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Abstract: An IoT-based system framework integrating a distributed sensor 

network was implemented to collect real-time data at a construction site. 

Various sensors were utilized to gather data concerning particulate matter 

(PM2.5 and PM10 concentrations) as well as meteorological parameters – wind 

speed, humidity, pressure, and temperature. The real-time measurements 

results provide an overview of air pollution levels at the construction site, 

revealing its association with earth excavation work, the primary construction 

activity. This connection allows for better management aimed at reducing 

concentrations of suspended particles. Through on-site monitoring of two 

pollutant concentrations, this study identified that the dust levels resulting 

from excavation activities were relatively high. It can be concluded that earth 

excavation significantly impacts air quality in the construction area. While 

exploring the primary factors influencing construction dust concentrations, 

the correlations indicate that these concentrations were not significantly 

associated with meteorological factors.  

To predict PM2.5 and PM10 concentrations in the air using number of working 

machines and meteorological parameters as predictors, both Multiple linear 

regression (MLR) and Artificial Neural Network (ANN) models were applied. 

The ANN model demonstrates better alignment with the measured air 

concentrations compared to the MLR model. The ANN model demonstrated 
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an R-squared value of 0.674 for PM10 and 0.618 for PM2.5, indicating a strong 

predictive capability. 

The aim of this research, through modeling PM2.5 and PM10 concentrations in 

the air at the construction site is to indicate importance of the topic, especially 

with respect to the health of the constuction site workers. 

Key words: : construction pollution; PM10; PM2.5; meteorology; prediction 

model. 

1. Introduction 

In the light of the anticipated implications of climate change, the pursuit of sustainability has 

become an essential objective across various economic sectors, including the construction industry. All 

construction sites consistently generate substantial pollution levels over prolonged periods. Notably, the 

construction industry stands as a primary contributor to greenhouse gas (GHG) emissions, accounting 

for approximately 12% of the total global emissions. Official statistics from the Delhi Pollution Control 

Committee (DPCC) reveal that constructions sites are responsible for 30% of air pollution caused by 

dust emissions [1]. Numerous construction activities, encompassing excavation, operation of diesel 

engines, demolition, burning, and handling of toxic materials, collectively contribute to air pollution. 

The primary factor leading to air pollution concerning nitrogen and sulfur oxides during construction 

projects is the utilizations of heavy equipment such as excavators, loaders, bulldozers, etc. reliant on 

burning fossil fuels. Excavation work stands as a significant source of PM (particulate matter) pollution 

on construction sites. The emission of PM2.5 at these sites arises primarily from exhaust fumes generated 

by diesel engines and diesel generator sets, vehicles, and heavy machinery. Additionally, the use of 

harmful substances like oils, glues, solvents, paints, treated woods, plastics, cleaning agents, and other 

hazardous chemicals widely used on construction sites also contribute to air pollution [2]. 

In 2015, 193 countries adopted the Sustainable Development Goals (SDGs), outlining the 2030 

Agenda for Sustainable Development [3]. Notably, air pollution is specifically addressed in two SDG 

targets: SDG 3.9, aiming for substantial reduction in health impacts from hazardous substances, and 

SDG 11.6 focused on mitigating the adverse effects of cities on people. It is widely recognized that 

action within the energy sector plays a pivotal role in achieving the SDGs related to air pollution [4]. 

The majority of sulfur dioxide (SO2) and nitrogen oxide (NOX) emissions into the atmosphere are 

related to energy sources, accounting for approximately 85% of PM emissions. Three primary pollutants 

(SO2, NOx and PM) are responsible for the most significant air pollution effects, both directly and 

indirectly, after undergoing transformation through chemical reactions and transportation in the 

atmosphere. PM2.5 is highly damaging to human health, while sulfur and NOX (the latter are precursors 

of ozone) are linked to various illnesses and environmental damages [2,5]. 

PM (Particulate Matter) particles have a significant impact on human health, with numerous 

adverse effects. These fine particles, often originating from industrial processes and vehicular emissions, 

can penetrate deep into the respiratory system, causing respiratory diseases. Prolonged exposure to PM 

particles is associated with an increased risk of cardiovascular problems, such as heart attacks and 

strokes. Furthermore, PM pollution is linked to exacerbating pre-existing health conditions, including 

asthma and bronchitis. Research suggests that reducing PM emissions can lead to improved air quality 

and better public health outcomes [6,7,8,9, 10]. 
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The Sustainable Development Scenario (SDS) is designed based on selected Sustainable 

Development Goals (SDGs) outlined by United Nations. Its objective is to harmonize three closely 

related yet distinct goals: ensuring universal access to affordable, reliable, and modern energy services 

by 2030 (SDG 7.1); significantly reducing air pollution, a major cause of high mortality and illness 

(SDG 3.9); and taking effective measures to combat climate change (SDG 13). [2] 

In the Balkans, Serbia stands as a leader in the continually growing construction industry. In 

August 2022 alone, 2,562 building permits were issued. This escalating trend in construction raises the 

prospect of a substantial increase in greenhouse gas concentrations and other pollutants. Consequently, 

it becomes imperative to implement real-time monitoring of polluting gases and particulate matter (PM). 

This monitoring is essential to propose measures aimed at reducing the levels of these pollutants. 

