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Several recently signed environmental agreements and protocols emphasize 

the global need to reduce greenhouse gas emissions, with a focus on limiting 

coal consumption due to high NOX and CO2 emissions. However, many 

countries, including those in the Western Balkans, rely heavily on coal for 

electricity generation. The outdated thermal power plant infrastructure in 

these regions poses a major challenge when it comes to meeting modern 

environmental standards while maintaining efficiency. This study is part of 

the more comprehensive research which aims to develop an expert system 

that utilizes existing measurements to estimate key parameters crucial for 

both energy production and pollution reduction. The focus is on Serbian 

thermal power plants, particularly plant “Nikola Tesla” unit B1. One of the 

critical parameters for optimizing thermal power plant control loops is the 

heating value of coal, which is challenging to measure in real time due to the 

coal's varying chemical compositions and caloric values. This paper 

examines 74 different parameters measured in 59 instances to estimate the 

hating value of coal at unit B1. Through detailed analysis and feature 

selection methods, including linear regression, this research aims to identify 

the most informative parameters for estimating the heating value of coal, 

which will improve the control system that enables more efficient and 

environmentally friendly power generation in coal fired thermal power 

plants. 
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1. Introduction 

For decades the scientific community has been aware of the need to reduce greenhouse gas 

emissions and their harmful impact on climate [1]. This has been formally and publicly acknowledged 

in 1992 at the United Nations Conference on Environment and Development, also known as Earth 

Summit, where the United Nations Framework Convention on Climate Change (UNFCCC) was 

established. Soon after, in 1997, the Kyoto Protocol was adopted which specified the obligations of the 

member states in reducing greenhouse gas emissions in the coming period. The Paris Agreement on 

Climate Change, signed in 2016 by the 195 members of the UNFCCC, presents an action plan to limit 

global warming. Countries have committed to keeping the rise in average global temperatures well 



below 2 °C compared to pre-industrial levels [2]. As a result of the adopted obligations, the most 

industrially developed countries of the world have introduced numerous programs to monitor, reduce 

and limit greenhouse gas emissions. Considering that CO2 is the most significant greenhouse gas, the 

biggest challenge of the Paris Agreement is in reducing the consumption of fossil fuels, primarily coal, 

because it has the highest emission factor, i.e. the highest emission of carbon dioxide per unit of 

energy used. 

Out of all fossil fuels, coal reserves are by far the largest and the most evenly distributed in the 

world. Their mass exploitation ensures a stable and relatively low price on the international market. 

That is why neither the most developed countries of the world nor developing countries can give up 

coal in the structure of primary energy sources to ensure a stable supply of their consumers at 

affordable prices. For that reason, thermal power plants (TTP) are still the main producer of electricity 

in many countries of the world, including the Western Balkan region with 54% of all produced power 

[3]. Additionally, most of the plants which are currently in use have been producing energy for 

decades, using technology which was state of the art in the period in which they were built, but which 

is now mostly outdated, both in terms of performance as well as in terms of satisfying new 

requirements regarding sustainable production which has low impact on the environment. In order for 

these plants to adhere to recent pollution policies and recommendations made by the European 

Commission regarding the limiting of NOX, SO2 and CO2 gases, they often need to sacrifice their 

efficiency and energy production [4]. Furthermore, some of the Eastern European plants [5] are so 

outdated that the only solution is to shut the plant down entirely and to build a modern one which can 

adhere to current standards. The aim of this research is to help the energy production systems to 

reduce harmful emissions using the measurements and technology which is available on site, with 

minimal investments necessary, concentrating on specific problems facing Serbian thermal power 

plants, specifically TPP “Nikola Tesla” unit B1 - TENT B1. This will be done by creating an expert 

system which uses existing measurements to estimate relevant parameters crucial to power production 

and pollution reduction. Using these estimates the existing control loops in thermal power plants can 

be augmented to take into account additional criteria related to pollution. 

Steam boilers in TENT are designed for the domestic lignite from the coal mine Kolubara as the 

main fuel with lower heating value of 6.700 MJ/kg, moisture content of 47.8 %, ash content of 19%, 

and sulfur content of 0.5% [6]. However, in today's energy sector, as a consequence of the current 

unfavorable geopolitical events, there are fewer and fewer power systems that have a guaranteed coal 

supply from specific mines. As it happens, there is a necessity on almost daily basis to mix coal that 

comes from different locations, and therefore with different chemical compositions and caloric value. 

Therefore, the authors’ experience is that dramatic changes in the quality of coal occur in small time 

intervals, which adversely affects the quality of regulation, and also the concentration of gases 

released into the atmosphere. This combination of circumstances causes special challenges for control 

systems, and the first and logical assumption of such solutions is dynamic knowledge of coal 

parameters [7]. 

Since the heating value of coal is one of the most important parameters which needs to be taken 

into account when considering optimization of thermal power plant control loops and minimizing 

pollution, it is only natural to implement the system which measures it directly. This, however, is very 

challenging in practice. The measurement of heating value of coal is not possible in real time because 

the extraction of the coal, its processing and testing is a process which requires a lot of time. The 



second-best solution, therefore, is to attempt to estimate its value. Unfortunately, estimation of this 

parameter based on all the available measurements is an extremely nonlinear multivariate problem 

which is not clearly solved in the literature [8,9]. 

The research presented in this paper deals with the problem of estimating the heating value of 

coal at the TENT B1 thermal power plant in Obrenovac, Serbia, taking into account 74 different 

parameters measured at 59 different time instances. An attempt is made to perform detailed analysis of 

these parameters (i.e. features or predictors as they are called in the literature) and to select a subset of 

them which are most informative for estimating the heating value of coal. Linear regression will be 

used to test the selected features, and several different methods for feature selection will be tested. 

