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This paper introduces nonlinear approaches which include neural networks 

and ANFIS to identify and control heat transfer within a chamber. Initially, 

traditional linear models are obtained using transfer functions with delays 

through Matlab identification tools. However, this traditional linear model 

failed to faithfully represent the system when the input was changed. This 

outcome was expected since linear models are reliable only within specific 

operational ranges. To create a novel model that is applicable across the 

entire state space, two alternative identification methods, utilizing neural 

networks and an adaptive neuro-fuzzy inference system were introduced. 

After testing them with input data not used during the training, the models 

were compared and all of them showed satisfiying results.. In the 

continuation of the research, control techniques based on these techniques 

were presented. After assigning an arbitrary temperature as a reference 

signal, inverse models were made and four controllers in direct inverse 

control sheme were compared: three feedforward neural networks with 

different numbers of neurons in the hidden layer and the adaptive neuro-

fuzzy inference controller. The results and possible improvements are 

discussed in the conclusion. 
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1. Introduction  

In a multitude of diverse industries, including manufacturing, production, and services, precise 

temperature control is of great importance. It is a crucial factor that deeply influences the quality of 

products, as well as operational security [1]. The operational efficiency of heating, ventilation, and air 

conditioning (HVAC) systems relies significantly on the principles of heat transfer [2]. Precise models 

of heat transfer play a key role in the understanding of energy conversion processes, and they serve as 

valuable tools in enhancing the effectiveness of potential control mechanisms. This means that optimal 

temperature control, crucial in many industry fields, depends on identifying heat transfer processes 

and using optimal control strategies. 

This study deals with the identification of heat flow processes and temperature control, using the 

Quanser Heat-flow Experiment (HFE) [3]. There are several research papers about modeling and 

control of the same system. For example, in [4] fractional order integral and derivative (FO-ID) 

controller is tuned, while it is considered that the system can be represented by the first order plus time 

delay transfer function. The proposed controller is compared with fraction order PI and classical PI 

and PID controllers tuned by Zigler Nichol’s method. It was shown that fraction order controllers 



outperform classical controllers and that for the proposed FO-ID, the resulting closed loop system is 

robust to gain variations. Research [5] deals with the design of a memristor-based two-degree-of-

freedom controller for temperature profile tracking control. As a result of the simulation, it was shown 

that two-degree-of-freedom control structures reach the reference value faster than one-degree-of-

freedom control structures, while memristor-based control structures eliminate the error earlier than 

control structures with standard controllers. Identification and control of a heat flow system designed 

based on the Takagi-Sugeno fuzzy model optimized using the Grey Wolf Optimization Algorithm are 

done in [6]. Three different experiments were done and the Optimized Takagi-Sugeno fuzzy controller 

proved to be suitable for the task. In [7], authors developed an adaptive neuro-fuzzy inference system 

(ANFIS) whose architecture is found by using the genetic evolutionary optimization algorithm, for the 

identification of heat flow process.  

In this research identification and control of heat transfer are done by using nonlinear approaches 

that involve artificial intelligence. Intelligent control is realized in direct inverse control (DIC) 

scheme. In literature, feedforward neural networks (FFNNs) are commonly used in DIC schemes, such 

as for the control of the Unmanned Aerial Vehicle [8] or for active vibration suppression control [9]. 

In this paper, FFNNs are also used for this purpose, but we used ANFIS model as well. The 

comparison was made between a few FFNNs with variations in the number of neurons in the hidden 

layer and the ANFIS model. All experiments are performed on the real system in laboratory 

conditions.  

2. System description 

The Quanser HFE in Fig. 1, is a sophisticated system designed for the study and analysis of heat 

flow and thermal dynamics. The device is an advanced rheostat, which is designed to optimize heat 

conduction and enable accurate temperature monitoring at different locations. Three temperature 

sensors are evenly distributed along the aluminum plate. These sensors are fast-setting platinum 

transducers, ensuring precise and rapid temperature data collection. The setup includes a blower that 

plays a crucial role in controlling the airflow within the system. A tachometer is used to measure the 

blower's fan speed. The system has a coil-based heating device that provides a controlled heat source. 

To control the delivered power, analog signals (Vh voltage for heating and Vb voltage for the blower) 

are employed. These signals enable reliable adjustments in power supply, facilitating various heat flow 

experiments. Quanser's software is utilized to collect and analyze data from the temperature sensors. 

This software provides a user-friendly interface for real-time monitoring and in-depth analysis of the 

experiments. HFE offers a controlled and precise environment for conducting experiments and 

investigations related to heat flow. 