Through gaining insights into the quantities of pollutants present and their correlation with atmospheric 

conditions, strategies for lowering their concentrations can be formulated. Despite the increasing 

significance of emissions of harmful substances in the construction industry due to rapid construction 

in Serbia, a real-time emission monitoring tool, crucial for aiding construction teams in avoiding 

excessive emissions, has not yet been implemented at construction sites in the country. The significant 

relevance of implementing this system and conducting such research lies in prioritizing the health of 

construction site employees. These workers often encounter health issues due to poor working 

conditions, particularly the substandard air quality at these sites. At times, the air quality deteriorates to 

such an extent that it poses a threat to the lives of the workers. This issue demands greater attention due 

to its impact on the health of the population in the immediate vicinity of the construction site. The 

research results offer a new prospect for predicting air quality at construction sites by considering 

meteorological parameters. This development holds significant value in the planning and management 

of operations, ensuring minimal impact on the health of workers, the surrounding population, and the 

environment. Such an approach to managing complex activities on the construction site represents a 

sustainable way of overseeing both the construction site and the project as a whole.  

PM is one of the most prevalent air pollutants in the world, alongside NOx, photochemical 

oxidants, ozone (O3), carbon monoxide (CO), lead (Pb) and SO2 [11,12]. Recent research has focused 

on the effects of dust concentration at construction sites, particularly examining PM10 and PM2.5 

[13,14,15]. Investigations have revealed multiple factors influencing PM concentrations at these sites. 

The immediate surroundings of a construction site may act as a source of emissions that are transported 

and detected on-site, independent of on-site activities, commonly known as background emissions. In 

relation to meteorological factors, numerous studies have explored the correlation between 

meteorological parameters and the concentration of pollutants, including PM. [16, 17, 18] 

However, differing perspectives exist on this subject. Some authors [16] suggest that 

meteorological parameters play an extremely significant role in PM concentration at construction sites. 

Yet, due to a lack of measured data, they were unable to formulate a model depicting the dependence of 

PM concentrations on meteorological parameters. According to certain authors [17], dust emissions 

from construction sites exhibit significant seasonal variations, a finding supported by others research 

[18]. This reaffirms a notable correlation between PM concentration and meteorological parameters. In 

studies [19,20] examining the relationship between construction activities and meteorological factors, it 

was established that PM shows a strong positive correlation with wind speed and relative air humidity, 

and a weaker association with temperature.  
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Apart from excavation work, internal construction activities within buildings also contribute to 

emissions. Kinsey et al. (2004) observed that vehicles leaving construction sites can transport substantial 

amounts of dust and sediment to nearby roads, resulting in increased secondary dust [21]. Detailed 

monitoring conducted by Azarmi et al. (2014) during various construction phases, such as concrete 

mixing, drilling, and cutting, revealed that PM10, PM2.5, and PM0.1 concentrations during drilling and 

cutting activities were up to 14 times higher than background levels [22]. Moraes et al. (2016) 

specifically focused on monitoring PM10 concentrations generated from concrete and masonry in 

construction activities [23]. These and similar studies underscore that specific construction phases and 

activities significantly impact PM concentrations [24].  

The health risks, both cancer and non-cancer, related to exposure to PM2.5 and PM10 were 

evaluated in research conducted by Sekhavati and Yengejeh (2023) at two construction sites in Lar, Iran, 

using the three-dimensional approach of inhalation, digestion, and dermal absorption recommended by 

the US Environmental Protection Agency. Their results indicated that the drilling process presented the 

highest non-cancer risk for workers. Suspended PM2.5 posed an unacceptable risk level in all processes 

except for facility implementation. Their research has a limitation because they did not have a control 

group of workers who are exposed to PM [25]. 

IoT systems for monitoring PM particle pollution on construction sites have emerged as a 

valuable tool in environmental monitoring and occupational health and safety. These systems utilize a 

network of interconnected sensors that measure and monitor PM particle levels in real-time, providing 

valuable data on air quality conditions. By leveraging IoT technology, construction site managers can 

remotely access and analyze the collected data, enabling them to make informed decisions regarding 

pollution control measures and worker safety protocols. The integration of IoT systems in construction 

site monitoring helps identify potential sources of PM particle pollution, such as heavy machinery, 

demolition activities, or material handling processes. In the field of environmental monitoring, several 

conventional dust measurement techniques are commonly used, including gravimetric analysis, beta 

attenuation monitors, and optical particle counters. Gravimetric analysis, while highly accurate, involves 

manual sample collection and processing, which can be time-consuming and labor-intensive. Beta 

attenuation monitors offer continuous measurement but can be expensive and require regular 

maintenance. Optical particle counters provide real-time data but may suffer from accuracy issues under 

varying environmental conditions. Given these limitations, the adoption of IoT-based methods for dust 

measurement presents several advantages. IoT-based systems enable real-time data collection and 

remote monitoring, significantly enhancing the efficiency and responsiveness of environmental 

management practices. These systems also improve data accuracy through continuous and automated 

measurements, reducing the likelihood of human error and enabling more precise analysis. Additionally, 

IoT devices can be easily integrated into existing monitoring networks, providing a scalable solution 

that can adapt to changing environmental conditions and monitoring needs. By leveraging the benefits 

of IoT technology, we can overcome many of the challenges associated with conventional dust 

measurement techniques, leading to more effective and comprehensive environmental monitoring 

strategies. [25,26,27,28,29] 

The IoT monitoring system used in our study comprises several interconnected components 

designed to provide real-time dust monitoring and data analysis. The primary components include: 

-Sensors: These are deployed at various locations to measure particulate matter (PM) levels. 