This paper is structured as follows. In Section 2 the functional structure of thermal power plants 

is given and the significance of the heating value of coal is described. Multivariate linear regression is 

introduced in Section 3, as well as some commonly used metrics for model evaluation and hypothesis 

testing. In section 4 the measurements (i.e. features or predictors) used in this research are described in 

detail and the feature selection approaches are given. The results are presented in Section 5, while 

Section 6 concludes the paper. 

2. Case Study 

Coal fired thermal power plants are main producers of electricity in Serbia and they are mostly 

designed according to knowledge and technology that was available in the 1960s and 1970s. Steam 

boilers use lignite (low quality coal) as a fuel and are designed with subcritical steam parameters. The 

design efficiency levels of such boilers are 87-88% for coal of medium quality, lower heating value of 

6700 kJ/kg. Any decrease in the efficiency of the boiler means that its heat losses have increased, that 

is, less electricity has been produced than the amount that was possible from the energy available in 

the coal. To illustrate, Tab. 1 shows the heat losses in the boilers and, therefore, the loss in electricity 

production in units with a nominally installed power of 300, 350 and 670 MW. 

 

Table 1. Annual losses when reducing the efficiency of the boiler by 1% 

Losses 
Boiler with nominal power [MW] 

300 350 670 

Coal fed into the boiler, but not used [    t/year] 28 33 63 

Lost heat [    MJ/year] 210 247.5 472.5 

Less electricity produced [GWh/year] 20.6 24.3 46.3 

Monetary equivalent of non-produced electricity (calculated 

with a price of 0.045 €/kWh) [million €/year] 

0.930 1.090 2.080 

 

Although the heating value of coal primarily affects the efficiency of electricity production, for 

the optimization of the combustion process it is necessary that the other parameters of coal are in 

nominal values. Specifically, most of the boilers in Serbian power plants are designed for lignite with 

moisture content of 47.8%, ash content of 19%, sulfur content of 0.5%, ash melting point of 1345°C, 

and so on. Variations in these parameters lead to disturbances in the combustion process, as described 

in Tab. 2. It is evident that the most common causes of reduced boiler efficiency are either inadequate 

coal quality or inadequate functioning of the combustion devices [10]. These causes lead to significant 

changes in several critical parameters of the combustion process, primarily an increase in the two main 



heat losses  

 

Table 2. Disturbances in the combustion process and operation of the thermal power plant caused by 

changes in coal quality 

Parameter Deviation Effect 

Heating value 

Too high 
 Overheating and damage to the burner 

 Increased scaling 

Too low 

 Increased coal consumption 

 Increased transport costs 

 Possible power plant failure 

Ash content Too high 

 It can cause an increased participation of fine 

particles in the grinding product 

 Increased erosion of parts of the mill, pipes 

and burners 

 Increased scaling 

 Increased emission of solid particles 

Volatiles content Too low (<10%) 
 Unstable flame 

 Increased consumption of liquid fuels 

Moisture content Too high 

 Coal flow becomes problematic 

 Grindability of coal may be weakened 

 Reduction of combustion efficiency 

Hardgrove index Too low  May affect grinding capacity 

Initial melting temperature Too low  Increased scaling 

Coal feeder size Too high (>150mm)  Reduced combustion efficiency 

 

of the boiler: (i) loss of heat carried by flue gases into the atmosphere due to the increase in 

temperature of the flue gases at the exit from the boiler, and (ii) heat loss due to the removal of solid 

unburned materials from the boiler through slag and ash [11]. 

The influence of the heating value of coal on the efficiency of the boiler, as well as these two 

types of heat losses, can be seen in Tab. 3. What is interesting to note is that there is an almost linear 

dependence of boiler efficiency and the heating value of coal. 

 

Table 3. Boiler efficiency change with respect to the heating value of coal 

Heating value of 

coal [kJ/kg] 

Boiler efficiency 

[%] 

Loss in exhaust flue 

gases [%] 

Loss in unburned 

solids [%] 

All other 

losses [%] 

9289 86.80 11.60 0.99 0.61 

9211 86.43 11.90 1.04 0.63 

8326 85.54 12.21 1.54 0.71 

7992 85.51 12.44 1.34 0.71 

7816 85.00 12.75 1.44 0.81 

6700 83.64 ← Approximately determined boiler efficiency for 

guaranteed heating value of coal 

 

It is useful to analyze which specific critical points affect the efficiency of the thermal power 

plant block, with respect to the heating value of coal [12]. There are, in fact, three phenomena which 

are significant, and they are given and described in Tab. 4. 

 



 

 

Table 4. Parameters depending on the fuel quality and which affect the efficiency of the unit 

No. A phenomenon that indicates a 

reduced efficiency of the block 

The most likely cause 

1. Temperatures of flue gases at 

the boiler outlet are higher 

than the design and/or 

increased amount of water for 

steam temperature regulation. 

 Coal quality deteriorated - outside the guaranteed 

composition (absence of fuel homogenization system, improper 

operation of crushers) 

 Non-sealing of the boiler, as a result of which the burning 

time of fuel particles in the combustion chamber is extended, so 

the burning is often done in the initial part of the channel of the 

subsequent heating surfaces. 

 Disturbance in heat transfer in the relationship flue gas - 

working medium due to the formation of deposits on the outside 

and/or inside of the pipes and the heating surfaces of the boiler. 

2. Increased content of unburned 

solids in slag and ash. 

 The quality of coal deteriorated - outside the guaranteed 

composition and granulation. 

