves.
Furthermore, efficiency becomes higher with an increase in the Raleigh number and radiative parameter but depre-
ciates with an increase in surface temperature, ambient temperature, and Peclet number. When the magnetic field
strength is exposed to a rectangular-shaped moving porous fin, along with the impacts of radiative and convective pa-
rameters, the thermal dissipation and effectiveness of the investigated model are extensively stepped up for significant
performance. The current thermal study of magnetised rectangular fins inserting relevant thermal factors will be used
to improve the capabilities of many technological appliances.

Nomenclature
A f Area of fin’s surface [m2] Pe Peclet parameter (=U f L f /λ ), [–]
B Magnetic Induction [kgs−2A−1] Pf Fins perimeter [m]
B0 Magnetic field intensity qx Heat transfer rate [Jm–2]
Cp Specific heat coefficient [Jkg–1K–1] Ra Rayleigh number (= Gr ·Pr), [–]
E Electric field [kgms–3A−1] T Fin temperature [K]
g Gravity constant [ms–2] t Fin’s base thickness [m]
h Convective heat coefficient [Jm–2K–1] Tb Fin base temperature [K]
H Hartmann number (= σB2

0u2/ke f f t), [–] Ts Dimensional surface temperature [K]
Jtd Total current density [Am–2] Ta Dimensional ambient temperature [K]
Jcd Conduction current density [Am–2] u Axial velocity [ms–1]
K Fin permeability [m] U f Speed of moving fin [ms–1]

ke f f Effective thermal conductivity [Wm–1K–1] V Voltage [kgm2s3A−1]
L f Fins length [m] vw velocity of the fluid flowing through the fin [ms–1]
ṁ Mass flow rate [kgs–1] W Width of the fin [m]
Nr Radiation parameter (= εσL2

f T 3
b /ke f f A f ), [–] X Dimensionless distance (= x/L f ), [–]

Nc Convection parameter (= hPf L2
f /Ke f f A f ), [–] x Dimensional distance [m]

Gr Grashof number (= βg(T –Ta)L3
f /ν2), [–] Pr Dimensional distance (= ν/λ ), [–]

M Variable R Real numbers
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Greek symbols
θs −Dimensionless surface temperature (= Ts/Tb), [–] θa − Dimensionless ambient temperature (= Ta/Tb), [–]
β −Volumetric thermal expansion coefficient [Wm−1K−1] ν −Kinematics viscosity [m2s–1]

θ −Dimensionless temperature of the fin (= T/Tb), [–] ϕ − Fin’s porosity [m]

ρ −Density of material [kgm–3] ε −Surface emissivity [Wm−2]

λ −Thermal diffusivity [m2s–1] η − Fin’s efficiency
Subscripts
a−Ambient property e f f −Porous properties
c−Convection s−Surface of the fin
b−Base of the fin f −Fin
Abbreviations
IV P− Initial value problem SPDDES−Singularly perturbed differential–difference equations
BCs−Boundry conditios DT M−Differential Transform Method
CPU −Central processing unit BV P−Boundry value problem
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