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This paper introduces non-linear approaches which include neural networks and 
ANFIS to identify and control heat transfer within a chamber. Initially, traditional 
linear models are obtained using transfer functions with delays through MATLAB 
identification tools. However, this traditional linear model failed to faithfully rep-
resent the system when the input was changed. This outcome was expected since 
linear models are reliable only within specific operational ranges. To create a 
novel model that is applicable across the entire state space, two alternative iden-
tification methods, utilizing neural networks and an adaptive neuro-fuzzy inference 
system were introduced. After testing them with input data not used during the 
training, the models were compared and all of them showed satisfying results.. In 
the continuation of the research, control techniques based on these techniques 
were presented. After assigning an arbitrary temperature as a reference signal, 
inverse models were made and four controllers in direct inverse control scheme 
were compared: three feedforward neural networks with different numbers of neu-
rons in the hidden layer and the adaptive neuro-fuzzy inference controller. The 
results and possible improvements are discussed in the conclusion. 
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Introduction  

In a multitude of diverse industries, including manufacturing, production, and ser-

vices, precise temperature control is of great importance. It is a crucial factor that deeply influ-

ences the quality of products, as well as operational security [1]. The operational efficiency of 

HVAC systems relies significantly on the principles of heat transfer. Precise models of heat 

transfer play a key role in the understanding of energy conversion processes, and they serve as 

valuable tools in enhancing the effectiveness of potential control mechanisms. This means that 

optimal temperature control, crucial in many industry fields, depends on identifying heat trans-

fer processes and using optimal control strategies. 

This study deals with the identification of heat flow processes and temperature con-

trol, using the quanser heat-flow experiment (HFE) [2]. There are several research papers about 

modeling and control of the same system. For example, in [3] fractional order integral and 
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derivative (FO-ID) controller is tuned, while it is considered that the system can be represented 

by the first order plus time delay transfer function. The proposed controller is compared with 

fraction order PI and classical PI and PID controllers tuned by Zigler Nichol’s method. It was 

shown that fraction order controllers outperform classical controllers and that for the proposed 

FO-ID, the resulting closed loop system is robust to gain variations. Research [4] deals with the 

design of a memristor-based two-DoF controller for temperature profile tracking control. As a 

result of the simulation, it was shown that two- DoF control structures reach the reference value 

faster than one- DoF control structures, while memristor-based control structures eliminate the 

error earlier than control structures with standard controllers. Identification and control of a 

heat flow system designed based on the Takagi-Sugeno fuzzy model optimized using the Grey 

Wolf optimization algorithm are done. Three different experiments were done and the opti-

mized Takagi-Sugeno fuzzy controller proved to be suitable for the task. In [5], authors devel-

oped an ANFIS whose architecture is found by using the genetic evolutionary optimization 

algorithm, for the identification of heat flow process.  

In this research identification and control of heat transfer are done by using non-linear 

approaches that involve artificial intelligence. Intelligent control is realized in direct inverse 

control (DIC) scheme. In literature, feedforward neural networks (FFNN) are commonly used 

in DIC schemes, such as for the control of the unmanned aerial vehicle [6] or for active vibration 

suppression control [7]. In this paper, FFNN are also used for this purpose, but we used ANFIS 

model as well. The comparison was made between a few FFNN with variations in the number 

of neurons in the hidden layer and the ANFIS model. All experiments are performed on the real 

system in laboratory conditions.  

System description 

The Quanser HFE in fig. 1, is a sophisticated system designed for the study and anal-

ysis of heat flow and thermal dynamics. The device is an advanced rheostat, which is designed 

to optimize heat conduction and enable accurate temperature monitoring at different locations. 

Three temperature sensors are evenly distributed along the aluminum plate. These sensors are 

fast-setting platinum transducers, ensuring precise and rapid temperature data collection. The 

setup includes a blower that plays a crucial role in controlling the air-flow within the system. A 

tachometer is used to measure the blower's fan speed. The system has a coil-based heating de-

vice that provides a controlled heat source. To control the delivered power, analog signals (Vh 

voltage for heating and Vb voltage for the blower) are employed. These signals enable reliable 

adjustments in power supply, facilitating various heat flow experiments. Quanser's software is 

utilized to collect and analyze data from the temper-

ature sensors. This software provides a user-friendly 

interface for real-time monitoring and in-depth anal-

ysis of the experiments. The HFE offers a controlled 

and precise environment for conducting experiments 

and investigations related to heat flow. 

