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Several recently signed environmental agreements and protocols emphasize the 
global need to reduce GHG emissions, with a focus on limiting coal consumption 
due to high NOx and CO2 emissions. However, many countries, including those in 
the Western Balkans, rely heavily on coal for electricity generation. The outdated 
thermal power plant infrastructure in these regions poses a major challenge when 
it comes to meeting modern environmental standards while maintaining efficiency. 
This study is part of the more comprehensive research which aims to develop an ex-
pert system that utilizes existing measurements to estimate key parameters crucial 
for both energy production and pollution reduction. The focus is on Serbian ther-
mal power plants, particularly plant Nikola Tesla unit B1. One of the critical pa-
rameters for optimizing thermal power plant control loops is the heating value of 
coal, which is challenging to measure in real time due to the coal’s varying chemi-
cal compositions and caloric values. This paper examines 74 different parameters 
measured in 59 instances to estimate the hating value of coal at unit B1. Through 
detailed analysis and feature selection methods, including linear regression, this 
research aims to identify the most informative parameters for estimating the heat-
ing value of coal, which will improve the control system that enables more efficient 
and environmentally friendly power generation in coal fired thermal power plants.
Key words: feature selection, linear regression, thermal power plants,  

coal heating value

Introduction

For decades the scientific community has been aware of the need to reduce GHG 
emissions and their harmful impact on climate [1]. This has been formally and publicly ac-
knowledged in 1992 at the UN Conference on Environment and Development, also known 
as Earth Summit, where the UN Framework Convention on Climate Change (UNFCCC) was 
established. Soon after, in 1997, the Kyoto Protocol was adopted which specified the obliga-
tions of the member states in reducing greenhouse gas emissions in the coming period. The 
Paris Agreement on Climate Change, signed in 2016 by the 195 members of the UNFCCC, 
presents an action plan to limit global warming. Countries have committed to keeping the 
rise in average global temperatures well below 2 °C compared to pre-industrial levels [2]. 
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As a result of the adopted obligations, the most industrially developed countries of the world 
have introduced numerous programs to monitor, reduce and limit GHG emissions. Consider-
ing that CO2 is the most significant GHG, the biggest challenge of the Paris Agreement is in 
reducing the consumption of fossil fuels, primarily coal, because it has the highest emission 
factor, i.e. the highest emission of CO2 per unit of energy used.

Out of all fossil fuels, coal reserves are by far the largest and the most evenly distrib-
uted in the world. Their mass exploitation ensures a stable and relatively low price on the inter-
national market. That is why neither the most developed countries of the world nor developing 
countries can give up coal in the structure of primary energy sources to ensure a stable supply 
of their consumers at affordable prices. For that reason, thermal power plants (TTP) are still 
the main producer of electricity in many countries of the world, including the Western Balkan 
region with 54% of all produced power [3]. Additionally, most of the plants which are currently 
in use have been producing energy for decades, using technology which was state of the art in 
the period in which they were built, but which is now mostly outdated, both in terms of per-
formance as well as in terms of satisfying new requirements regarding sustainable production 
which has low impact on the environment. In order for these plants to adhere to recent pollution 
policies and recommendations made by the European Commission regarding the limiting of 
NOx, SO2 and CO2 gases, they often need to sacrifice their efficiency and energy production [4]. 
Furthermore, some of the Eastern European plants [5] are so outdated that the only solution is 
to shut the plant down entirely and to build a modern one which can adhere to current standards. 
The aim of this research is to help the energy production systems to reduce harmful emissions 
using the measurements and technology which is available on site, with minimal investments 
necessary, concentrating on specific problems facing Serbian thermal power plants, specifically 
TPP Nikola Tesla unit B1 – TENT B1. This will be done by creating an expert system which 
uses existing measurements to estimate relevant parameters crucial to power production and 
pollution reduction. Using these estimates the existing control loops in TPP can be augmented 
to take into account additional criteria related to pollution.

Steam boilers in TENT are designed for the domestic lignite from the coal mine Kol-
ubara as the main fuel with lower heating value of 6.700 MJ/kg, moisture content of 47.8%, ash 
content of 19%, and sulfur content of 0.5% [6]. However, in today’s energy sector, as a conse-
quence of the current unfavorable geopolitical events, there are fewer and fewer power systems 
that have a guaranteed coal supply from specific mines. As it happens, there is a necessity on 
almost daily basis to mix coal that comes from different locations, and therefore, with different 
chemical compositions and caloric value. Therefore, the authors’ experience is that dramatic 
changes in the quality of coal occur in small time intervals, which adversely affects the quality 
of regulation, and also the concentration of gases released into the atmosphere. This combina-
tion of circumstances causes special challenges for control systems, and the first and logical 
assumption of such solutions is dynamic knowledge of coal parameters [7].

Since the heating value of coal is one of the most important parameters which needs 
to be taken into account when considering optimization of TPP control loops and minimizing 
pollution, it is only natural to implement the system which measures it directly. This, however, 
is very challenging in practice. The measurement of heating value of coal is not possible in real 
time because the extraction of the coal, its processing and testing is a process which requires 
a lot of time. The second-best solution, therefore, is to attempt to estimate its value. Unfortu-
nately, estimation of this parameter based on all the available measurements is an extremely 
non-linear multivariate problem which is not clearly solved in [8, 9].
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The research presented in this paper deals with the problem of estimating the heat-
ing value of coal at the TENT B1 TPP in Obrenovac, Serbia, taking into account 74 different 
parameters measured at 59 different time instances. An attempt is made to perform detailed 
analysis of these parameters (i.e. features or predictors as they are called in the literature) and 
to select a subset of them which are most informative for estimating the heating value of coal. 
Linear regression will be used to test the selected features, and several different methods for 
feature selection will be tested.