 

Figure 1 The HFE set-up [4] 



3. HFE Modelling 

When it comes to establishing a nonlinear input-output relationship or dealing with a large 

number of input variables but few samples with heterogeneous data, the more recent approaches tend 

to offer notable advantages over the more established (traditional) ones. Similar to conventional 

models, modern approaches assess the achieved performance through established statistical 

methodologies. Artificial intelligence is precisely one of these contemporary techniques. Fuzzy logic 

algorithms, artificial neural networks, metaheuristic algorithms, and expert systems are examples of 

algorithms that incorporate aspects of human thought processes and problem-solving techniques. This 

chapter will describe three mathematical models of the system: linear model derived through 

identification, model based on neural identification using feedforward network and fuzzy-neural 

model: ANFIS. 

3.1. Traditional model  

Explicit mathematical equations are the basis of traditional models such as transfer functions. 

Classical models frequently excel in interpretability, simplicity of use, explicit assumptions, stability, 

and robustness, even when more recent models might offer flexibility.  

An open-loop experiment was carried out to determine the heat flow system's mathematical 

representation. All of the temperature sensors were used to measure the temperature within the 

chamber. The experiment started, and five seconds in, a 5V step signal was applied. Throughout the 

whole testing, the blower input voltage stayed at 3V. The experiment automatically finished after two 

minutes. Unsurprisingly, sensor 1 displayed a faster temperature rise than sensors 2 and 3 due to its 

closer proximity to the heater and blower, Fig. 2. As a result, the chamber's temperature increased at 

different rates. Three models were created, each of which matched the sensor's temperature data. 

In the literature, it is usual that HFE models are represented as first-order transfer functions with 

delay [1], [3-7],[10]. Furthermore, the step responses of these models are displayed in Fig. 2. The 

findings obtained from the second sensor (s2) yield the lowest mean square error (MSE). Using the 

Matlab identification tool, the linear models are obtained in the form of the transfer functions Wi, i = 1, 

2, 3, using Laplace transform, that converts a time domain into domain of complex variable s, Eq. (1). 

 

 

Figure 2 Traditional model: Transfer functions with delay [7] 
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3.2. Intelligent models  

Advanced modeling, which can include machine learning and artificial intelligence, offers 

distinct advantages over traditional linear modeling approaches. Unlike linear methods, nonlinear 

models can capture complex and non-linear relationships in data, making them highly adaptable to a 

wide range of real-world scenarios. They excel in various tasks, especially modeling [11], although 

their usage has been limited due to the black box nature and unclear processes. 

3.2.1 FFNN models 

The principal advantage of utilizing an artificial neural network (ANN) model is its built-in 

ability to learn from itself and to efficiently represent and approximate complex nonlinear 

relationships between input variables and output results [12-13]. The FFNN, a popular ANN design, 

was employed in this study to forecast the chamber's temperature based on the input voltage. An 

FFNN comprises interconnected neurons in input, output, and hidden layers with flexible weighted 

connections. Nonlinear activation functions in the hidden layer enable universal approximation 

capabilities. Training typically employs the back-propagation algorithm, incorporating techniques 

such as Levenberg-Marquardt, Bayesian regularization, robust, and gradient descent for weight and 

bias modification. A trained neural network can be used to forecast the results of inputs that were not 

used during training. A multilayer FFNN with a single hidden layer and a backpropagation learning 

algorithm is employed in this work.  The network output in the scalar case for the single hidden layer 

network is as follows, Eq. (2): 

2 1 0 0

1 1

ˆ
h n

i ij j i

i j

y f w f w x b b
 

   
    

    
  , (2) 

 

where the network output ŷ is the predicted value of the variable y, iw and 
ijw are the weights 

and 0ib  and b0 are biases. The scalar h denotes the number of neurons in hidden layer and n denotes 

the number of inputs, while f1 and f2 are activation functions in hidden and output layer, respectively. 

3.2.2 ANFIS model 

ANFIS is a remarkable machine learning model that combines the best aspects of neural 

networks and fuzzy logic. It was developed by Jang, Sun, and Mizutani in the early 1990s. [14]. To 

increase prediction accuracy, the ANFIS neural network component modifies the fuzzy sets and 

operator settings. For this, the gradient descent technique known as the backpropagation algorithm is 

typically used to reduce the discrepancy between the expected and actual outputs. The structure of 

ANFIS is made up of five layers, and, usually, papers show a structure with two input xk, k = 1,2 and 

one output. Fig. 3 represents architecture, based on the first-order Takagi–Sugeno model, with the two 



membership functions j = 1, 2 and four rules m = 1, 2, 3, 4. With  A1k, A2k, ..., Ajk denoting linguistic 

labels, qmk and cm denoting the consequent parameters, a typical set of rules can then be written:  

If x1 is A11 and x2 is A12 then f1 = q11x1+q12x2+c1 

If x1 is A11 and x2 is A22 then f2 = q21x1+q22x2+c2, 

If x1 is A21 and x2 is A12 then f3 = q31x1+q32x2+c3 

If x1 is A21 and x2 is A22 then f4 = q41x1+q42x2+c4, 

 Input Layer computes and outputs the necessary membership function's membership degree. 