The HFE modelling 

When it comes to establishing a non-linear in-

put-output relationship or dealing with a large num-

ber of input variables but few samples with hetero-

geneous data, the more recent approaches tend to of-

fer notable advantages over the more established Figure 1 The HFE set-up [4] 
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(traditional) ones. Similar to conventional models, modern approaches assess the achieved per-

formance through established statistical methodologies. Artificial intelligence is precisely one 

of these contemporary techniques. Fuzzy logic algorithms, ANN, metaheuristic algorithms, and 

expert systems are examples of algorithms that incorporate aspects of human thought processes 

and problem-solving techniques. This chapter will describe three mathematical models of the 

system: linear model derived through identification, model based on neural identification using 

feedforward network and fuzzy-neural model: ANFIS. 

Traditional model  

Explicit mathematical equations are the basis of traditional models such as transfer 

functions. Classical models frequently excel in interpretability, simplicity of use, explicit as-

sumptions, stability, and robustness, even when more recent models might offer flexibility.  

An open-loop experiment was carried out 

to determine the heat flow system's mathemati-

cal representation. All of the temperature sensors 

were used to measure the temperature within the 

chamber. The experiment started, and five sec-

onds in, a 5 V step signal was applied. Through-

out the whole testing, the blower input voltage 

stayed at 3 V. The experiment automatically fin-

ished after two minutes. Unsurprisingly, sensor 

1 displayed a faster temperature rise than sensors 

2 and 3 due to its closer proximity to the heater 

and blower, fig. 2. As a result, the chamber's 

temperature increased at different rates. Three 

models were created, each of which matched the 

sensor's temperature data. 

In the literature, it is usual that HFE models are represented as first-order transfer 

functions with delay [1-5, 8]. Furthermore, the step responses of these models are displayed in 

fig. 2. The findings obtained from the second sensor (s2) yield the lowest mean square error 

(MSE). Using the MATLAB identification tool, the linear models are obtained in the form of 

the transfer functions Wi, i = 1, 2, 3, using Laplace transform, that converts a time domain into 

domain of complex variable s: 
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Intelligent models  

Advanced modeling, which can include machine learning and artificial intelligence, 

offers distinct advantages over traditional linear modeling approaches. Unlike linear methods, 

non-linear models can capture complex and non-linear relationships in data, making them 

highly adaptable to a wide range of real-world scenarios. They excel in various tasks, especially 

modeling [9], although their usage has been limited due to the black box nature and unclear 

processes. 

Figure 2. Traditional model: Transfer functions 
with delay [7] 
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The FFNN models 

The principal advantage of utilizing an ANN model is its built-in ability to learn from 

itself and to efficiently represent and approximate complex non-linear relationships between 

input variables and output results [10, 11]. The FFNN, a popular ANN design, was employed 

in this study to forecast the chamber's temperature based on the input voltage. An FFNN com-

prises interconnected neurons in input, output, and hidden layers with flexible weighted con-

nections. Non-linear activation functions in the hidden layer enable universal approximation 

capabilities. Training typically employs the back-propagation algorithm, incorporating tech-

niques such as Levenberg-Marquardt (LM), Bayesian regularization, robust, and gradient de-

scent for weight and bias modification. A trained neural network can be used to forecast the 

results of inputs that were not used during training. A multilayer FFNN with a single hidden 

layer and a backpropagation learning algorithm is employed in this work.  The network output 

in the scalar case for the single hidden layer network is as: 
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where the network output ŷ is the predicted value of the variable y, wi and wij are the weights, 

and bi0 and b0 are biases. The scalar h denotes the number of neurons in hidden layer and n 

denotes the number of inputs, while f1 and f2 are activation functions in hidden and output layer, 

respectively. 

The ANFIS model 

The ANFIS is a remarkable machine learning model that combines the best aspects of 

neural networks and fuzzy logic. It was developed by Jang et al. [12] in the early 1990’s. To 

increase prediction accuracy, the ANFIS neural network component modifies the fuzzy sets and 

operator settings. For this, the gradient descent technique known as the backpropagation algo-

rithm is typically used to reduce the discrepancy between the expected and actual outputs. The 

structure of ANFIS is made up of five layers, and, usually, papers show a structure with two 

input xk, k = 1,2 and one output. Figure 3 represents architecture, based on the first-order Takagi-

Sugeno model, with the two membership functions j = 1, 2 and four rules m = 1, 2, 3, 4. With  

A1k, A2k, ..., Ajk denoting linguistic labels, qmk and cm denoting the consequent parameters, a typical 

set of rules can then be written:  

If x1 is A11 and x2 is A12 then f1 = q11x1+q12x2+c1 

If x1 is A11 and x2 is A22 then f2 = q21x1+q22x2+c2, 

If x1 is A21 and x2 is A12 then f3 = q31x1+q32x2+c3 

If x1 is A21 and x2 is A22 then f4 = q41x1+q42x2+c4, 
− Input layer computes and outputs the necessary membership function's membership degree. 