The sensors are capable of detecting different sizes of particulate matter, such as PM2.5 and PM10. Each 
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sensor node consists of a microcontroller, power supply (typically solar-powered), and wireless 

communication modules. 

-Data Transmission: The collected data from the sensors is transmitted to a central server using 

wireless communication technologies like Wi-Fi, LoRa, or cellular networks. This ensures seamless and 

continuous data flow from remote monitoring sites to the central system. 

-Central Server: The central server aggregates data from all sensor nodes. It uses cloud 

computing resources to store and process the data. Advanced data processing techniques, including 

machine learning algorithms, are applied to predict trends and analyze the data for anomalies. 

-User Interface: The processed data is then visualized on a user-friendly interface accessible via 

web and mobile applications. This interface provides real-time updates, historical data analysis, and 

predictive insights, enabling stakeholders to make informed decisions. 

The integration of IoT in dust monitoring systems offers several key advantages: 

-Real-time Data Collection: IoT-enabled sensors provide continuous monitoring and real-time 

data collection, which is critical for timely intervention and response to elevated dust levels. 

-Improved Data Accuracy: Automated data collection minimizes human error and ensures 

higher accuracy and consistency in measurements. 

-Remote Monitoring: IoT systems facilitate remote monitoring of dust levels across multiple 

locations, reducing the need for physical presence and manual data collection. 

-Scalability: IoT-based systems can easily scale to cover larger areas or additional monitoring 

sites by adding more sensor nodes, enhancing the overall monitoring network. 

-Data Integration and Analysis: The ability to integrate and analyze data from various sensors 

using cloud computing and machine learning enables comprehensive environmental assessments and 

more effective dust management strategies. 

By implementing IoT technology, we can significantly enhance the capabilities and efficiency 

of dust monitoring systems, leading to better environmental protection and public health outcomes. [26, 

,27,28,29,30,31] 

With the continuous monitoring and analysis of PM particle levels, IoT systems can contribute 

to the development of proactive measures to mitigate pollution, reduce health risks, and promote a 

healthier environment for workers and surrounding communities. The goal of this research is a deeper 

and more detailed analysis of the relationship between PM concentrations on the construction site that 

are emitted due to excavation work and meteorological parameters. The data analysis aimed to check 

the possibility of applying some models to predict PM concentrations depending on the meteorological 

parameters. MLR was chosen for its simplicity and interpretability, while ANN was selected for its 

ability to model complex, non-linear relationships. [22,23] 

MLR (Multiple Linear Regression) models are simple statistical methods used for predicting 

PM (Particulate Matter) particles based on a linear model that combines multiple variables. In this case, 

the variables can include meteorological data, traffic information, and other factors that influence PM 

particle concentrations. ANN (Artificial Neural Network) models are more complex machine learning 

methods inspired by the structure of the human brain. They use a set of interconnected artificial neurons 

that communicate with each other to process data.  

ANN models are more flexible and can learn complex relationships between input and output 

data, which can be useful for predicting PM particles. MLR models are based on the assumption of a 

linear relationship between variables, while ANN models do not restrict the form of the function that 
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connects inputs and outputs. This means that ANN models can better model nonlinear relationships and 

complex patterns in the data, making them more powerful tools for predicting PM particles.  

MLR models are simpler to implement and interpret, while ANN models are more complex and 

require more time and computational resources for training. However, ANN models can provide more 

accurate results and better generalization to new data, especially in cases where the relationships 

between variables are complex and nonlinear. Both MLR and ANN models have their advantages and 

are used in the field of PM particle prediction. MLR models are suitable for situations where the 

relationships between variables are relatively simple and linear, while ANN models excel in capturing 

intricate patterns and nonlinearity in the data, leading to improved predictive performance.  

2. Materials and Methods 

The study involved measuring the concentrations of suspended PM2.5 and PM10, in the air, along 

with measuring meteorological parameters (air pressure, temperature, humidity, and wind speed). This 

study was conducted at six construction sites in Belgrade and Novi Sad (refer to Figure 1 and Figure 2) 

over a total of 40 days during spring and summer of 2019, as well as the summer of 2022. 

Figure 1. Location of the construction site in Belgrade, Serbia 
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Figure 2. Location of five construction sites in Novi Sad, Serbia 

In Belgrade, two electric-powered machines were operational in the excavation areas during 

workdays (Monday to Saturday). Heavy excavation work was performed every day except Sunday, from 

07:00 to 17:00. Identifying the origins of the polluting substances in the air was not feasible and was not 

the objective of this study. Nevertheless, throughout the measurement period, heavy earth excavation 

activities were the predominant ongoing tasks, while any other work, such as interior construction inside 

nearby buildings, occurred only sporadically. Consequently, we believe that the air pollution at the sites 

can be attributed to the heavy earthworks. Therefore, the primary focus of this study was on assessing 

the impact of meteorological conditions on the presence of PM in the air, considering it to originate from 

the heavy earth excavation works. 