 Improper functioning of the combustion device, primarily 

mills (coarser fineness of grinding and/or increased humidity of 

coal powder). 

 Leakage of the boiler, which causes an irregular fuel-air 

ratio at the burner levels, i.e. insufficient secondary air, so the 

fuel jet is insufficiently turbulized in the combustion chamber, 

i.e. insufficient speed of the "air mixture" and/or secondary air at 

the mouth of the burner. 

3. Not achieving nominal steam 

parameters. 

 Improper functioning of certain parts of the boiler plant 

(water heater, evaporator, superheater, etc.) - most often in direct 

connection with the aforementioned causes. 

 

Although in literature, as well as on the market, there are various methods and devices that 

measure the heating value of coal in-situ [13], this approach is often, if not impossible, certainly 

overly complicated, expensive or inappropriate. This is mainly due to the fact that heating value of 

coal would have to be measured on all conveyor belts to individual mills and the obtained values 

would be the characteristics of the particular samples which are taken. Also, each of the devices would 

require an evaluation time between 300 and 900 seconds, which is already comparable with the 

dynamics of changes in the heating value of coal at plants where the authors of this paper have 

experience. Accordingly, the idea to design an algorithm that will estimate the heating value of coal 

based on available on-line measurements is of exceptional importance. 

3. Multiple linear regression 

The heating value of coal influences many of the parameters described in the previous section. It 

is therefore clear that measuring several key variables can help to estimate the heating value of coal. 

Linear regression maps the relationship between input variables (also known as features or predictors, 

 ) and output variables,  . Three different cases of linear regression, depending on the number of 

predictors: simple linear regression (one predictor   and one output  ), multiple linear regression 

(several predictors and one output), and multivariate linear regression (several predictors and several 

outputs) [14]. The goal of this paper is to estimate the heating value of coal depending on the several 

measured quantities, so the multiple linear regression approach is going to be used. 

Multiple linear regression in the case of   measurements and   predictors can be represented as 



        (1) 

where   [       ]  is the vector of outputs,   [       ]
  is the vector of 

regression coefficients, the vector of random errors is denoted by   [       ] , and   is 

the augmented sample matrix with   predictors: 

  [

           
           
     
           

]  (2) 

This model can be used if the following three assumptions are met: 

1) The process is indeed linear, i.e. it holds that  {  }                           

     . 

2)    (  )   
          i.e. the variance of error terms is the same; 

3)    (     )   , for all    , i.e. error terms are uncorrelated. 

The first assumption states that the model is linear and that there are no additional terms that are 

needed to estimate output variable  . Strictly speaking, this condition is not satisfied for the problem 

at hand in which there are surely several predictors which are connected to the output variable in a 

nonlinear fashion. This will be studied in more detail in the future research, but for the purpose of 

rating the informativeness of the predictors it is assumed that this nonlinear association can be 

modelled as linear.  

Additionally, in order to obtain statistically significant results, and to avoid the problem of weak 

conditioning, the number of measurements needs to exceed the number of parameters of the model: 

     . With all this in mind, the least squares estimate of regression coefficients,  ̂, is given by 

 ̂  (   )       (3) 

This estimate minimizes the error sum of squares: 
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where  ̂     ̂ is the linear regression estimate of the output and    [           ] is the 

augmented predictor vector of  -th measurement. Apart from    , other sum of squares values which 

can be useful when discussing linear regression are regression sum of squares (   ) and total sum of 

squares (    ) given as 
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Here  ̅  
 

 
∑   
 
    is the sample mean of outputs   . These parameters indicate which amount of total 

variation of the output (    ) is due to variation around the estimated regression line (   ) and 

which is due to variation around the sample mean (   ). 

3.1. Linear regression quality metrics 

It is clear from Section 2 that the nature of the thermal power plant process is such that there are 

more descriptors than measurements, so standard linear regression approach needs to be modified. 

Specifically, there is a need to reduce the number of features by eliminating the ones that are not 



informative for coal energy level estimation and keep those that are. The problem is simply 

formulated: from the initial   predictors,     predictors should be chosen which, according to 

certain criterion, will model the output variable in the best way, through a linear regression model 

          (7) 

This equation is similar to Eq. (1), where   is the output vector and   is the error vector. The 

difference is that only   out of the original   predictors are used, so the vector of regression 

coefficients is now    [       ] , and the augmented sample matrix with   predictors 

becomes: 
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  (8) 

In order to assess which subset of   features is most informative, some metrics for assessing the 

quality of linear regression are needed. Perhaps the most intuitive metric which describes the quality 

of linear regression is the coefficient of determination    which quantifies which proportion of total 

variation of output can be attributed regression of descriptors,  : 

   
   

    
 
 ̂       ̅ 

      ̅ 
  (9) 

It is clear that    has values between   and  , where      means that all measurements lie on 

the linear regression line, while      means that the estimated regression line is horizontal. 

Colloquial interpretation of coefficient of determination is that “        of variation in output is 

explained by the variation in predictor.” Even though one should be careful when interpreting the 

value of this coefficient [15], generally it can be said that the higher the    value, the stronger the 

linear relationship between the predictor (or the set of predictors) and the output. More specifically, 

while evaluating which subset of   predictors better describe the model, the    test can be used to 

evaluate the model from Eq. (7) as 

  
  

  ̂
 
  
     ̅ 

      ̅ 
  (10) 

Another metric which can be found in the literature is the variance of the estimator. When   

predictors are used, the variance of the predictor is defined as: 
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  (11) 

The smaller the variance the better the prediction. This metric is especially useful when comparing the 

performance of linear regression models with different predictor sets. 