Every node in this layer can change its shape while being trained. Each input node sends 

the input value to the next layer by defining an input variable, mAjk corresponds to one 

membership function of kth input. Gaussian or bell-shaped membership functions are com-

monly used in the literature, despite various other types being explored. The Gaussian 

membership function, which has two parameters (in the case of ANFIS those are called 

premise parameters: standard deviation β and mean α): 
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− The nodes in the second layer don't change like they did in the first layer – they stay fixed. 

The firing strength of the associated rule wm, is shown by each node's output. A stronger 

firing strength implies that the regulation has more of an impact on the outcome: 
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where * denotes T-norm. 

− By dividing a rule's firing strength by the total of all firing strengths, the third layer calcu-

lates the normalized firing strength of each rule, making sure that the values are between 0 

and 1: 
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− The nodes in the fourth layer combine the firing strengths of the rules to get a crisp output 

value. It is also often called the defuzzification layer. Various defuzzification techniques 

exist, including the weighted average method and the center of gravity method. In order to 

get the weighted consequent values, this layer multiplies each rule's consequent parameter 

by the normalized firing strength: 
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The weighted consequent values from each rule are added up in the last layer, which 

produces the ANFIS system's overall output, where l is the total number of rules, l = 4 for fig. 3. 
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Traditional model testing 

The transfer function chosen to characterize the system is generated from sensor s2 

using eq. (1) in light of the excessive noise in sensor 3's output signal and the greater error dis-

played by sensor 1. The sensor situated at the center of the chamber exhibits the lowest MSE, as 

depicted in fig. 2. Further, the comparison between the model and the actual object, but with an 

altered input signal in fig. 4 is studied. In this instance, the experiment started with a 4 V step 

signal delivered five seconds after the beginning (identification, i.e. object model is obtained for 

an input voltage of 5 V). The findings obtained a much higher MSE of 1.1888, and in a steady 

state, there is a mismatch of about 1.5 °C between the model and the actual output signal, and this 

difference tends to increase as we travel away from the initial identification point. Figure 4 has 

objective to highlight the system's non-linearity. As a result, it is found that this particular linear 

model is insufficient for accurately representing the system when the input changes. 

Non-linear identification 

Just like in the case of the linear model, when dealing with non-linear models, the data 

acquisition process during testing was exclusively centered around the sensor s2. The selection 

of the MSE criterion remained consistent as the performance metric of choice. All models 
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(FFNN and ANFIS) were created using different input voltages: 1 V, 1.5 V, 2 V, 2.5 V, 3 V, 

3.5 V, 4 V, 4.5 V, and 5 V (while the blower input voltage stays constant), and it was tested for 

an input it was not trained on: 3.2 V. Although these models cannot be directly compared with 

linear one, because the linear model was designed for a single input voltage, the object's non-

linear character motivates the employment of non-analytical yet alternative methodologies. 

Neural networks 

In this research, data was divided randomly, with 70% taken for training, 15% for 

validation and 15% for testing. Because it offers quick convergence, LM algorithm was used 

for training and MSE is chosen as performance criteria to make the later comparison with other 

techniques. Learning rate is fixed at 0.001. Using historical input-output data, training was con-

ducted offline. The previously mentioned parameters are maintained for all architectures. Using 

input u as input voltage and output y as temperature from the current and the previous instants 

(k and k – 1), object identification is accomplished and FFNN output can be defined as: 

  ( 1) ( –1), ( ), ( –1), ( )y k N u k u k y k y k+ =   (8) 

Different architectures and results 

Although the training was conducted offline, testing of all networks was carried out 

online using Simulink to compare the behavior of the object and its model in real-time for three 

minutes. Three different FFNN architectures with five, eight and ten neurons in the hidden layer 

are used in order to find the best possible model, figs. 5-7.  The experiments were also made 

with other network architectures, i.e. with a different number of neurons in the hidden layer as 

well as a larger number of hidden layers, but this did not bring improvements. 