Every node in this layer can change its shape while being trained. Each input node sends the input 

value to the next layer by defining an input variable,      corresponds to one membership function of 

k-th input. Gaussian or bell-shaped membership functions are commonly used in the literature, despite 

various other types being explored. The Gaussian membership function, which has two parameters (in 

the case of ANFIS those are called premise parameters: standard deviation β and mean α). 
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Figure 3 ANFIS architecture with two inputs 

 The nodes in the second layer don't change like they did in the first layer – they stay fixed. 

The firing strength of the associated rule wm, is shown by each node's output. A stronger firing strength 

implies that the regulation has more of an impact on the outcome.  
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where * denotes T-norm. 

 By dividing a rule's firing strength by the total of all firing strengths, the third layer calculates 

the normalized firing strength of each rule, making sure that the values are between 0 and 1.  
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 The nodes in the fourth layer combine the firing strengths of the rules to get a crisp output 

value. It is also often called the defuzzification layer. Various defuzzification techniques exist, 

including the weighted average method and the center of gravity method. In order to get the weighted 



consequent values, this layer multiplies each rule's consequent parameter by the normalized firing 

strength.  
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The weighted consequent values from each rule are added up in the last layer, which produces the 

ANFIS system's overall output, where l is the total number of rules, l= 4 for Fig.3. 
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3.3. Traditional model testing  

The transfer function chosen to characterize the system is generated from sensor s2 using Eq. 

(1) in light of the excessive noise in sensor 3's output signal and the greater error displayed by sensor 

1. The sensor situated at the center of the chamber exhibits the lowest mean square error (MSE), as 

depicted in Fig. 2. Further, the comparison between the model and the actual object, but with an 

altered input signal in Fig. 4 is studied. In this instance, the experiment started with a 4V step signal 

delivered five seconds after the beginning (identification, i.e. object model is obtained for an input 

voltage of 5 V). The findings obtained a much higher MSE of 1.1888, and in a steady state, there is a 

mismatch of about 1.5°C between the model and the actual output signal, and this difference tends to 

increase as we travel away from the initial identification point. Fig. 4 has objective to highlight the 

system's nonlinearity. As a result, it is found that this particular linear model is insufficient for 

accurately representing the system when the input changes. 

 

 

Figure 4 Traditional model (linear with time delay) testing [7] 

4. Nonlinear identification 

Just like in the case of the linear model, when dealing with nonlinear models, the data 

acquisition process during testing was exclusively centered around the sensor s2. The selection of the 

MSE criterion remained consistent as the performance metric of choice. All models (FFNNs and 

ANFIS) were created using different input voltages: 1V, 1.5V, 2V, 2.5V, 3V, 3.5V, 4V, 4.5V, and 5V 

(while the blower input voltage stays constant), and it was tested for an input it was not trained on: 

3.2V. Although these models cannot be directly compared with linear one, because the linear model 

was designed for a single input voltage, the object's non-linear character motivates the employment of 

non-analytical yet alternative methodologies. 



4.1. Neural networks 

In this research, data was divided randomly, with 70% taken for training, 15% for validation 

and 15% for testing. Because it offers quick convergence, Levenberg-Marquardt (LM) algorithm was 

used for training and MSE is chosen as performance criteria to make the later comparison with other 

techniques. Learning rate is fixed at 0.001. Using historical input-output data, training was conducted 

offline. The previously mentioned parameters are maintained for all architectures. Using input u as 

input voltage and output y as temperature from the current and the previous instants (k and k-1), object 

identification is accomplished and FFNN output can be defined as follows, Eq. (8):  

   1 ( 1), ( ), ( 1), ( )y k N u k u k y k y k     (8) 

4.1.1 Different architectures and results 

Although the training was conducted offline, testing of all networks was carried out online using 

Simulink to compare the behavior of the object and its model in real-time for three minutes. Three 

different FFNN architectures with five, eight and ten neurons in the hidden layer are used in order to 

find the best possible model, Fig. 5-7.  The experiments were also made with other network 

architectures, i.e. with a different number of neurons in the hidden layer as well as a larger number of 

hidden layers, but this did not bring improvements.  