There is a third metric that can be used to assess the performance of linear regression for 

specific purpose of finding the best subset of   predictors from an initial large number of parameters 

   . This measure takes into account both the variance of the estimator and its bias. The goal is to 

find such a model that will make a good compromise between these two components. It can be defined 

in two alternative ways: 
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    (12) 

or 

   
    

  
  (    )  (13) 



The second definition is somewhat simpler numerically, however, the first gives the possibility 

for a physical interpretation of the results. If the bias is small for a particular model, then the second 

summation is close to zero and the measure    becomes close to the parameter  . Therefore, the 

diagram              is usually sketched together with the diagram     . 

3.2. Hypothesis testing 

Hypothesis tests are performed in order to compare how certain subsets of predictors perform 

when it comes to multiple linear regression models. In regression analysis usually a so-called F-test is 

used which is a test that uses the F-distribution [14]. 

The first test that can be found in the literature is the overall regression test which forms 

hypothesis 

   [       ]        (14) 

In other words, the null hypothesis states that none of the predictors hold any information about the 

output. This test can be expressed with random variable 

  
     

    (     )
  (15) 

This random variable is distributed as          when    is true, so the hypothesis is rejected when 

            , where   is a selected threshold. 

The second hypothesis test is the test on a subset of  . It takes into account the original set of   

predictors,   . This set is divided into a subset of   predictors which will be used for regression,   , 

and the subset of     predictors which will be rejected,   . Naturally it holds that         . The 

hypothesis in this case says that the predictors from the set    should be omitted because their 

influence on the output variable is non-existent. Therefore, the hypothesis is  

         (   )   (16) 

and the test can be expressed with the random variable 

  
(         ) (   ) 

     (     )
  (17) 

Here      and      are regression sum of squares of the sets of predictors    and   , respectively, and 

     is the error sum of squares of the set   .The random variable from Eq. (17) is distributed as 

           when    is true, so the hypothesis is rejected when               , where   is a 

selected threshold. 

4. Feature selection 

In an attempt to include in the model all the signals which could directly or indirectly indicate 

the heating value of coal, the authors have oversized the initial set of predictor signals. This is usually 

done when it is not initially clear which set of predictors is informative for the problem at hand [16]. 

The initial set consists of 74 measurable variables that are available and archived in the existing data-

logging system. Some of these variables should naturally be in the set of predictors, such as active 

electrical power, total fuel quantity, oil flow, flue gas temperature or steam flow in front of the turbine. 

However, as a precautionary measure so that some of the hidden connection between signals and 

output are not lost, the signals that at the first glance do not have a connection with heating value of 

coal are included in the initial predictor set. Thus, among the initial 74 predictors there were signals 



such as feed water temperature, total injection quantity, steam pressure in front of turbine, NO and O2 

concentration in flue gases, primary and secondary air flow, and so on. 

Regardless of the modern computational and memory capacity of the computers used to process 

this data, it turns out that such a large set of predictors is extremely demanding, especially considering 

the relatively modest number of laboratory measurements that were available. This problem is often 

indicated in literature. Namely, during fourteen months in 2021 and 2022, a laboratory check of the 

heating value of coal was performed approximately once a week. This procedure was carried out by 

taking samples from different physical locations in the coal delivery sector for one hour. These 

samples were mixed in order to obtain a homogeneous sample that will be sufficiently representative 

for the observed time interval. Thus, 59 samples and 59 measurements were obtained. Considering 

such a limited sample size, the multivariate model should not have too many predictors [17]. A large 

number of predictors in relation to the number of experiments, or measurements, generates a technical 

problem of weak conditioning of the system of equations that needs to be solved. On the other hand, it 

is intuitively clear that this scenario of too many parameters inevitably leads to overtraining of the 

model. 

Various predictor selection techniques are known in the literature [18]. The best-known and 

most frequently used approaches are All Possible Subsets method and Stepwise Selection [14]. 

However, applying these techniques to the initial set of 74 variables was almost impossible, especially 

for the All Possible Subsets method. Therefore, it has been decided that the first step will be a 

preliminary reduction of dimensionality of predictor set in a simple but intuitively quite justified way. 

Namely, the coefficient    from Eq. (10) is calculated between the output variable and each of the 

potential predictors. In that way 74 different values of this parameter were obtained, indicating the 

strength of linear connection between output variable and each of the predictors. 

The highest    index of       was obtained between the temperature of the steam before the 

superheater and the heating value of coal. A graphical representation of their correlation is given in 

Fig. 1. Similarly, a high level of correlation was obtained between the active electrical power of the 

plant and the heating value of coal (Fig. 2). 

On the other hand, for a large number of predictors, a very small value of the coefficient of 

determination was obtained. Such a weak correlation is generally expected for many signals. The 

correlation between heating value of coal with air temperature in front of luv 1 is given in Fig. 3, while 

the correlation with the amount of injection in the second stage is given in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Variable 6: steam temperature before 

superheater. 

 

 

 

 

 

 

 

 

 

               Figure 2. Variable 1: active power. 



 

Based on these diagrams and the obtained values of the coefficients of determination, two 

interesting facts can be noted. The first is that the highest coefficient of determination was not 

obtained for the expected predictors. Namely, if the losses in the thermal powerplant were ignored, as 

well as the variation in the enthalpy of the obtained steam in front of the turbine, a good indicator of 

the heating value of coal could be obtained as the quotient of the steam flow in front of the turbine and 

the sum of the fuel fed into the boiler. These quantities, however, did not stand out with the highest 

values of    with regards to the heating value of coal. Also, based on Fig. 3 and 4 it is noticeable that 

there are measurements that deviate significantly from the rest of the observations and can be 

considered, in this context, as outliers. The measurements in question were probably obtained under 

specific, unusual circumstances. These circumstances can be different, starting from extremely non- 

heating to extremely heating coal. It is possible that in some periods there were failures of certain 

mills, or plant operation with unusually high support of fuel oil, and the like. In any case, due attention 

needs to be paid to these outliers because they can significantly distort the picture of the correlation 

and determination of certain predictors and regression outputs. 