Both measurement devices were of the sensor type, portable, and suitable for both outdoor and 

indoor use. These devices were placed in the measurement station, and measurements were recorded 

every 5 minutes. The RS-MG111-WIFI-1 (Reinke) (Figure3a) functions as an air environment multi-

element transmitter. It was employed to detect PM2.5 and PM10 in the air at the measurement site. This 

transmitter utilizes an original imported sensor and a control chip with characteristics such as high 

precision, high resolution, and good stability. It was directly connected to the on-site WIFI network for 

convenience. Through either the free monitoring platform software or the free IoT cloud platform, it 

forms an online integrated air environment monitoring system widely used in heating, ventilation, and 

air conditioning systems. This system is intended to provide energy savings in smart homes, schools, 

hospitals, airports, train stations, and other such locations. Another device utilized was the CC-M12 

weather station with RH&T and 4G communication (Figure 3b), serving as an anemometer to measure 

wind direction (WD) and wind speed (WS), as well as air temperature, air pressure, and humidity.  The 

entire system enabled the managers of the construction site and the company to gain detailed real-time 
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insight into air quality. This facilitated the identification of sources emitting harmful gases from three 

primary construction activities: earthworks, transportation, and interior works. The system included web 

and mobile applications that offered data visualization through maps, lists, and charts. Additionally, it 

provided notifications or alarms when values exceeded predefined ranges, algorithms for data 

processing, and the capability to export data to a CSV file. The sensors underwent calibration against 

an official site to validate the quality of the data, and both demonstrated an accuracy higher than 0.98. 

Calibration was conducted using the field collocation method, wherein a low-cost device was placed 

alongside a public air quality monitoring station for 15 days (the dataset contained hourly averaged 

values from both the device and the public monitoring station).  For calibration purposes, the Least 

Squares Method (LSM), chosen due to its common usage and implementation simplicity, was employed 

[32]. 

The measurement device utilized at the construction sites in Novi Sad was developed by the 

research team as part of the project "Development of the methods, sensors, and systems for monitoring 

the quality of water, air, and soil – RS-III43008." This device incorporates the Alphasense OPC-N2 as 

the PM sensor and a mobile chip for internet connectivity with the IoT cloud platform (Figure 3c). The 

OPC-N2 is pre-calibrated in accordance with the European Standard EN481 for particle mass 

concentrations concerning PM1, PM2.5, and PM10 size fractions, which define particles regularly inhaled 

by humans. An important advantage of the OPC-N2 is its capability to operate for extended periods 

without the need for maintenance or cleaning. This is due to all sampled airborne particles passing 

directly through the sensor without being deposited. Additionally, external factors such as wind power 

and direction in the proximity of the OPC can influence the sample flow rate through the sensor. 

However, these variations are dynamically monitored and corrected by the OPC-N2 to ensure that 

particle concentrations and derived PM values remain unaffected by flow variations. The data obtained 

from the sensor exhibits very high accuracy and precision, particularly when the humidity is below 70%.  

Figure 3. Measurement devices: a) RS-MG111-WIFI-1 (Reinke) device, b) CC-M12 weather 

station with RH&T,  c)  4G communication and the Alphasense OPC-N2 

In 2019, five selected construction sites in Novi Sad were monitored. Each construction site was 

observed continuously for five consecutive days, from Monday to Friday, under clear weather conditions 

with humidity lower than 70%. Monitoring occurred during earth excavation operations from 07:00 to 

16:00, with sensors transmitting measurements every 5 minutes. To ensure better quality of results, 

diverse construction sites were chosen. The specific locations were as follows: C1 involved road 

reconstruction (12th to 16th of August), C2 was a small family house (19th to 23rd of August), C3 

pertained to multifamily housing (15th to 19th of July), C4 was a residential and commercial building 
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(15th to 19th of April), and C5 was a residential complex (1st to 5th of July). Diesel-powered machines 

for excavation and transport were utilized on the monitored construction sites C1 to C5, involving 10, 

3, 4, 6, and 12 machines, respectively, depending on the size and intensity of the work. Data analysis in 

this study was performed using SPSS 23.0 statistical software and Excel. Additionally, Statistica v.13 

(StatSoft) software was employed for data modeling, specifically multiple linear regression (MLR) and 

artificial neural networks (ANN).  

The MLR model was developed by fitting a linear equation to observed data. A significant 

advantage of this statistical method lies in its ability to illustrate relationships between variables, even 

though it does not indicate a causal mechanism. The MLR model played a crucial role in determining 

how meteorological factors influenced air pollutant concentrations. Consequently, PM concentrations 

were considered as a response to meteorological variables acting as predictors.  