Case study

Coal fired TPP are main producers of electricity in Serbia and they are mostly de-
signed according to knowledge and technology that was available in the 1960's and 1970's. 
Steam boilers use lignite (low quality coal) as a fuel and are designed with subcritical steam 
parameters. The design efficiency levels of such boilers are 87-88% for coal of medium quality, 
lower heating value of 6700 kJ/kg. Any decrease in the efficiency of the boiler means that its 
heat losses have increased, that is, less electricity has been produced than the amount that was 
possible from the energy available in the coal. To illustrate, tab. 1 shows the heat losses in the 
boilers and, therefore, the loss in electricity production in units with a nominally installed pow-
er of 300 MW, 350 MW, and 670 MW.

Table 1. Annual losses when reducing the efficiency of the boiler by 1%

Losses
Boiler with nominal power [MW]

300 350 670

Coal fed into the boiler, but not used [103 tonne per year] 28 33 63

Lost heat [106 MJ per year] 210 247.5 472.5

Less electricity produced [GWh per year] 20.6 24.3 46.3

Monetary equivalent of non-produced electricity  
(calculated with a price of 0.045 €/kWh) [million € per year] 0.930 1.090 2.080

Although the heating value of coal primarily affects the efficiency of electricity pro-
duction, for the optimization of the combustion process it is necessary that the other parameters 
of coal are in nominal values. Specifically, most of the boilers in Serbian power plants are de-
signed for lignite with moisture content of 47.8%, ash content of 19%, sulfur content of 0.5%, 
ash melting point of 1345 °C, and so on. Variations in these parameters lead to disturbances 
in the combustion process, as described in tab. 2. It is evident that the most common causes 
of reduced boiler efficiency are either inadequate coal quality or inadequate functioning of the 
combustion devices [10]. These causes lead to significant changes in several critical parameters 
of the combustion process, primarily an increase in the two main heat losses of the boiler: 
	– loss of heat carried by flue gases into the atmosphere due to the increase in temperature of 

the flue gases at the exit from the boiler and 
	– heat loss due to the removal of solid unburned materials from the boiler through slag and 

ash [11].
The influence of the heating value of coal on the efficiency of the boiler, as well as 

these two types of heat losses, can be seen in tab. 3. What is interesting to note is that there is 
an almost linear dependence of boiler efficiency and the heating value of coal.
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Table 2. Disturbances in the combustion process and  
operation of TPP caused by changes in coal quality

Parameter Deviation Effect

Heating value

Too high • Overheating and damage to the burner
• Increased scaling

Too low
• Increased coal consumption 
• Increased transport costs
• Possible power plant failure

Ash content Too high

• It can cause an increased participation of  
  fine particles in the grinding product
• Increased erosion of parts of the mill,  
  pipes and burners
• Increased scaling
• Increased emission of solid particles

Volatiles content Too low (<10%) • Unstable flame
• Increased consumption of liquid fuels

Moisture content Too high
• Coal flow becomes problematic
• Grindability of coal may be weakened
• Reduction of combustion efficiency

Hardgrove index Too low • May affect grinding capacity
Initial melting temperature Too low • Increased scaling
Coal feeder size Too high (>150 mm) • Reduced combustion efficiency

Table 3. Boiler efficiency change with respect to the heating value of coal
Heating value of 

coal [kJkg–1]
Boiler  

efficiency [%] Loss in exhaust flue gases [%] Loss in unburned 
solids [%]

All other 
losses [%]

9289 86.80 11.60 0.99 0.61
9211 86.43 11.90 1.04 0.63
8326 85.54 12.21 1.54 0.71
7992 85.51 12.44 1.34 0.71
7816 85.00 12.75 1.44 0.81

6700 83.64 ← Approximately determined boiler  
efficiency for guaranteed heating value of coal

It is useful to analyze which specific critical points affect the efficiency of the TPP 
block, with respect to the heating value of coal [12]. There are, in fact, three phenomena which 
are significant, and they are given and described in tab. 4.

Although in literature, as well as on the market, there are various methods and devic-
es that measure the heating value of coal in-situ [13], this approach is often, if not impossible, 
certainly overly complicated, expensive or inappropriate. This is mainly due to the fact that 
heating value of coal would have to be measured on all conveyor belts to individual mills and 
the obtained values would be the characteristics of the particular samples which are taken. Also, 
each of the devices would require an evaluation time between 300 seconds and 900 seconds, 
which is already comparable with the dynamics of changes in the heating value of coal at plants 
where the authors of this paper have experience. Accordingly, the idea to design an algorithm 
that will estimate the heating value of coal based on available on-line measurements is of ex-
ceptional importance.
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Multiple linear regression

The heating value of coal influences many of the parameters described in the previous 
section. It is therefore, clear that measuring several key variables can help to estimate the heat-
ing value of coal. Linear regression maps the relationship between input variables (also known 
as features or predictors, x) and output variables, y. Three different cases of linear regression, 
depending on the number of predictors: simple linear regression (one predictor x and one out-
put y), multiple linear regression (several predictors and one output), and multivariate linear 
regression (several predictors and several outputs) [14]. The goal of this paper is to estimate 
the heating value of coal depending on the several measured quantities, so the multiple linear 
regression approach is going to be used.

Multiple linear regression in the case of n measurements and N predictors can be 
represented:

Y X β= +  (1)
where Y = [y1 y2 ... yn]T is the vector of outputs, β = [β0 β1 ... βN]T – the vector of regression 
coefficients, the vector of random errors is denoted by ϵ = [ϵ1 ϵ2 ... ϵn]T, and X – the augmented 
sample matrix with N predictors:
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(2)

Table 4. Parameters depending on the fuel quality and which affect the efficiency of the unit

Number A phenomenon that indicates a 
reduced efficiency of the block The most likely cause

1.