In order to exclude from the further analysis all physical quantities that are likely not useful 

from the aspect of multivariate linear regression, the threshold   
      was set. In this way, 20 

potential predictors whose coefficients are higher than the adopted threshold were singled out. These 

signals are given in Tab. 5. 

This set of 20 predictors is sufficiently small to enter the predictor selection procedures. The 

main idea of this work, apart from the multivariate linear regression design itself, is to illustrate the 

predictor selection procedures in case of modeling the heating value of coal in thermal power plants. 

On the other hand, as various techniques for the selection of input variables are known in the 

literature, it was interesting to make a short comparative analysis. These procedures are methodically 

described in the literature [14] and the authors of this paper followed the instructions and advice that 

could be found there. The further is divided into two subsections, the first of which is devoted to the 

All Possible Subsets approach, and the second to the Stepwise Selection technique. 

Figure 3. Variable 13: air temperature in front of luv 

1. 

Figure 4. Variable 5: amount of injection in the 

second stage. 



4.1. All Possible Subsets 

The idea behind the All Possible Subsets approach is to first choose     of the initial   

predictors (in this case     ). This can be done in (
 
 
) ways, and for each of these 

 (   )

 
 ways a  

 

Table 5. Initial set of 20 predictors. 

Symbol Predictor description Symbol Predictor description 

   Active electrical power     NO concentration in the gas analyzer 

   Water temperature behind the economizer     O2 concentration in the gas analyzer 

   Pressure of feed water in the bottle     
Flue gas temperature in front of 

superheater 3 on the right side 

   Sum of steam injection     
Flue gas temperature in front of 

superheater 3 on the left side 

   Steam temperature before superheater     Fuel oil consumption 

   Total air for the boiler     
Steam flow in front of high pressure 

bypass 

   Airflow for roasting     
Steam pressure in the high pressure 

collector 

   Total fuel     
Steam temperature in the high-pressure 

collector 

   Flue gas temperature before luv 1     Feed water flow to the boiler 

    Flue gas temperature before luv 2     Feed water pressure behind the feed head 

linear regression model is formed, as in Eq. (7) and its efficiency is measured based on some criterion 

    . The subset with the best value       is chosen. Then the procedure is repeated for   

       . Finally, the diagram       is drawn and after its analysis which depends on the nature of 

the criterion function, a valid selection of the parameter   is obtained as well as a valid subset of   

predictors which should be used for the multivariate linear regression model. 

The choice of the criteria function used for predictor selection is extremely important. The 

literature usually gives the choice of three different criteria that can be used in such situations and 

which are presented in Section 3.1. The first of them, the coefficient of determination, is given in Eq. 

(10). It is clear, from the nature of this parameter, that if the value of   
  is plotted as the function of 

the number of predictors,  , the graph will be a monotonically increasing function and that the 

maximum of that function will be for    . However, it is also expected that at some point, with a 

further increase in the parameter  , the increase of the criteria   
  becomes negligible. This feature is 

crucial for choosing the appropriate value of parameter  , but bearing in mind that the choice of this 

value is highly subjective because a quantitative measure of the moment when the increment of 

criteria becomes negligible is not unequivocally defined in the literature. While applying this method 

on the data available, the graph in Fig. 5 was obtained. In order to make the selection of the parameter 

  as objective as possible, Fig. 6 shows the increment of the criteria   
  as a function of  . 



Figure 6 suggests two possibilities for the choice of parameter  . If the main objective is to 

minimize the number of predictors as much as possible, a good choice would be    , because for 

each    , the increment of criteria is significantly smaller. On the other hand, looking at the tail of 

this curve, starting from      the increment of the criterion becomes less than       . Therefore, 

in the next section of this paper it will be interesting to look specifically at how well the linear 

regression obtained in this way really corresponds to the set of acquired measurements. 

There are two questions that need answering, at this point. The first question is which predictors 

are chosen for fixed  ? It is shown that for    , the best choice of predictors is: active electrical 

power (  ), total fuel flow (  ), steam flow in front of high pressure bypass (   ), flue gas temperature 

in front of luv 1 (  ), flue gas temperature in front of superheater 3 right (   ), flue gas temperature in 

front of superheater 3 left (   ), steam pressure in the high-pressure collector (   ), steam temperature 

in the high-pressure collector (   ) and pressure of the feed water behind the feedhead (   ). One has 

the impression that the choice of variables is good, that is, very logical and close to the choice that an 

expert would make from the point of view of the influence of some physical quantities on others. 

The second, very important question is whether, by increasing the parameter  , the set of 

predictors selected for     only expands by one more variable, because in this way the number of 

possibilities for searching for the best subset of class   could be significantly reduced. Unfortunately, 

the experimental results show that it can easily be the case that the difference between the best subset 

of class     and class   is significantly greater than 1. In the case of these experimental results, 

when jumping from      to      the difference between the predictors amounted to as many as 5 

variables. 

Apart from determination coefficient, the other metric which is often used in the All Possible 

Subsets approach is the variance of the estimator,   
 , as defined in Eq. (11). Unlike the previous 

criterion, the variance of the estimator, should be as small as possible. Theoretically, with increasing 

parameter  , the variance of   
  should decrease and the minimum of this criterion should be reached 

for    . However, it often happens in practice that the minimum of this criterion occurs for    . 