The Artificial Neural Network (ANN) stands as one of the well-known prognostic methods used 

when other statistical methods are not applicable. Its advantages, such as the ability to learn from 

examples, fault tolerance, real-time operation, and forecasting non-linear data, render it a widely utilized 

statistical tool. Furthermore, ANN adeptly accommodates nonlinear variables, a notable advantage 

compared to multivariate linear analysis based on linear variables. ANN models aim to imitate and 

simulate the function of neurons in the human brain through mathematical functions. The Multilayer 

Perception (MLP) comprises an input layer with artificial neurons corresponding to the input data, 

followed by one or more hidden layers housing additional artificial neurons. Each artificial neuron in 

the hidden layers interconnects and exchanges information with all neurons in both the previous and 

subsequent layers. Subsequently, the output layer includes artificial neurons known as "targets. The 

Coefficient of Determination (R2) served as one of the indicators used to determine whether the data 

provided sufficient evidence indicating that the overall models contributed enough information for 

predicting concentrations. Additionally, it acts as a measure of how well the prediction models fit the 

data. The coefficient values range from zero to one. The closer the value is to one, the more accurate 

and better the prediction. 

The ANN model used in this study was designed to predict PM2.5 and PM10 concentrations in 

the air at construction sites based on meteorological parameters. The model follows a typical Multilayer 

Perceptron (MLP) architecture. The key components of the architecture include: 

- Input Layer: The input layer consists of neurons representing the input data, which in this 

case are the meteorological parameters: wind speed, air pressure, humidity, temperature, 

and the number of working machines. 

- Hidden Layers: One or more hidden layers with artificial neurons that process the inputs. 

Each neuron in a hidden layer is connected to every neuron in the previous and next layers, 

allowing the model to learn complex patterns. 

- Output Layer: The output layer includes neurons that provide the predicted PM10 and PM2.5 

concentrations. 

The design choice of using an MLP is due to its capability to handle non-linear relationships 

and its robustness in learning from complex datasets. The Coefficient of Determination (R²) was used 

to evaluate the model’s performance, with higher values indicating better predictions . 

The hyperparameters for the ANN model were chosen based on a combination of empirical 

testing and optimization techniques. The process involved: 
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1. Initial Selection: Preliminary hyperparameters were selected based on existing literature 

and prior experiments. 

2. Grid Search: A grid search method was employed to explore a range of values for each 

hyperparameter systematically. 

3. Cross-Validation: The model’s performance was evaluated using cross-validation to ensure 

that the chosen hyperparameters generalize well to unseen data. 

4. Optimization: Hyperparameters such as the number of hidden layers, the number of neurons 

in each layer, the learning rate, and the activation functions were fine-tuned to minimize the 

prediction error. 

The ANN model achieved an R² of 0.674 for PM10 and 0.618 for PM2.5, indicating a good fit for 

the data .  

The study utilized data collected from six construction sites in Belgrade and Novi Sad over a 

total of 40 days during spring and summer 2019 and summer 2022. The dataset comprised measurements 

of PM2.5 and PM10 concentrations and meteorological parameters recorded every 5 minutes during work 

hours. The total dataset contained 4217 valid data points due to occasional interruptions in the device’s 

operation. 

- Training Data: 2924 data points were used for training the model. 

- Testing Data: 1293 data points were used for testing the model’s performance. 

- Validation Data: The entire dataset was used for final validation to ensure the model’s 

robustness and accuracy. 

Before feeding the data into the ANN model, several preprocessing steps were carried out: 

1. Data Cleaning: Removing any incomplete or erroneous records to ensure the quality of the 

dataset. 

2. Normalization: Scaling the input features to a standard range (e.g., 0 to 1) to ensure that the 

model trains effectively and converges faster. 

3. Feature Engineering: Creating new features or modifying existing ones to better capture the 

underlying patterns in the data. 

4. Splitting Data: Dividing the dataset into training, testing, and validation sets to evaluate the 

model’s performance accurately. 

These preprocessing steps were crucial for enhancing the model’s predictive power and ensuring 

that it generalizes well to new data. 

By implementing this systematic approach, the ANN model was effectively developed to predict 

air pollutant concentrations, providing valuable insights for managing air quality at construction sites 

and protecting workers’ health. 

The procedure for calculating the importance of independent variables in the context of ANN 

(Artificial Neural Network) modeling for PM (Particulate Matter) concentration prediction involves 

several steps.  

Data Preparation: Initially, the dataset is preprocessed to handle missing values, normalize 

features, and split into training and testing sets. This ensures that the model receives consistent and 

meaningful data. 

Model Training: An ANN model is trained using the training dataset. The architecture of the 

ANN, including the number of layers, neurons per layer, activation functions, and learning rate, is 

designed to best capture the relationships between independent variables and PM concentration. 
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Feature Importance Calculation: After training the model, the importance of each independent 

variable is assessed. Several methods can be used, including: Permutation Feature Importance (This 

method involves randomly shuffling the values of each feature and observing the decrease in model 

performance. A larger decrease indicates higher importance); Partial Dependence Plots (PDP)  show the 

marginal effect of each feature on the predicted outcome, allowing visualization of the relationship 

between each feature and PM concentration; and SHAP (Shapley Additive exPlanations) Values thatt 

provide a unified measure of feature importance based on cooperative game theory, attributing the 

prediction to individual features. 

Understanding the importance of independent variables is crucial in ANN modeling for several 

reasons: 

- Model Interpretation: It helps in interpreting how different features contribute to the 

predictions, providing insights into the underlying processes affecting PM concentration. 