Temperatures of flue gases  
at the boiler outlet are higher  

than the design and/or  
increased amount of water for 
steam temperature regulation

• Coal quality deteriorated - outside the guaranteed  
  composition (absence of fuel homogenization system,  
  improper operation of crushers)
• Non-sealing of the boiler, as a result of which the burning  
  time of fuel particles in the combustion chamber is extended,  
  so the burning is often done in the initial part of the channel  
  of the subsequent heating surfaces
• Disturbance in heat transfer in the relationship flue gas –  
  working medium due to the formation of deposits on the  
  outside and/or inside of the pipes and the heating  
  surfaces of the boiler

2. Increased content of unburned 
solids in slag and ash

• The quality of coal deteriorated – outside the guaranteed 
  composition and granulation
• Improper functioning of the combustion device, primarily  
  mills (coarser fineness of grinding and/or increased  
  humidity of coal powder)
• Leakage of the boiler, which causes an irregular fuel-air ratio  
  at the burner levels, i.e. insufficient secondary air, so the  
  fuel jet is insufficiently turbulized in the combustion chamber,  
  i.e. insufficient speed of the air mixture and/or secondary  
  air at the mouth of the burner

3. Not achieving nominal 
steam parameters

• Improper functioning of certain parts of the boiler plant  
  (water heater, evaporator, superheater, etc.) – most often in  
  direct connection with the aforementioned causes
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This model can be used if the three assumptions are met:
	– The process is indeed linear, i.e. it holds that

	 { } 0 1 1 2 2 ,  1, ,i i i N iNE y x x x i nβ β β β= + + + + = …

	– var(yi) = σ2, i =1,..., n i.e. the variance of error terms is the same, and
	– cov(yi, yj) = 0, for all i ≠ j, i.e. error terms are uncorrelated.

The first assumption states that the model is linear and that there are no additional 
terms that are needed to estimate output variable y. Strictly speaking, this condition is not sat-
isfied for the problem at hand in which there are surely several predictors which are connected 
to the output variable in a non-linear fashion. This will be studied in more detail in the future 
research, but for the purpose of rating the informativeness of the predictors it is assumed that 
this non-linear association can be modelled as linear. 

Additionally, in order to obtain statistically significant results, and to avoid the prob-
lem of weak conditioning, the number of measurements needs to exceed the number of param-
eters of the model: n > N + 1. With all this in mind, the least squares estimate of regression 
coefficients, β^, is given:

( ) 1ˆ T TX X X Yβ
−

= (3)
This estimate minimizes the error sum of squares:
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where ŷi = xi β
^  is the linear regression estimate of the output and xi = [1 xi1 xi2 ... xiN] is the aug-

mented predictor vector of ith measurement. Apart from SSE, other sum of squares values which 
can be useful when discussing linear regression are regression sum of squares (SSR) and total 
sum of squares (SSTO) given:
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i
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= ∑
is the sample mean of outputs yi. These parameters indicate which amount of total variation of 
the output (SSTO) is due to variation around the estimated regression-line (SSE) and which is 
due to variation around the sample mean (SSR).

Linear regression quality metrics

It is clear from section Case study that the nature of the thermal power plant process is 
such that there are more descriptors than measurements, so standard linear regression approach 
needs to be modified. Specifically, there is a need to reduce the number of features by elim-
inating the ones that are not informative for coal energy level estimation and keep those that 
are. The problem is simply formulated: from the initial N predictors, p < N predictors should 
be chosen which, according to certain criterion, will model the output variable in the best way, 
through a linear regression model:
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p pY X β= +  (7)
This equation is similar to eq. (1), where Y is the output vector and ϵ is the error vector. 

The difference is that only p out of the original N predictors are used, so the vector of regression 
coefficients is now βp = [β0 β1 ... βp]T, and the augmented sample matrix with p predictors becomes:
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(8)

In order to assess which subset of p features is most informative, some metrics for 
assessing the quality of linear regression are needed. Perhaps the most intuitive metric which 
describes the quality of linear regression is the coefficient of determination, R2, which quanti-
fies which proportion of total variation of output can be attributed regression of descriptors, x:

2
2

2

ˆT T

T
XSSR nyR

T
Y

YSS O yY n
β −

= =
−

(9)

It is clear that R2 has values between 0 and 1, where R2 = 1 means that all measure-
ments lie on the linear regression-line, while R2 = 0 means that the estimated regression-line is 
horizontal. Colloquial interpretation of coefficient of determination is that R2×100% of vari-
ation in output is explained by the variation in predictor. Even though one should be careful 
when interpreting the value of this coefficient [15], generally it can be said that the higher the 
R2 value, the stronger the linear relationship between the predictor (or the set of predictors) and 
the output. More specifically, while evaluating which subset of p predictors better describe the 
model, the R2 test can be used to evaluate the model from eq. (7):
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Another metric which can be found in the literature is the variance of the estimator. 
When p predictors are used, the variance of the predictor is defined:

( ) ( )2
ˆ ˆ

p p p
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p
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n p n p

β β− −
= =

− −
(11)

The smaller the variance the better the prediction. This metric is especially useful 
when comparing the performance of linear regression models with different predictor sets.

There is a third metric that can be used to assess the performance of linear regression 
for specific purpose of finding the best subset of p predictors from an initial large number of 
parameters N > p. This measure takes into account both the variance of the estimator and its 
bias. The goal is to find such a model that will make a good compromise between these two 
components. It can be defined in two alternative ways:
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The second definition is somewhat simpler numerically, however, the first gives the 
possibility for a physical interpretation of the results. If the bias is small for a particular model, 
then the second summation is close to zero and the measure Cp becomes close to the parameter 
p. Therefore, the diagram Cp, p = 2, 3,..., N is usually sketched together with the diagram Cp = p. 

Hypothesis testing

Hypothesis tests are performed in order to compare how certain subsets of predictors 
perform when it comes to multiple linear regression models. In regression analysis usually a 
so-called F-test is used which is a test that uses the F-distribution [14].