The rationale for such a result is very simple. Namely, if you look at the expression for   
 , you can see 

that it is defined through a quotient in which the numerator is the error sum of squares (SSE) and the 

denominator is the degree of freedom (   ). Both of these expressions decrease with increasing 

parameter  , so it may happen that by including some new variables, the numerator decreases less than 

the denominator, so the total expression for the estimated variable increases. This effect is clearly a 

consequence of the specificity and structure of the set of measurements, rather than the nature of those 

 

 

 

 

 

 

 

 

Figure 5.   
  for All Possible Subsets method. 

 

 

 

 

 

 

 

 

Figure 6. Increments of   
 . 



measurements themselves. That is why some authors suggest that the optimal    be chosen either the   

for which the minimum criterion is obtained or the smallest   that satisfies the condition   
    

 , i.e. 

      
 
(  
    

 )   (18) 

For the experimental measurements obtained in this research the diagram of variance of the 

estimator as a function of number of predictors,  , is shown in Fig. 7. Based on this diagram, and 

following the recommendations mentioned in the previous paragraph, a good choice of parameter   

could be either     because it is the smallest value of   for which the criterion   
  is smaller than 

   
 , or      because it provides the minimum of criterion   

 . 

Regardless of the fact that different optimal values were obtained for the parameter   depending 

on whether the coefficient of multiple determination   
  or the variance of the estimator   

  is used as a  

 

criterion, it is good to note that the choices of predictors themselves are almost identical. Namely, the 

set of optimal predictors for     with the criterion   
  is a subset of the set of predictors for     

and the criterion   
 . The only difference is in the flue gas temperature in front of superheater 3 on the 

right and the steam temperature in the high pressure collector. 

The third metric is the    criterion as defined in Eq. (12) and (13). The literature suggests that 

one should look for such a   for which    is small and at the same time close to the line     . More 

precisely, one should look for a minimum   for which     . 

Figure 8 shows results obtained regarding the criterion   . This diagram is interesting because it 

really illustrates the possibility of a trade-off between bias and the variance of the  ̂  estimate. If the 

intention is to keep the variance as small as possible, one should look for the point that is closest to the 

line     . This is the line drawn in the diagram with a dashed line. On the other hand, in order for 

the bias to be as small as possible, it is necessary to choose the smallest possible  . A compromise is 

achieved by choosing the smallest value of the parameter   for which     . In this case it is    . 

What is also interesting is that the selected set of predictors is identical to the set of predictors obtained 

when applying the   
  criteria. 

4.2. Stepwise Selection 

In the literature, the problem of feature (or predictor) selection is often discussed because it is a 

very interesting issue. It is an optimization problem that is theoretically easily solvable because the 

number of possible solutions is finite. However, that number of finite solutions is very often so large 

that the obtained theoretical solutions are unusable. Hence, several approaches are suggested to find 

good enough suboptimal solutions that are numerically feasible. The Stepwise Selection method is a 

 

 

 

 

 

 

 

 

Figure 7.   
  for All Possible Subsets method. 

 

 

 

 

 

 

 

 

Figure 8.    for All Possible Subsets method. 



good example of such an approach. It can be implemented in two forms. One form is forward 

selection, and the other is backward elimination. In order to implement the forward selection 

procedure, firstly the set of predictors is selected for which the maximum value of the parameter   is 

obtained: 

  
   

   
 

     

    (     )
  (19) 

where     and     are the mean squares of regression and error, respectively,     and     are 

defined earlier and   is the number of predictors which participate in the model and in the first step we 

adopt    . Also   is the number of measurements (or experiments) and in this case     . In this 

way the first variable which will enter the predictor set is chosen. If this variable is denoted as   , the 

next variable which will be included in the predictor set is the variable    which maximizes the 

parameter   defined as 

  
   (     )     (  )

   (     ) (     )
  (20) 

Now    (     ) is the sum of regression squares of the second order model in which predictors 

are    and   , and    (  ) is the sum of regression squares of the second order model in which the 

only predictor is   . A similar logic applies to the denominator, that is, the sum of squared errors 

   (     ). Since there are now two predictors, we adopt    . If in this step we choose variable    

as a second predictor, in the next step we choose the variable    which will maximize the value of the 

parameter   defined as 

  
   (        )     (     )

   (        ) (     )
  (21) 

in which    , and so forth. This procedure is repeated until the maximum value of parameter   in a 

given step becomes less than a threshold. Figure 9 shows how the maximum values of parameter   

changes with each step and which variables are included in the set of predictors. Thus, from this 

diagram it can be seen that the first variable included in the set of predictors is the variable    – steam 

temperature before the superheater, then the variable    - the amount of coal, and the last is the 

variable    – the temperature of the feed water after the economizer. 

It is clear from Fig. 9 that the maximum values of   are not monotonically decreasing as the 

number of predictors increases, as one might expect. Also, this diagram does not offer an obvious 

threshold for the maximum value of   beyond which it would not make sense to add new predictors. 

Just by analyzing the graph there is a significant drop after the third step in which the variable    was 

added, which would suggest that the procedure should end with just three predictors. Intuitively it is 

clear that this would result in a bad model. However, by careful analysis of the obtained numerical 

values, it seems that a good choice for the threshold is      , which would result in the formation of 

a model with 11 predictors, where the last added variable would be    - the flue gas temperature 

before luv 2. The set of predictors is: 

  {                                       }  (22) 

Another way to implement the Stepwise Selection procedure is backward elimination. Backward 

elimination starts from the assumption that we have included all available input variables in the set of 

predictors, and then, step by step, we eliminate one variable at a time. The variable which yields the 

smallest values of the parameter   is eliminated in each step. So, in the first step, we eliminate the 

variable for which the minimum of the following expression is obtained: 



  
   (          )     (                   )

   (          ) (     )
  (23) 

Here, the notation is the same as in the forward procedure. If we mark the variable thus obtained with 

  , in the next step we remove the variable    which minimizes the following expression: 

  
   (            )     (                     )

   (            ) (  (   )   ) 
  (24) 

and so on. The procedure is repeated until the minimum obtained   value becomes so large that the 

further elimination of variables will lead to a significant loss of information. 