The best of all architectures were those three, and the best among them proved to be 

the network with eight number of neurons, with a MSE of 0.0116. On the fig. 5 FFNN with five 

neurons is presented, and the best one is shown in fig. 6 where real output is denoted with black 

and predicted output with the blue dashed line. The MSE for this network is 0.0230. The model 

responses match well with the actual object response in all three Figures as shown in the en-

larged view of the graph from 90 to 90.2 seconds. In fig. 7, FFNN with 10 neurons is shown, 

with MSE of 0.0151. 

Figure 3. The ANFIS architecture with two inputs               Figure 4. Traditional model 
                                                                                                    (linear with time delay) testing [5] 
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The ANFIS 

As in the case of neural networks, for train-

ing the ANFIS model, the data is divided in the 

ratio 70%-15%-15% for training, validation and 

testing, respectively. A hybrid training algorithm 

was applied, which includes two different pa-

rameter adjustment methods. As to Jang's [12] 

findings, the hybrid algorithm modifies the prem-

ise parameters during the backward pass, which 

are then carried over to the forward pass of the 

ANFIS. The least squares approach will deter-

mine the consequent parameters when the input 

enters Layer 4 in a forward pass. The MSE crite-

rion was consistently chosen as the preferred per-

formance metric. The training was done offline, and testing online, in the same way and with the 

same prerecorded input data as with neural networks, so the output has the same dependency from 

the previous inputs as in eq. (8). 

Modeling with ANFIS: results and analysis 

The number of rules in a traditional fuzzy inference system is chosen by the engineer 

or researcher who has experience with the system that has to be modeled. Finding the bare 

minimum of membership functions required to reach a given performance level in advance is 

not an easy task. In this attempt, the intended input-output data was examined, and trial and 

error was used to determine the number of membership functions that should be assigned to 

each input variable. There are 24 premise parameters in the model, which includes 3 Gaussian 

membership functions per input, with 2 parameters each and a total of 4 inputs. The first step 

is to apply grid partitioning (GP) to the input-output data pairs in order to derive the basic fuzzy 

model. The input and output data are used to build the GP technique, which guarantees that the 

membership functions are uniformly spaced and have the same shapes. Even with a moderate 

number of inputs, however, the enumeration of all conceivable combinations of membership 

functions for each input might result in an exponential increase in the number of rules. The 

present scenario's GP produces 81 rules (34) for the fuzzy inference system with 4 inputs and 3 

Gaussian membership functions per input since ANFIS-GP models suffer with the curse of 

Figure 5. The FFNN with 5 neurons                            Figure 6. The FFNN with 8 neurons 

Figure 7. The FFNN with 8 neurons 
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dimensionality (when number of inputs or number of membership functions increases, then the 

number of fuzzy rules also increases exponentially). 

In the ANFIS structure presented in this paper, there are a total of 81 consequent pa-

rameters, because it is chosen to have only one consequent parameter per rule (only an inde-

pendent consequent parameter is kept). In this case, the number of rules is equal to the number 

of consequent parameters. The ANFIS's training and structure, as well as the real-time calcula-

tion involved in comparing the model's response to the response of the real object, would have 

become much more complex if this hadn't been done, increasing the number of consequent 

parameters to 405 (5*81). 

Consequently, the total number of parameters while taking into account the premise 

and consequent parameters is 105.  Product T-norm is selected to be employed in the second 

Layer, and Gaussian membership functions from eq. (3) are selected to represent inputs. Figure 

8. Represent membership functions Ajk for all inputs after the training process, with j = 1,2,3 

(number of MF) and k = 1,2,3,4 (number of inputs). 

Although the ANFIS training process was 

much less time-consuming than the training of all 

neural networks and in terms of overall MSE this 

approach showed much better results, fig. 9, with 

MSE equals to 0.0068. The optimization of AN-

FIS parameters (by using some other methods 

than backpropagation and LSE such as metaheu-

ristic) and avoiding grid partition which suffers 

from the curse of dimensionality would probably 

contribute to even better performance. 

Control systems 

Both non-linear models FFNN and ANFIS 

have shown better results than traditional linear 

modelling with delay. Precisely because of this, 

control will also be discussed through two approaches: the first group of control signals will be 

based on the FFNN models, and the second on ANFIS. These techniques propose using an 

inverse model i.e. model where the inputs in the controller are the desired outputs and the out-

puts from the object. As in the case of identification, all parameters remained unchanged. The 

data set is divided into training, validation and testing in the ratio 70%-15%-15%, respectively. 