The first test that can be found in the literature is the overall regression test which 
forms hypothesis:

0 1 2 1: 0N NH β β β ×=   (14)

In other words, the null hypothesis states that none of the predictors hold any informa-
tion about the output. This test can be expressed with random variable:

1

SSR
NF

SSE
n N

=

− −

(15)

This random variable is distributed as FN,n–N–1 when H0 is true, so the hypothesis is 
rejected when F > Fα,N,n–N–1, where α is a selected threshold.

The second hypothesis test is the test on a subset of β. It takes into account the original 
set of N predictors, Sf . This set is divided into a subset of p predictors which will be used for re-
gression, Si, and the subset of N – p predictors which will be rejected, Sd. Naturally it holds that 
Sf = Si + Sd. The hypothesis in this case says that the predictors from the set Sd should be omitted 
because their influence on the output variable is non-existent. Therefore, the hypothesis is:

( )0 1: 0d N pH β × −= (16)

and the test can be expressed with the random variable:
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f i

f

SSR SSR
N pF
SSE

n N

−

−
=

− −

(17)

where SSRf and SSRi
 
are regression sum of squares of the sets of predictors Sf and Si, respec-

tively, and SSEf is the error sum of squares of the set Sf. The random variable from eq. (17) is 
distributed as FN–p,n–N–1 when H0 is true, so the hypothesis is rejected when F > Fα,N–p,n–N–1, where 
α is a selected threshold.

Feature selection

In an attempt to include in the model all the signals which could directly or indirectly 
indicate the heating value of coal, the authors have oversized the initial set of predictor signals. 
This is usually done when it is not initially clear which set of predictors is informative for the 
problem at hand [16]. The initial set consists of 74 measurable variables that are available and 
archived in the existing data-logging system. Some of these variables should naturally be in the 
set of predictors, such as active electrical power, total fuel quantity, oil flow, flue gas tempera-
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ture or steam flow in front of the turbine. However, as a precautionary measure so that some of 
the hidden connection between signals and output are not lost, the signals that at the first glance 
do not have a connection with heating value of coal are included in the initial predictor set. 
Thus, among the initial 74 predictors there were signals such as feed water temperature, total 
injection quantity, steam pressure in front of turbine, NO and O2 concentration in flue gases, 
primary and secondary air-flow, and so on.

Regardless of the modern computational and memory capacity of the computers 
used to process this data, it turns out that such a large set of predictors is extremely demand-
ing, especially considering the relatively modest number of laboratory measurements that 
were available. This problem is often indicated in literature. Namely, during fourteen months 
in 2021 and 2022, a laboratory check of the heating value of coal was performed approxi-
mately once a week. This procedure was carried out by taking samples from different phys-
ical locations in the coal delivery sector for one hour. These samples were mixed in order to 
obtain a homogeneous sample that will be sufficiently representative for the observed time 
interval. Thus, 59 samples and 59 measurements were obtained. Considering such a limited 
sample size, the multivariate model should not have too many predictors [17]. A large number 
of predictors in relation the number of experiments, or measurements, generates a technical 
problem of weak conditioning of the system of equations that needs to be solved. On the 
other hand, it is intuitively clear that this scenario of too many parameters inevitably leads to 
overtraining of the model.

Various predictor selection techniques are known in [18]. The best-known and most 
frequently used approaches are All possible subsets method and Stepwise selection [14]. How-
ever, applying these techniques to the initial set of 74 variables was almost impossible, espe-
cially for the All possible subsets method. Therefore, it has been decided that the first step will 
be a preliminary reduction of dimensionality of predictor set in a simple but intuitively quite 
justified way. Namely, the coefficient R2 from eq. (10) is calculated between the output vari-
able and each of the potential predictors. In that way 74 different values of this parameter were 
obtained, indicating the strength of linear connection between output variable and each of the 
predictors.

The highest R2 index of 0.498 was obtained between the temperature of the steam 
before the superheater and the heating value of coal. A graphical representation of their cor-
relation is given in fig. 1. Similarly, a high level of correlation was obtained between the active 
electrical power of the plant and the heating value of coal, fig. 2.

Figure 1. Variable 6: steam temperature  
before superheater	

Figure 2. Variable 1: active power
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On the other hand, for a large number of predictors, a very small value of R2 was 
obtained. Such a weak correlation is generally expected for many signals. The correlation be-
tween heating value of coal with air temperature in front of Luv 1 is given in fig. 3, while the 
correlation with the amount of injection in the second stage is given in fig. 4.

Figure 3. Variable 13: air temperature  
in front of Luv 1

Figure 4. Variable 5: amount of injection  
in the second stage

Based on these diagrams and the obtained values of R2, two interesting facts can 
be noted. The first is that the highest R2 was not obtained for the expected predictors. 
Namely, if the losses in the TPP were ignored, as well as the variation in the enthalpy of the 
obtained steam in front of the turbine, a good indicator of the heating value of coal could 
be obtained as the quotient of the steam flow in front of the turbine and the sum of the fuel 
fed into the boiler. These quantities, however, did not stand out with the highest values of 
R2 with regards to the heating value of coal. Also, based on figs. 3 and 4 it is noticeable 
that there are measurements that deviate significantly from the rest of the observations and 
can be considered, in this context, as outliers. The measurements in question were proba-
bly obtained under specific, unusual circumstances. These circumstances can be different, 
starting from extremely non-heating to extremely heating coal. It is possible that in some 
periods there were failures of certain mills, or plant operation with unusually high support 
of fuel oil, and the like. In any case, due attention needs to be paid to these outliers because 
they can significantly distort the picture of the correlation and determination of certain 
predictors and regression outputs.

In order to exclude from the further analysis all physical quantities that are likely not 
useful from the aspect of multivariate linear regression, the threshold R2

T = 0.3 was set. In this 
way, 20 potential predictors whose coefficients are higher than the adopted threshold were sin-
gled out. These signals are given in tab. 5.