 

 
 

Figure 5 FFNN with 5 neurons                 Figure 6 FFNN with 8 neurons 

 

 

             Figure 7 FFNN with 8 neurons 



The best of all architectures were those three, and the best among them proved to be the network 

with eight number of neurons, with a MSE of 0.0116. On the Fig. 5 FFNN with five neurons is 

presented, and the best one is shown in Fig.6 where real output is denoted with black and predicted 

output with the blue dashed line. The MSE for this network is 0.0230. The model responses match 

well with the actual object response in all three Figures as shown in the enlarged view of the graph 

from 90 to 90.2 seconds. In Fig. 7, FFNN with 10 neurons is shown, with MSE of 0.0151. 

 

4.2. ANFIS 

As in the case of neural networks, for training the ANFIS model, the data is divided in the ratio 

70% -15%-15% for training, validation and testing, respectively. A hybrid training algorithm was 

applied, which includes two different parameter adjustment methods. As to Jang's [14] findings, the 

hybrid algorithm modifies the premise parameters during the backward pass, which are then carried 

over to the forward pass of the ANFIS. The least squares approach will determine the consequent 

parameters when the input enters Layer 4 in a forward pass. The MSE criterion was consistently 

chosen as the preferred performance metric. The training was done offline, and testing online, in the 

same way and with the same prerecorded input data as with neural networks, so the output has the 

same dependency from the previous inputs as in Eq. (8).  

 

4.2.1 Modeling with ANFIS: Results and Analysis 

The number of rules in a traditional fuzzy inference system is chosen by the engineer or 

researcher who has experience with the system that has to be modeled. Finding the bare minimum of 

membership functions required to reach a given performance level in advance is not an easy task. In 

this attempt, the intended input-output data was examined, and trial and error was used to determine 

the number of membership functions that should be assigned to each input variable. There are 24 

premise parameters in the model, which includes 3 Gaussian membership functions per input, with 2 

parameters each and a total of 4 inputs. The first step is to apply grid partitioning (GP) to the input-

output data pairs in order to derive the basic fuzzy model. The input and output data are used to build 

the GP technique, which guarantees that the membership functions are uniformly spaced and have the 

same shapes. Even with a moderate number of inputs, however, the enumeration of all conceivable 

combinations of membership functions for each input might result in an exponential increase in the 

number of rules. The present scenario's grid partitioning produces 81 rules (3^4) for the fuzzy 

inference system with 4 inputs and 3 Gaussian membership functions per input since ANFIS-GP 

models suffer with the curse of dimensionality (when number of inputs or number of membership 

functions increases, then the number of fuzzy rules also increases exponentially).   

In the ANFIS structure presented in this paper, there are a total of 81 consequent parameters, because 

it is chosen to have only one consequent parameter per rule (only an independent consequent 

parameter is kept). In this case, the number of rules is equal to the number of consequent parameters. 

The ANFIS's training and structure, as well as the real-time calculation involved in comparing the 

model's response to the response of the real object, would have become much more complex if this 

hadn't been done, increasing the number of consequent parameters to 405 (5*81). 



Consequently, the total number of parameters while taking into account the premise and consequent 

parameters is 105.  Product T-norm is selected to be employed in the second Layer, and Gaussian 

membership functions from Eq. (3) are selected to represent inputs. Fig. 8. Represent membership 

functions Ajk for all inputs after the training process, with j=1,2,3 (number of MF) and k=1,2,3,4 

(number of inputs). 

 

         

Figure 8 Membership functions Ajk, j=1,2,3 and k=1,2,3,4 – ANFIS model 

Although the ANFIS training process was much less time-consuming than the training of all neural 

networks and in terms of overall MSE this approach showed much better results, Fig.9, with MSE 

equals to 0.0068. The optimization of ANFIS parameters (by using some other methods than 

backpropagation and LSE such as metaheuristic) and avoiding grid partition which suffers from the 

curse of dimensionality would probably contribute to even better performance. 