The MSE was chosen as the performance criterion and training was done offline, from pre-

recorded data, but network testing was done in real-time, simultaneously comparing the output 

from the model and the actual output of the object. Neural networks are typically used in DIC 

in the literature; however, this paper also integrates ANFIS networks. For neural networks, 

Figure 8. Membership functions Ajk, j = 1,2,3 and k = 1,2,3,4 – ANFIS model 

Figure 9. The ANFIS model 
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three architectures were chosen with one hidden layer each and five, eight and ten neurons per 

layer, respectively. The learning rate remained fixed at 0.001, and LM was chosen as the algo-

rithm. In the case of ANFIS, GP was selected for the initial model, as T norm the product, 

Gaussian membership functions in the premises, fig. 10 and a scalar as an independent term in 

the consequent parameter of the conclusion were used. Controller output can be defined with: 

  ( ) ( 1), ( ), ( –1), ( –1)u k N y k y k y k u k= +   (9) 

The inverse model is subsequently applied as a controller for the process by inserting 

the desired output or reference signal yd(k + 1) instead of the output y(k + 1) [13]. Figure 11 

shows the DIC scheme. 

In the case of control, increasing the number of neurons in the hidden layer of the 

network did bring an improvement, which can be seen from fig. 12. 

 

Figure 11. The DIC structure 

Figure 10. Membership functions Ajk, j = 1,2,3 and k = 1,2,3,4 – ANFIS controller 

Figure 12. Different controllers                                     Figure. 13 Control signals 
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A network with 10 neurons makes a smaller overall MSE which equals to 1.4990, 

compared to networks with 5 and 8 neurons (with MSE equal to 2.4903 and 2.1514). By using 

ANFIS, the response with the longest rising time is obtained and therefore its total MSE is the 

highest (5.1548). Although the training itself, as well as the identification process, with ANFIS 

was shorter than with neural networks, its operation in the online real experimental environment 

and time proved to be the slowest at the initial moment. ANFIS, on the other hand, responds 

significantly better than all FFNN models in terms of smaller oscillations and the error in the 

steady state, after the transient time. If the system is observed in the steady state, after the tran-

sient time ANFIS offers the best results. Control signals are presented on fig. 13. 

Conclusion 

In this study, the topic of modeling and controlling temperature within a chamber 

using three temperature sensors has been addressed. After the system was put into operation, a 

traditional model of transfer function with time delay was developed. The second sensor located 

in the middle of the chamber was chosen as the reference sensor due to its least noisy response 

and because the model for this sensor yielded the lowest MSE. As the traditional model per-

formed poorly with changing inputs, four intelligent models were implemented. The first three 

models utilized the same technique: FFNN, with varying architectures, while the fourth model 

was a fuzzy-neuro network, known as ANFIS. Modeling with these advanced techniques pro-

duced significantly better results than the standard approach, and these methods were also ap-

plied for temperature control. To facilitate control, an inverse model was required, and the 

structure of DIC was presented. The ANN, specifically FFNN and ANFIS, were employed as 

control systems. Increasing the number of neurons in the hidden layer of FFNN improved control 

performance in terms of MSE, although it introduced more noise into the control signal compared 

to networks with fewer neurons. As it exhibited the least oscillation amplitude, the FFNN with 10 

neurons in the hidden layer was deemed the optimal architecture among ANN. While ANFIS 

yielded the best results for systems in a steady state, it performed the poorest in terms of total 

MSE, primarily due to its slower rise time. In this way, the non-linear models with two types of 

networks, FFNN and ANFIS, were created and they demonstrated accuracy across the whole state 

space. In addition, the control signal was synthesized in both network concepts. The FFNN is a 

well-known and proven technique in DIC, but ANFIS, a type of network in the DIC idea, is much 

less widely used in the literature; therefore, this research investigates it. The research shows, uti-

lizing the aforementioned approaches in the experiment, that non-linear modeling and control 

provide excellent accuracy and can be used to solve these types of problems. Further research 

could enhance the study by considering other types of ANN such as radial basis or recurrent net-

works. ANFIS could be improved by substituting the GP method for finding the initial model with 

sub clustering, which would reduce the number of rules, simplify the system, and likely result in 

a faster response at the beginning of experiments. Additionally, alternative training algorithms, 

such as genetic algorithms and particle swarm optimization, or modern metaheuristic algorithms 

like ant lion optimization (ALO), African vulture optimization algorithm (AVOA), marine pred-

ator algorithm (MPA), Sewing Training-Based Optimization (STBO), among others, could be 

explored to further refine the research and improve control strategies. 
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