This set of 20 predictors is sufficiently small to enter the predictor selection proce-
dures. The main idea of this work, apart from the multivariate linear regression design itself, 
is to illustrate the predictor selection procedures in case of modelling the heating value of 
coal in TPP. On the other hand, as various techniques for the selection of input variables are 
known in the literature, it was interesting to make a short comparative analysis. These proce-
dures are methodically described in [14] and the authors of this paper followed the instruc-
tions and advice that could be found there. The further is divided into two subsections, the 
first of which is devoted to the All possible subsets approach, and the second to the Stepwise 
selection technique.
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Table 5. Initial set of 20 predictors
Symbol Predictor description Symbol Predictor description

x1 Active electrical power x11 NO concentration in the gas analyzer

x2
Water temperature behind 

the economizer x12 O2 concentration in the gas analyzer

x3 Pressure of feed water in the bottle x13
Flue gas temperature in front of 
superheater 3 on the right side

x4 Sum of steam injection x14
Flue gas temperature in front of 

superheater 3 on the left side
x5 Steam temperature before superheater x15 Fuel oil consumption
x6 Total air for the boiler x16 Steam flow in front of high pressure bypass
x7 Air-flow for roasting x17 Steam pressure in the high pressure collector
x8 Total fuel x18 Steam temperature in the high pressure collector
x9 Flue gas temperature before Luv 1 x19 Feed water flow to the boiler
x10 Flue gas temperature before Luv 2 x20 Feed water pressure behind the feed head

All possible subsets

N
The idea behind the All possible subsets approach is to first choose p = 2 of the initial 

N predictors (in this case N = 20). This can be done in (2) ways, and for each of these
( 1)

2
N N −

ways a linear regression model is formed, as in eq. (7) and its efficiency is measured based on 
some criterion CRIT. The subset with the best value CRIT2 is chosen. Then the procedure is 
repeated for p = 3, 4, ..., N. Finally, the diagram CRITp is drawn and after its analysis which 
depends on the nature of the criterion function, a valid selection of the parameter p is obtained 
as well as a valid subset of p predictors which should be used for the multivariate linear regres-
sion model.

The choice of the criteria function used for predictor selection is extremely important. 
The literature usually gives the choice of three different criteria that can be used in such situa-
tions and which are presented in section Linear regression quality metrices. The first of them, 
R2, is given in eq. (10). It is clear, from the nature of this parameter, that if the value of R2

p is 
plotted as the function of the number of predictors, p, the graph will be a monotonically increas-
ing function and that the maximum of that function will be for p = N. However, it is also ex-
pected that at some point, with a further increase in the parameter p, the increase of the criteria 
R2

p becomes negligible. This feature is crucial for choosing the appropriate value of parameter 
p, but bearing in mind that the choice of this value is highly subjective because a quantitative 
measure of the moment when the increment of criteria becomes negligible is not unequivocally 
defined in the literature. While applying this method on the data available, the graph in fig. 5 
was obtained. In order to make the selection of the parameter p as objective as possible, fig. 6 
shows the increment of the criteria R2

p as a function of p.
Figure 6 suggests two possibilities for the choice of parameter p. If the main ob-

jective is to minimize the number of predictors as much as possible, a good choice would be  
p = 9, because for each p > 9, the increment of criteria is significantly smaller. On the other 
hand, looking at the tail of this curve, starting from p = 13 the increment of the criterion be-
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comes less than 2⋅10–3. Therefore, in the next section of this paper it will be interesting to look 
specifically at how well the linear regression obtained in this way really corresponds to the set 
of acquired measurements.

There are two questions that need answering, at this point. The first question is which 
predictors are chosen for fixed p? It is shown that for p = 9, the best choice of predictors is: 
active electrical power (x1), total fuel flow (x8), steam flow in front of high pressure bypass (x16), 
flue gas temperature in front of Luv 1 (x9), flue gas temperature in front of superheater 3 right 
(x13), flue gas temperature in front of superheater 3 left (x14), steam pressure in the high pressure 
collector (x17), steam temperature in the high pressure collector (x18) and pressure of the feed 
water behind the feedhead (x20). One has the impression that the choice of variables is good, that 
is, very logical and close to the choice that an expert would make from the point of view of the 
influence of some physical quantities on others.

The second, very important question is whether, by increasing the parameter p, the set 
of predictors selected for p – 1 only expands by one more variable, because in this way the num-
ber of possibilities for searching for the best subset of class p could be significantly reduced. 
Unfortunately, the experimental results show that it can easily be the case that the difference 
between the best subset of class p – 1 and class p is significantly greater than 1. In the case 
of these experimental results, when jumping from p = 12 to p = 13 the difference between the 
predictors amounted to as many as five variables.

Apart from determination coefficient, the other metric which is often used in the All 
possible subsets approach is the variance of the estimator, s2

p, as defined in eq. (11). Unlike the 
previous criterion, the variance of the estimator, should be as small as possible. Theoretically, 
with increasing parameter p, the variance of s2

p should decrease and the minimum of this cri-
terion should be reached for p = N. However, it often happens in practice that the minimum 
of this criterion occurs for p < N. The rationale for such a result is very simple. Namely, if 
you look at the expression for s2

p, you can see that it is defined through a quotient in which 
the numerator is the error sum of squares (SSE) and the denominator is the degree of freedom  
(n – p). Both of these expressions decrease with increasing parameter p, so it may happen that 
by including some new variables, the numerator decreases less than the denominator, so the 
total expression for the estimated variable increases. This effect is clearly a consequence of 
the specificity and structure of the set of measurements, rather than the nature of those mea-
surements themselves. That is why some authors suggest that the optimal p* be chosen either 
the p for which the minimum criterion is obtained or the smallest p that satisfies the condition  
s2

p < s2
N , i.e.:

Figure 5. The R2
p for All possible subsets method Figure 6. Increments of R2

p
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( )* 2 2min p Np
p s s= < (18)

For the experimental measurements obtained in this research the diagram of variance 
of the estimator as a function of number of predictors, p, is shown in fig. 7. Based on this dia-
gram, and following the recommendations mentioned in the previous paragraph, a good choice 
of parameter p could be either p = 7 because it is the smallest value of p for which the criterion 
s2

p is smaller than s2
20, or p = 11 because it provides the minimum of criterion s2

p .
Regardless of the fact that different optimal values were obtained for the parameter p 

depending on whether the coefficient of multiple determination R2
p or the variance of the estima-

tor s2
p is used as a criterion, it is good to note that the choices of predictors themselves are almost 

identical. Namely, the set of optimal predictors for p = 7 with the criterion s2
p is a subset of the 

set of predictors for p = 9 and the criterion R2
p. The only difference is in the flue gas temperature 

in front of superheater 3 on the right and the steam temperature in the high pressure collector.
The third metric is the Cp criterion as defined in eqs. (12) and (13). The literature sug-

gests that one should look for such a p for which Cp is small and at the same time close to the 
line Cp = p. More precisely, one should look for a minimum p for which Cp < p.

Figure 8 shows results obtained regarding the criterion Cp . This diagram is interesting 
because it really illustrates the possibility of a trade-off between bias and the variance of the ŷi 
estimate. If the intention is to keep the variance as small as possible, one should look for the 
point that is closest to the line Cp = p. This is the line drawn in the diagram with a dashed line. 
On the other hand, in order for the bias to be as small as possible, it is necessary to choose the 
smallest possible p. A compromise is achieved by choosing the smallest value of the parameter 
p for which Cp < p. In this case it is p = 7. What is also interesting is that the selected set of 
predictors is identical to the set of predictors obtained when applying the sp

2 criteria.

    Figure 7. The sp
2 for All possible subsets method        Figure 8. The Cp for All possible subsets method

Stepwise selection

In the literature, the problem of feature (or predictor) selection is often discussed be-
cause it is a very interesting issue. It is an optimization problem that is theoretically easily solv-
able because the number of possible solutions is finite. However, that number of finite solutions 
is very often so large that the obtained theoretical solutions are unusable. Hence, several ap-
proaches are suggested to find good enough suboptimal solutions that are numerically feasible. 
The Stepwise selection method is a good example of such an approach. It can be implemented 
in two forms. One form is forward selection, and the other is backward elimination. In order to 
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implement the forward selection procedure, firstly the set of predictors is selected for which the 
maximum value of the parameter F is obtained:

1

SSR
MSR qF

SSEMSE
n q

= =

− −

(19)

where MSR and MSE are the mean squares of regression and error, respectively, SSR and SSE 
are defined earlier and q is the number of predictors which participate in the model and in the 
first step we adopt q = 1. Also n is the number of measurements (or experiments) and in this 
case n = 59. In this way the first variable which will enter the predictor set is chosen. If this vari-
able is denoted as x1, the next variable which will be included in the predictor set is the variable 
xj which maximizes the parameter F defined:

( ) ( )
( )

1 1

1

,

,

1

j

j

SSR x x SSR x
F

SSE x x

n q

−
=

− −

(20)

Now SSR(x1, xj) is the sum of regression squares of the second order model in which 
predictors are x1 and xj, and SSR(x1) is the sum of regression squares of the second order model 
in which the only predictor is x1. A similar logic applies to the denominator, that is, the sum of 
squared errors SSE(x1, xj). Since there are now two predictors, we adopt q = 2. If in this step we 
choose variable x2 as a second predictor, in the next step we choose the variable xk which will 
maximize the value of the parameter F defined:

( ) ( )
( )

1 2 1 2

1 2

, , ,
, ,

1

k

k

SSR x x x SSR x x
F

SSE x x x
n q

−
=

− −
(21)

in which q = 3, and so forth. This procedure is repeated until the maximum value of parameter 
F in a given step becomes less than a threshold. Figure 9 shows how the maximum values of 
parameter F changes with each step and which variables are included in the set of predictors. 
Thus, from this diagram it can be seen that the first variable included in the set of predictors is 
the variable x5 – the steam temperature before the superheater, then the variable x8 – the amount 
of coal, and the last is the variable x2 – the temperature of the feed water after the economizer.

It is clear from fig. 9 that the maximum values of F are not monotonically decreasing 
as the number of predictors increases, as one might expect. Also, this diagram does not offer 
an obvious threshold for the maximum value of F beyond which it would not make sense to 
add new predictors. Just by analyzing the graph there is a significant drop after the third step in 
which the variable x1 was added, which would suggest that the procedure should end with just 
three predictors. Intuitively it is clear that this would result in a bad model. However, by careful 
analysis of the obtained numerical values, it seems that a good choice for the threshold is Ftr = 1, 
which would result in the formation of a model with 11 predictors, where the last added variable 
would be x10 – the flue gas temperature before Luv 2. The set of predictors:

{ }1 5 8 9 10 13 14 15 17 18 20, , , , , , , , , ,S x x x x x x x x x x x= (22)
Another way to implement the Stepwise selection procedure is backward elimination. 

Backward elimination starts from the assumption that we have included all available input 
variables in the set of predictors, and then, step by step, we eliminate one variable at a time. 
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The variable which yields the smallest values of the parameter F is eliminated in each step. So, 
in the first step, we eliminate the variable for which the minimum of the following expression 
is obtained:

( ) ( )
( )

1 2 1 1 1

1 2

, , , , , , , ,

, , ,
1

N j j N

N

SSR x x x SSR x x x x
F

SSE x x x
n N

− +… − … …
=

…
− −

(23)

Here, the notation is the same as in the forward procedure. If we mark the variable thus 
obtained with xN, in the next step we remove the variable xk which minimizes the expression:

( ) ( )
( )
( )

1 2 1 1 1 1 1

1 2 1

, , , , , , , ,
, , ,

 
1 1

N k k N

N

SSR x x x SSR x x x x
F

SSE x x x
n N

− − + −

−

… − … …
=

…
− − −

(24)

and so on. The procedure is repeated until the minimum obtained F value becomes so large that 
the further elimination of variables will lead to a significant loss of information.