 

 

Figure 9 ANFIS model 

5. Control systems 

Both nonlinear models FFNN and ANFIS have shown better results than traditional linear 

modelling with delay. Precisely because of this, control will also be discussed through two 

approaches: the first group of control signals will be based on the FFNN models, and the second on 

ANFIS. These techniques propose using an inverse model i.e. model where the inputs in the controller 

are the desired outputs and the outputs from the object. As in the case of identification, all parameters 

remained unchanged. The data set is divided into training, validation and testing in the ratio 70%-

15%-15%, respectively. MSE was chosen as the performance criterion and training was done offline, 

from pre-recorded data, but network testing was done in real-time, simultaneously comparing the 

output from the model and the actual output of the object. Neural networks are typically used in direct 

inverse control in the literature; however, this paper also integrates ANFIS networks.For neural 

networks, three architectures were chosen with one hidden layer each and five, eight and ten neurons 

per layer, respectively. The learning rate remained fixed at 0.001, and LM was chosen as the 



algorithm. In the case of ANFIS, GP was selected for the initial model, as T norm the product, 

Gaussian membership functions in the premises, Fig. 11 and a scalar as an independent term in the 

consequent parameter of the conclusion were used. Controller output can be defined with Eq. (9):  

   ( 1), ( ), ( 1), ( 1) .u k N y k y k y k u k    (9) 

The inverse model is subsequently applied as a controller for the process by inserting the desired 

output or reference signal yd(k+1) instead of the output y(k+1) [15]. Fig. 10 shows the direct inverse 

control scheme. 

 

 

Figure 10 Direct inverse control structure 

 

    

Figure 11 Membership functions Ajk, j=1,2,3 and k=1,2,3,4 – ANFIS controller 

In the case of control, increasing the number of neurons in the hidden layer of the network did 

bring an improvement, which can be seen from Fig. 12.  

 

 

Figure 12 Different controllers                     Figure 13 Control signals 

A network with 10 neurons makes a smaller overall MSE which equals to 1.4990, compared to 

networks with 5 and 8 neurons (with MSE equal to 2.4903 and 2.1514). By using ANFIS, the response 

with the longest rising time is obtained and therefore its total MSE is the highest (5.1548). Although 

the training itself, as well as the identification process, with ANFIS was shorter than with neural 



networks, its operation in the online real experimental environment and time proved to be the slowest 

at the initial moment. ANFIS, on the other hand, responds significantly better than all FFNN models in 

terms of smaller oscillations and the error in the steady state, after the transient time. If the system is 

observed in the steady state, after the transient time ANFIS offers the best results. Control signals are 

presented on Fig. 13. 

6. Conclusion 

In this study, the topic of modeling and controlling temperature within a chamber using three 

temperature sensors has been addressed. After the system was put into operation, a traditional model 

of transfer function with time delay was developed. The second sensor located in the middle of the 

chamber was chosen as the reference sensor due to its least noisy response and because the model for 

this sensor yielded the lowest MSE. As the traditional model performed poorly with changing inputs, 

four intelligent models were implemented. The first three models utilized the same technique: 

feedforward neural networks, with varying architectures, while the fourth model was a fuzzy-neuro 

network, known as ANFIS. Modeling with these advanced techniques produced significantly better 

results than the standard approach, and these methods were also applied for temperature control. To 

facilitate control, an inverse model was required, and the structure of direct inverse control was 

presented. Artificial neural networks, specifically FFNN and ANFIS, were employed as control 

systems. Increasing the number of neurons in the hidden layer of FFNN improved control performance 

in terms of MSE, although it introduced more noise into the control signal compared to networks with 

fewer neurons. As it exhibited the least oscillation amplitude, the FFNN with 10 neurons in the hidden 

layer was deemed the optimal architecture among artificial neural networks. While ANFIS yielded the 

best results for systems in a steady state, it performed the poorest in terms of total MSE, primarily due 

to its slower rise time. In this way, the nonlinear models with two types of networks, FFNN and 

ANFIS, were created and they demonstrated accuracy across the whole state space. In addition, the 

control signal was synthesized in both network concepts. FFNN is a well-known and proven technique 

in DIC, but ANFIS, a type of network in the DIC idea, is much less widely used in the literature; 

therefore, this research investigates it. The research shows, utilizing the aforementioned approaches in 

the experiment, that nonlinear modeling and control provide excellent accuracy and can be used to 

solve these types of problems. Further research could enhance the study by considering other types of 

artificial neural networks such as radial basis or recurrent networks. ANFIS could be improved by 

substituting the GP method for finding the initial model with subclustering, which would reduce the 

number of rules, simplify the system, and likely result in a faster response at the beginning of 

experiments. Additionally, alternative training algorithms, such as genetic algorithms and particle 

swarm optimization, or modern metaheuristic algorithms like ant lion optimization (ALO), African 

vulture optimization algorithm (AVOA), marine predator algorithm (MPA), Sewing Training-Based 

Optimization (STBO), among others, could be explored to further refine the research and improve 

control strategies. 
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