- Model Optimization: By identifying the most influential features, the model can be 

optimized by focusing on these features, potentially reducing complexity and improving 

performance. 

- Feature Selection: It aids in selecting relevant features for model training, which can 

enhance model efficiency and generalizability by eliminating irrelevant or redundant 

features. 

3. Results and discussion 

The measurement results for the measurement period are displayed in Figures 4-8. The data 

provided are for work hours. By monitoring the concentrations of polluting substances (PM2.5, PM10), 

two sets of data were acquired. As depicted in Figure 4, these sets of data are presented as box plots 

(PM10 and PM2.5). 

 

 

Figure 4. Mean concentration of PM10 and PM2.5 in the air (minimum, 1st quartile, median and 

mean value, 3rd quartile, and maximum, as well as outliers are shown) at the construction site 

during excavation works in a period of 40 days (data from work hours). 
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The results indicate that PM2.5 concentrations ranged from 1 to 125.39 µg/m3. The mean PM2.5 

concentration during work hours was 41.43 µg/m3, with a standard deviation of 27.16 µg/m3. During 

work hours, PM10 concentrations ranged from 2 to 996.73 µg/m3, with a mean concentration of 149.49 

µg/m3 and a standard deviation of 124.43 µg/m3. Median Value for PM10 is 134.35 μg/m³ and for PM2.5: 

36.64 μg/m³. The highest concentrations of PM10 and PM2.5 were measured during the night (non-work) 

hours, which could be attributed to the stable stratification of the atmosphere. 

The analysis reveals a right-skewed distribution for both PM2.5 and PM10. The relationship 

between PM10 and PM2.5, based on mean concentrations, was computed, showing that PM2.5 constitutes 

approximately 27.7% of PM10. With this calculated value, it becomes possible to indirectly estimate the 

emission sources. The smaller ratios indicate the dominance of coarse particles, which could be 

associated with natural sources of air pollution, construction activities, and so on. 

As per the World Health Organization [33], PM2.5 should not exceed an annual mean of 5 μg/m3 

or a 24-hour mean of 15 μg/m3, while PM10 should not exceed an annual mean of 15 μg/m3 or a 24-

hour mean of 45 μg/m3. Upon analyzing the average 24-hour means for PM2.5 and PM10 at our 

construction sites, it is evident that PM pollution poses a significant health hazard, as the measured 

concentrations far surpass the recommended daily limits. The Republic of Serbia adopted the Law on 

Air Protection in 2009 to align with European Union (EU) legislation, although the EU standards are 

not as stringent. 

Four sets of meteorological data, including wind speed, temperature, humidity, and atmospheric 

pressure, were collected. As depicted in Figures 5-8, these data sets are presented in box plots. The 

atmospheric pressure fluctuated between 999 and 1018 kPa during work hours, with an average of 

1006.38 kPa and a standard deviation of 4.18 kPa. A left-skewed distribution was observed for the 

pressure data. The average work hours-mean humidity ranged from 18 to 91.1%, with a mean value of 

39.48%. The standard deviation for humidity was recorded at 10.97%. The average work hours-mean 

air temperature spanned from 9 to 41.1°C, with the mean work hours-mean air temperature recorded at 

26.69°C. The standard deviation for temperature was 6.07°C. Right-skewed distributions were observed 

for both humidity and temperature.  

During work hours, the wind speed (24-hour mean) ranged from 0 to 4 m/s. The mean wind 

speed during work hours was calculated at 1.74 m/s, with a standard deviation of 1.36 m/s. 
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Figure 5. Atmospheric pressure (minimum, 1st quartile, median and mean value, 3rd quartile, 

and maximum, as well as outliers are shown) at the construction site during excavation works in 

a period of 40 days (data from work hours). 

Figure 6. Humidity (minimum, 1st quartile, median and mean value, 3rd quartile, and 

maximum, as well as outliers are shown) at the construction site during excavation works in a 

period of 40 days (data from work hours). 

 

Figure 7. Temperature (minimum, 1st quartile, median and mean value, 3rd quartile, and 

maximum, as well as outliers are shown) at the construction site during excavation works in a 

period of 40 days (data from work hours) 
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Figure 8: Wind speed at the construction site (minimum, 1st quartile, median and mean value, 

3rd quartile, and maximum, as well as outliers are shown) during excavation works in a period of 

40 days (data from work hours) 

 

In Table 1, the Spearman correlation coefficients for the measured parameters are presented. The 

analysis suggests that the concentrations of PM10 and PM2.5 did not show significant correlation with 

any meteorological factor. However, a very high correlation between PM2.5 and PM10 was observed. 

This coefficient was selected considering the non-normal distribution of the data. 

 

Table 1. Values of the Spearman correlation coefficient among the measured parameters. 

 PM10 PM2.5 Pressure Humidity Temperature 
Wind 

speed 

n 

PM10 1 0.99 -0.08 0.17 0.20 0.14 0.77 

PM2.5  1 -0.10 0.15 0.21 0.13 0.75 

Pressure   1 0.76 -0.03 0.67 
 

0.12 

Humidity    1 -0.45 0.52 
0.17 

Temperature     1 0.20 

-0.18 

Wind speed      1 
-0.66 

n       
1 

 

The absence of correlation between dust and the investigated meteorological factors could be 

attributed to the multifaceted nature of construction dust, influenced by numerous variables. 
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Construction activities, play a direct and substantial role in generating construction dust [24], 

overshadowing the impact of meteorological factors.  