Implementation of the backward elimination procedure results in the numerical val-
ues shown in fig. 10, where it is shown how the minimum value of the parameter F changed in 
each step, as well as the series of input variables which were eliminated from the predictor set 
in each step.

Figure 9. Maximum values of F for 
Stepwise selection method, forward 
selection procedure

Figure 10. Minimum values of F for 
Stepwise selection method, backward 
elimination procedure

The interesting thing which can be seen from figs. 9 and 10 is that the variables were 
not eliminated in the reverse order in which they were added to the set of predictors. Only the 
variable x2 – the temperature of the feed water behind the economizer was the last added in the 
forward selection procedure and the first eliminated in the backward elimination procedure. 
For example, the variables x15 and x17, fuel oil consumption and water vapor pressure in the 
high pressure collector, respectively, were very quickly eliminated from the set of predictors as 
non-informative variables, but in the forward procedure they were introduced at the very begin-
ning, as very informative. This disagreement indicates that this procedure is not optimal by any 
criteria, but at the same time it can illustrate the high complexity of the problem itself. Namely, 
a large number of variables among the initial 20 predictors are correlated among themselves, 
so it is not easy to recognize which variables among them are essential generators of change in 
the output variable.
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Similarly as in the forward selection, based on fig. 10 it is not easy to recognize the 
threshold Ftr after which it becomes dangerous to eliminate the predictors because the loss of 
information will become significant. If we adopted the same threshold again, Ftr = 1, as we ad-
opted in the forward procedure, the algorithm would form a set of predictors with 12 variables:

{ }1 3 4 5 9 10 11 12 16 18 19 20, , , , , , , , , , ,S x x x x x x x x x x x x= (25)
It is interesting to note that the intersection of the set of predictors generated by the 

forward and backward procedures consists of only five variables, which is not a lot considering 
that one set of predictors has 11 and the other 12 signals. It will be interesting to analyze the 
extent to which the regression model obtained on all these sets of predictors fits, that is, corre-
sponds to the set of measurements on real experiments.

Results

In the previous section, a serious analysis was conducted about the choice of predic-
tors. It is shown that different procedures and different metrics within those procedures lead to 
different choice of predictors. If we summarize the analysis in the previous section, it would 
read like this. In the All possible subsets procedure, if we use R2

p as a measure, and if we choose 
p = 9 as a good choice of the number of input variables, the corresponding set of predictors 
becomes:

{ }1 1 8 9 13 14 16 17 18 20, , , , , , , ,S x x x x x x x x x= (26)
If we choose p = 13 as the number of input variables, the set of predictors would be

{ }2 1 3 4 5 8 9 11 12 13 16 18 19 20, , , , , , , , , , , ,S x x x x x x x x x x x x x= (27)

When applying the same All possible subsets methodology, but if we choose the vari-
ance s2

p as a measure of quality, we also got two possible sets of predictors, one for p = 7, and 
the second for p = 11. The resulting sets are marked with S3 and S4, respectively:

{ }3 1 8 9 14 16 17 20, , , , , ,S x x x x x x x= (28)

{ }4 1 3 8 9 10 11 12 14 16 18 20, , , , , , , , , ,S x x x x x x x x x x x= (29)
When applying the coefficient Cp as a metric, the same set of predictors as shown in 

S3 was obtained:
{ }5 3 1 8 9 14 16 17 20, , , , , ,S S x x x x x x x= = (30)

In the Stepwise selection method using the forward procedure, proved to be a good 
choice of predictors:

{ }6 1 5 8 9 10 13 14 15 17 18 20, , , , , , , , , ,S x x x x x x x x x x x= (31)
and using backward elimination the following set is obtained:

{ }7 1 3 4 5 9 10 11 12 16 18 19 20, , , , , , , , , , ,S x x x x x x x x x x x x= (32)
In order to understand whether there are variables which are recognized as informa-

tive predictors in each approach that is tested, as well as whether there are those that do not 
seem important in any scenario, the tab. 6 was created.

It turns out that the variables x1 – active electric power of the block, x9 – temperature 
of the flue gas before Luv 1, as well as x20 − the pressure of the feed water behind the feed head 
are recognized as strong predictors in each of the input variable selection approaches. Also, as 
important predictors, we should mention x8 – total fuel set point and x16 – steam flow in front 
of high pressure bypass. On the other hand, x2 – feed water temperature behind economizer, 
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x6 – total air or x7 – air-flow for roasting, were not recognized as informative predictors in any 
of the approaches used.

It is also interesting to see how well the outputs of the obtained linear models match 
with the experimentally obtained heating values of coal. These results are shown in the following 
graphs. Figure 11(a) shows the output of the linear model by adopting the predictor set S1, in fig. 
11(b) the predictor set S2 is adopted and so on. Results for the set of predictors S5 are excluded 
because they are identical to S3. The figures also show the output of the model that is used in the 
TPP and which was created based on physical laws. In the roughest terms, this model estimates 
the heating value of coal as a quotient of the total energy obtained through the total amount of 
coal delivered to the boiler in a unit of time. At the same time, the total amount of energy is 
calculated through the flow of water vapor towards the turbine, its enthalpy, taking into account 
the energy loss through injection, the heat of the flue gases, the loss due to the non-sealing of the 
boiler and so on. In each of the figures shown, the caption shows the mean squared error value 
obtained through the output of our linear model (SSE) and physical model (SSEF). 