Implementation of the backward elimination procedure results in the numerical values shown in 

Fig. 10, where it is shown how the minimum value of the parameter   changed in each step, as well as 

the series of input variables which were eliminated from the predictor set in each step. 

 

The interesting thing which can be seen from Fig. 9 and 10 is that the variables were not 

eliminated in the reverse order in which they were added to the set of predictors. Only the variable    - 

the temperature of the feed water behind the economizer was the last added in the forward selection 

procedure and the first eliminated in the backward elimination procedure. For example, the variables 

    and    , fuel oil consumption and water vapor pressure in the high-pressure collector, 

respectively, were very quickly eliminated from the set of predictors as non-informative variables, but 

in the forward procedure they were introduced at the very beginning, as very informative. This 

disagreement indicates that this procedure is not optimal by any criteria, but at the same time it can 

illustrate the high complexity of the problem itself. Namely, a large number of variables among the 

initial 20 predictors are correlated among themselves, so it is not easy to recognize which variables 

among them are essential generators of change in the output variable. 

Similarly as in the forward selection, based on Fig. 10 it is not easy to recognize the threshold 

    after which it becomes dangerous to eliminate the predictors because the loss of information will 

become significant. If we adopted the same threshold again,      , as we adopted in the forward 

procedure, the algorithm would form a set of predictors with 12 variables: 

  {                                          }  (25) 

It is interesting to note that the intersection of the set of predictors generated by the forward and 

backward procedures consists of only five variables, which is not a lot considering that one set of 

predictors has 11 and the other 12 signals. It will be interesting to analyze the extent to which the 

regression model obtained on all these sets of predictors fits, that is, corresponds to the set of 

measurements on real experiments. 

 

 

 

 

 

 

 

 

Figure 9. Maximum values of   for Stepwise 

Selection method, forward selection procedure. 

Figure 10. Minimum values of   for Stepwise 

Selection method, backward elimination procedure. 



5. Results 

In the previous section, a serious analysis was conducted about the choice of predictors. It is 

shown that different procedures and different metrics within those procedures lead to different choice 

of predictors. If we summarize the analysis in the previous section, it would read like this. In the All 

Possible Subsets procedure, if we use the coefficient of determination   
  as a measure, and if we 

choose     as a good choice of the number of input variables, the corresponding set of predictors 

becomes 

   {                                }  (26) 

If we choose      as the number of input variables, the set of predictors would be 

   {                                             }  (27) 

When applying the same All Possible Subsets methodology, but if we choose the variance   
  as 

a measure of quality, we also got two possible sets of predictors, one for    , and the second for 

    . The resulting sets are marked with    and   , respectively: 

   {                        }  (28) 

   {                                       }  (29) 

When applying the coefficient    as a metric, the same set of predictors as shown in    was 

obtained: 

      {                        }  (30) 

In the Stepwise Selection method using the forward procedure, the following proved to be a 

good choice of predictors: 

   {                                       }  (31) 

and using backward elimination the following set is obtained: 

   {                                          }  (32) 

In order to understand whether there are variables which are recognized as informative 

predictors in each approach that is tested, as well as whether there are those that do not seem important 

in any scenario, the following table was created. 

 

Table 6. The choice of predictors using different selection procedures. 

                                                                        

                       

                       

                       

                       

                       

                       

                       

 

It turns out that the variables    - active electric power of the block,    - temperature of the flue 

gas before luv 1, as well as     − the pressure of the feed water behind the feed head are recognized as 

strong predictors in each of the input variable selection approaches. Also, as important predictors, we 

should mention    – total fuel set point and     - steam flow in front of high pressure bypass. On the 



other hand,    - feed water temperature behind economizer,    - total air or    - airflow for roasting, 

were not recognized as informative predictors in any of the approaches used. 

It is also interesting to see how well the outputs of the obtained linear models match with the 

experimentally obtained heating values of coal. These results are shown in the following graphs. 

Figure 11.1 shows the output of the linear model by adopting the predictor set   , in Fig. 11.2 the 

predictor set    is adopted and so on. Figure 11.5 is excluded because the set of predictors    is 

identical to   . The figures also show the output of the model that is used in the thermal power plant 

and which was created based on physical laws. In the roughest terms, this model estimates the heating 

value of coal as a quotient of the total energy obtained through the total amount of coal delivered to 

the boiler in a unit of time. At the same time, the total amount of energy is calculated through the flow 

of water vapor towards the turbine, its enthalpy, taking into account the energy loss through injection, 

the heat of the flue gases, the  

 

 

 

 

 

 

 

 

 

 

 

Figure 11.1. Performance of predictor set   . 

 

 

 

 

 

 

       

 

 

 

        Figure 11.2. Performance of predictor set   . 

 

Figure 11.3. Performance of predictor set   . 

 

 

 

 

 

 

Figure 11.4. Performance of predictor set   . 



 

loss due to the non-sealing of the boiler and so on. In each of the figures shown, the caption shows the 

mean squared error value obtained through the output of our linear model (SSE) and physical model 

(SSEF).  