Throughout the monitoring period, the meteorological conditions remained stable, potentially 

mitigating the influence of these factors on construction dust. Pressure was included as a predictor due 

to its potential interactive effects with other variables, which can be effectively captured by the ANN 

model. Precipitation stands out as the primary meteorological factor affecting dust levels. Hence, it can 

be inferred that the emission of construction dust might not significantly align with any particular 

meteorological factor when these conditions remain relatively constant. This observation somewhat 

aligns with the findings of urban PM10 and PM2.5 research [34,35]. 

Two prediction models were formulated using experimental data: the MLR (Multiple Linear 

Regression) model and the ANN (Artificial Neural Network) model. Out of the expected dataset, only 

4217 valid data points were utilized due to occasional interruptions in the device's operation, such as 

power supply or internet connectivity disruptions during parameter measurements. 

3.1. Prediction model for air pollutant concentrations: ANN-model 

The ANN model for air pollutant concentrations employed 2924 data points for training, 1293 

for testing, and the entire 4217 for model validation. The predictors used for PM10 and PM2.5 predictions 

included wind speed (m/s), pressure (kPa), humidity (%), the number of working machines (-), and 

temperature (℃). The dependent variables were PM10 (µg/m3) and PM2.5 (µg/m3), achieving an R-

squared coefficient of determination of 0.674 for PM10 and 0.618 for PM2.5. Detailed results are available 

in Table 2 and Figures 9-10.  

 

Table 2. Model Summary (ANN) 

Training 

Sum of Squares Error 1016.634 

Average Overall Relative Error .348 

Relative Error for Scale 

Dependents 

PM10 [µg /m3] .325 

PM2.5 [µg/m3] .371 

Stopping Rule Used 
1 consecutive step(s) with no 

decrease in error 

Training Time 00:00:00.171 

Testing 

Sum of Squares Error 428.856 

Average Overall Relative Error .325 

Relative Error for Scale 

Dependents 

PM10 [µg /m3] .305 

PM2.5 [µg/m3] .345 



 16 

 

Figure 9. ANN model results for PM10 concentrations 
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Figure 10. ANN model results for PM2.5 concentrations 

 

The significance and importance of independent variables are provided in Table 3.  

 

Table 3. Independent Variables Importance 

 

 

 

 

 

 

 

 

 

 

3.2. Prediction model for air pollutant concentrations: MLR-model 

The predictors used in the MLR model for PM10 prediction were wind speed (m/s), pressure 

(kPa), humidity (%), the number of working machines (-), and temperature (℃). The dependent variable 

considered was PM10 (µg/m3). The model results for PM10 can be found in Tables 4-5 and Figure 11. 

Table 4. Model Summary (Multiple R-coefficient of correlation, R Square-coefficient of 

determinantion, Std.Error-standard error of the estimate) for PM10 prediction. 

 

 

 

 

 

 

 

 

 

Table 5. Model Coefficients (t-t-statistics; Sig.-significance) for PM10 prediction 

  Coefficients 
Standard 

Error 
t Stat P-value 

Intercept -1208.232086 379.4818659 -3.183899403 0.001463644 

Pressure [kPa] 1.362261636 0.373474952 3.647531459 0.000267976 

Humidity [%] -1.765589857 0.131690214 -13.40714551 3.62094E-40 

Temperature [°C] -3.070970825 0.267667702 -11.47307201 5.01113E-30 

Wind velocity [m/s] 33.69620012 1.147378619 29.36798679 1.2465E-172 

n 15.23008381 0.419976282 36.26415217 7.6464E-251 

 

 Importance 
Normalized 

Importance 

Pressure [kPa] .120 28.7% 

Humidity [%] .226 53.8% 

Temperature [°C] .157 37.4% 

Wind velocity [m/s] .076 18.2% 

n .420 100.0% 

Regression Statistics 

Multiple R 0.748730592 

R Square 0.560597499 

Adjusted R Square 0.560075767 

Standard Error 82.54164473 

Observations 4217 
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Similarly, for the model used in predicting PM2.5, the predictors encompassed wind speed (m/s), 

pressure (kPa), humidity (%), the number of working machines (-), and temperature (℃), with PM2.5 

(µg/m3) as the dependent variable. The model results for PM2.5 are provided in Tables 6-7. 

 

Table 6. Model Summary (Multiple R-coefficient of correlation, R Square-coefficient of 

determinantion, Std.Error-standard error of the estimate) for PM2.5 prediction. 