Based on the obtained and presented results, two conclusions are indisputable. One is 
that, based on root MSE, all linear regression models perform better than the physical model. 
Another important conclusion is that, again based on the MSE, sets of predictors S4 and S7 stand 
out as the best. The S4 was obtained by applying the All possible subsets technique and variance 
s2

p criteria, adopting a solution with 11 predictors, while the solution S1 was obtained by apply-
ing the Stepwise selection technique in the form of backward elimination and choosing a set of 
12 predictors. This interpretation on the best set of predictors, however, should be taken with 
a grain of salt. One reason for doubt is the dilemma: is the MSE of estimation really the right 
criterion for ranking? The other reason is that the chosen solutions S4 and S7 have 11 and 12 
predictors, respectively, which is more or even significantly more than the sets of predictors S3 
and S5 which have 7, S1 with 9 or S6 with 10 predictors. In other words, there are unfair elements 
in the omparison system itself, which leave room for certain doubts.

In order to verify and compare the obtained sets of predictors and the corresponding 
linear regression models, it is possible to perform two basic hypothesis tests mentioned in sec-
tion Hypothesis testing. The first hypothesis test is the so-called overall regression test, which 
tests the hypothesis H0 that none of the selected predictors predicts the output of the model. This 
hypothesis can be tested by introducing a random variable F from eq. (15).

Another hypothesis test that can be used in this context is a test on a subset of regres-
sion parameters and the hypothesis H0 in this case says that the predictors from the subset of 
predictors should have been omitted because their influence on the output variable is non-exis-
tent. This hypothesis is tested using random variables F from eq. (17).

Table 6. The choice of predictors using different selection procedures
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

S1

S2

S3

S4

S5

S6

S7
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These two hypothesis tests were conducted for all previously selected combinations 
of predictors and the results are shown in the tab. 7.

Table 7 shows the results of the hypothesis testing of the first and second tests. It is 
shown that each of the analyzed sets of predictors from S1 to S7 refuse the hypothesis H0. Recall 
that the hypothesis H0 assumes that the selected set of predictors does not model the output Fα, 
where α is the confidence level. 

For the first test, the confidence level was chosen to belong to the set  
α ∈ {0.001, 0.01, 0.05}. The row which corresponds to the set S5 is omitted because this set is 
identical to the set of predictors in S3, so the results are also identical. It can be seen that for each 
of the selected sets of predictors Si, i = 1, 2,...,7, the hypothesis H0 is rejected, and very con-

Figure 11. Performances of predictor sets; (a) S1, (b) S2, (c) S3, (d) S4, (e) S6, and (f) S7
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vincingly. If we still need to somehow rank the persuasiveness of defeating this hypothesis, we 
should single out the set S3 (or S5) because the obtained value of the variable F is convincingly 
the highest compared to the threshold F0.05. 

The right half of tab. 7 shows the results obtained for the second hypothesis test. The 
hypothesis H0 which is tested states that the omitted predictors in relation the initial, twenty-di-
mensional set of predictors do not carry any information about the output variable, that is, that 
their coefficients in the linear regression model should be equal to zero. The obtained results 
show that the value of the variable F in each of the mentioned sets of predictors is convincingly 
lower than the hypothesis rejection thresholds, and the hypothesis H0 must be accepted. This is 
a desirable result because it indicates that each of these analyzed choices is meaningful and that 
the feature selection procedures, described in the previous section, are statistically justified. For 
the purpose of this hypothesis testing, α ∈ {0.01, 0.05, 0.10} were used as confidence levels. 
Again, regardless of the fact that all sets accepted the hypothesis H0, if we were to rank the 
intensity of acceptance, we would single out the predictor set S7 because in its case the value of 
the variable F is convincingly the smallest compared to the threshold F0.10.

Conclusions

This paper detailed the development of a linear regression model to estimate the heat-
ing value of coal delivered to the mills of a TPP and emphasized the importance of this esti-
mation for adjusting the regulatory structures within the boiler plant. The methodology was 
demonstrated using data from the TPP Nikola Tesla Unit B1 – TENT B1 in Obrenovac, Repub-
lic of Serbia.

Based on the definition of numerous potential predictors available in the DCS da-
ta-logging system, various techniques for selecting predictors and testing hypotheses about 
the acceptance or rejection of models were illustrated. The results show that even with only 
seven predictors, linear regression models provide an excellent estimate. Furthermore, with 
12 predictors, the linear regression model outperforms the heating value estimator based on a 
physical model.

On the other hand, the analysis here also raised some interesting questions that were 
not answered in this paper. First, is the model obtained generic or does each thermal power 
plant have its own set of optimal predictors? Another important question is the possibility of 
implementing in the model some prior knowledge about the physical influence of the heating 
value of coal on certain physical quantities. The third question is whether the fact that there 
was a relatively small number of experimental measurements and that these were not divided 
into training and test groups affects the validity of the results obtained. Finally, when analyzing 

Table 7. Hypothesis testing results 
Test 1 Test 2

F F0.05 F0.01 F0.001 F F0.10 F0.05 F0.01

S1 32.66 2.07 2.79 3.83 0.55 1.705 1.99 2.63
S2 21.37 1.94 2.55 3.44 0.62 1.855 2.22 3.065
S23 37.87 2.19 3.01 4.20 1.05 1.66 1.915 2.50
S4 27.16 2.00 2.65 3.60 0.36 1.77 2.085 2.81
S5

S6 28.90 2.03 2.71 3.71 0.57 1.735 2.035 2.715
S7 25.16 1.97 2.60 3.51 0.23 1.81 2.145 2.925
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the data obtained, it was found that there are measured values that deviate unusually from the 
rest of the population and are obviously outliers that occurred in some of the extreme situations 
(disappearance of the coal on the feeder, clogging of the hatch for the coal supply, filling of the 
mill, etc.). The question that arises is whether using one of the robust methods to pre-process 
the measurements would provide better results? These issues will be the subject of further re-
search by the authors.
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