Based on the obtained and presented results, two conclusions are indisputable. One is that, 

based on root mean square error, all linear regression models perform better than the physical model. 

Another important conclusion is that, again based on the mean square error, sets of predictors    and 

   stand out as the best.    was obtained by applying the All Possible Subsets technique and variance 

  
  criteria, adopting a solution with 11 predictors, while the solution    was obtained by applying the 

Stepwise Selection technique in the form of backward elimination and choosing a set of 12 predictors. 

This interpretation on the best set of predictors, however, should be taken with a grain of salt. One 

reason for doubt is the dilemma: is the mean squared error of estimation really the 'right' criterion for 

ranking? The other reason is that the chosen solutions    and    have 11 and 12 predictors, 

respectively, which is more or even significantly more than the sets of predictors    and    which have 

7,    with 9 or    with 10 predictors. In other words, there are unfair elements in the comparison 

system itself, which leave room for certain doubts. 

In order to verify and compare the obtained sets of predictors and the corresponding linear 

regression models, it is possible to perform two basic hypothesis tests mentioned in Section 3.2. The 

first hypothesis test is the so-called overall regression test, which tests the hypothesis    that none of 

the selected predictors predicts the output of the model. This hypothesis can be tested by introducing a 

random variable   from Eq. (15). 

Another hypothesis test that can be used in this context is a test on a subset of regression 

parameters and the hypothesis    in this case says that the predictors from the subset of predictors 

should have been omitted because their influence on the output variable is non-existent. This 

hypothesis is tested using random variables   from Eq. (17). 

These two hypothesis tests were conducted for all previously selected combinations of 

predictors and the results are shown in the following table. 

 

 

 

 

 

Figure 11.6. Performance of predictor set   . 

 

       Figure 11.7. Performance of predictor set   . 



 

Table 7. Hypothesis testing results  

 TEST 1 TEST 2 

                                          

   32.66 2.07 2.79 3.83 0.55 1.705 1.99 2.63 

   21.37 1.94 2.55 3.44 0.62 1.855 2.22 3.065 

   37.87 2.19 3.01 4.20 1.05 1.66 1.915 2.50 

   27.16 2.00 2.65 3.60 0.36 1.77 2.085 2.81 

           

   28.90 2.03 2.71 3.71 0.57 1.735 2.035 2.715 

   25.16 1.97 2.60 3.51 0.23 1.81 2.145 2.925 

 

Table 7 shows the results of the hypothesis testing of the first and second tests. It is shown that 

each of the analyzed sets of predictors from    to    refuse the hypothesis   . Recall that the 

hypothesis    assumes that the selected set of predictors does not model the output variable. This 

hypothesis is rejected if the value of the variable   is greater than the threshold   , where   is the 

confidence level.  

For the first test, the confidence level was chosen to belong to the set   {               }. 

The row which corresponds to the set    is omitted because this set is identical to the set of predictors 

in   , so the results are also identical. It can be seen that for each of the selected sets of predictors 

              , the hypothesis    is rejected, and very convincingly. If we still need to somehow 

rank the persuasiveness of defeating this hypothesis, we should single out the set    (or   ) because 

the obtained value of the variable   is convincingly the highest compared to the threshold      . 

The right half of Tab. 7 shows the results obtained for the second hypothesis test. The 

hypothesis    which is tested states that the omitted predictors in relation to the initial, twenty-

dimensional set of predictors do not carry any information about the output variable, that is, that their 

coefficients in the linear regression model should be equal to zero. The obtained results show that the 

value of the variable   in each of the mentioned sets of predictors is convincingly lower than the 

hypothesis rejection thresholds, and the hypothesis    must be accepted. This is a desirable result 

because it indicates that each of these analyzed choices is meaningful and that the feature selection 

procedures, described in the previous section, are statistically justified. For the purpose of this 

hypothesis testing,   {              } were used as confidence levels. Again, regardless of the fact 

that all sets accepted the hypothesis   , if we were to rank the intensity of acceptance, we would 

single out the predictor set    because in its case the value of the variable   is convincingly the 

smallest compared to the threshold      . 

6. Conclusion 

This paper detailed the development of a linear regression model to estimate the heating value 

of coal delivered to the mills of a thermal power plant and emphasized the importance of this 

estimation for adjusting the regulatory structures within the boiler plant. The methodology was 

demonstrated using data from the thermal power plant "Nikola Tesla" Unit B1 - TENT B1 in 

Obrenovac, Republic of Serbia. 



Based on the definition of numerous potential predictors available in the DCS data-logging 

system, various techniques for selecting predictors and testing hypotheses about the acceptance or 

rejection of models were illustrated. The results show that even with only seven predictors, linear 

regression models provide an excellent estimate. Furthermore, with 12 predictors, the linear regression 

model outperforms the heating value estimator based on a physical model. 

On the other hand, the analysis here also raised some interesting questions that were not 

answered in this paper. First, is the model obtained generic or does each thermal power plant have its 

own set of optimal predictors? Another important question is the possibility of implementing in the 

model some prior knowledge about the physical influence of the heating value of coal on certain 

physical quantities. The third question is whether the fact that there was a relatively small number of 

experimental measurements and that these were not divided into training and test groups affects the 

validity of the results obtained. Finally, when analyzing the data obtained, it was found that there are 

measured values that deviate unusually from the rest of the population and are obviously outliers that 

occurred in some of the extreme situations (disappearance of the coal on the feeder, clogging of the 

hatch for the coal supply, filling of the mill, etc.). The question that arises is whether using one of the 

robust methods to pre-process the measurements would provide better results? These issues will be 

the subject of further research by the authors. 
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