 

 

 

 

 

 

 

 

Table 7. Model Coefficients (t-t-statistics; Sig.-significance) for PM2.5 prediction  

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 207.5146954 88.12261369 2.354840451 0.018576308 

Pressure 

[kPa] 0.177363086 0.086727699 

-

2.045056992 0.040911271 

Humidity 

[%] -0.16602179 0.030580871 

-

5.428942558 5.98806E-08 

Temperature 

[°C] 

-

0.407000931 0.062157325 

-

6.547915845 6.53527E-11 

Wind velocity 

[m/s] 7.283477184 0.266442252 27.33604427 1.3412E-151 

n 3.27352605 0.097526156 33.56562159 4.3098E-219 

 

 

Figure 11. MLR model results for PM2.5 and  PM10 concentrations 

Regression Statistics 

Multiple R 0.709117986 

R Square 0.502848317 

Adjusted R Square 0.502258016 

Standard Error 19.16767605 

Observations 4217 
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Upon examination of the applied models (Tables 2-7) and Figures 9-11, it was observed that, 

based on the R-squared values, the ANN model demonstrated a higher level of agreement with measured 

air pollutant concentrations compared to the MLR model. 

The implementation of predictive models for particulate matter (PM) concentrations can 

significantly enhance the operational efficiency and safety of construction sites. Construction site 

managers can leverage real-time data and predictions from these models to make informed decisions 

that optimize site operations and improve air quality. Key strategies for practical implementation 

include: 

Real-time Monitoring and Alerts: By integrating sensors and predictive models, construction 

site managers can receive real-time alerts on PM concentration levels. This enables immediate action to 

mitigate high PM levels, such as adjusting work schedules or using dust suppression techniques. 

Operational Adjustments: Predictive models can identify periods of high PM concentration, 

allowing managers to plan high-dust activities during times when PM levels are predicted to be lower. 

This can include rescheduling heavy machinery use or adjusting the timing of demolition activities. 

Health and Safety Measures: With predictive data, managers can implement targeted measures 

to protect worker health. This includes providing personal protective equipment (PPE) during periods 

of high PM concentration and establishing safe zones with lower PM levels for worker breaks. 

Environmental Compliance: Predictive models assist in maintaining compliance with 

environmental regulations by providing evidence-based data on PM levels. This data can be used to 

demonstrate adherence to air quality standards and reduce the risk of regulatory fines. 

Stakeholder Communication: Real-time data and predictions can be shared with stakeholders, 

including workers, community members, and regulatory bodies, to foster transparency and trust. 

Informing stakeholders about the measures taken to control PM levels can enhance community relations 

and worker satisfaction. [36,37,38] 

The presented work focuses on using an IoT-based system integrated with an Artificial Neural 

Network (ANN) model to monitor and predict PM2.5 and PM10 concentrations at construction sites. The 

study involves real-time data collection using various sensors and employs ANN for better prediction 

accuracy compared to traditional methods like Multiple Linear Regression (MLR). 

Novelty of the Presented Work Is in: 

1. Specific Application: The novelty lies in applying these techniques specifically to 

construction sites, which have different pollution dynamics compared to surface mines. 

2. Comprehensive Approach: Our work not only predicts PM concentrations but also 

emphasizes the impact of meteorological parameters on these predictions. 

3. Real-time Data Integration: The integration of IoT systems for continuous, real-time 

monitoring at construction sites is a significant advancement, as previous studies often rely 

on periodic or batch data collection. 

4. Model Comparison: By comparing the performance of ANN with MLR, this study provides 

insights into the benefits of using more sophisticated machine learning models for better 

prediction accuracy. 

In conclusion, while similar studies exist, the specific focus on construction sites, the 

comprehensive integration of meteorological data, and the detailed model performance comparison 

contribute to the novelty and significance of this research. 
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 For comparison with recent research as (Tripathi et al., 2024), it is clear that this research also 

employs IoT and machine learning techniques for dust monitoring but focuses on surface mine sites. 

Similar to our study, it uses a network of IoT sensors for real-time data collection. However, it integrates 

advanced machine learning models such as Support Vector Machines (SVM) and Random Forests (RF) 

for prediction. The study reports high prediction accuracy, highlighting the effectiveness of combining 

IoT with machine learning for environmental monitoring. [39] 

4. Conclusion  

Meteorological data and construction pollutant concentrations in the air were collected to 

determine the main factors affecting construction site dust concentrations, which could provide a basis 

for reducing the impact of dust generated by construction activities on the construction area.  

On-site monitoring of a construction site in Belgrade and Novi Sad showed the dust 

concentration during construction activities is relatively high. The work hour mean PM10 concentration 

in the air on-site was 149.49 µg/m3, and the work hour mean PM2.5 concentration was 41.43 µg/m3. 

Analyzing the workhour data for PM2.5 and PM10 concentrations in the air, it can be concluded that PM 

presents great health hazard due to the concentrations being far higher than the prescribed daily limits. 

Regarding the main factors affecting construction dust concentrations, the results show these 

concentrations were not significantly correlated with any single meteorological factor, although these 

factors changed during the study, but concentrations were significantly correlated with number of 

working machines. Considering the very low correlation between the PM concentrations and 

meteorological parameters, MLR and ANN models were applied for prediction purposes. The ANN 

model demonstrated a stronger agreement with measured air pollutant concentrations compared to the 

MLR model.  

As conclusion, we suggest future research directions by integrating additional environmental 

factors. This includes incorporating elements such as noise, vibration, and chemical pollutants. By 

expanding the scope of environmental monitoring to include these factors, future research can provide 

a more comprehensive analysis of environmental impacts. This approach aims to deliver more detailed 

and accurate data, facilitating informed decision-making for the preservation and enhancement of 

environmental conditions. 
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