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This study aims to develop a predictive model for the thermal conductivity of 

graphene nanoplatelets/SAE10W oil nanofluids using artificial neural 

networks and response surface methodology. Generally, the property of 

thermal conductivity has been measured to enhance the heat transfer 

efficiency of traditional heat transfer fluids. Experiments were conducted 

using a thermal constants analyzer at different operating conditions, such as 

varying the volume concentrations of nanoparticles from 0.050% to 0.150% 

and increasing the temperature from 20°C to 80°C. Results showed an 

improvement in the thermal conductivity of the nanofluid, ranging from 19% 

to 41%. A single hidden layer with 12 neurons was found to be the most 

effective architecture for the artificial neural network model. Additionally, a 

response surface was closely fitted to experimental data points in the 

response surface methodology. Then, mean squared error, root mean square 

error, and R-squared values were employed to validate the accuracy of the 

predicted models. The correlation coefficients of the artificial neural 

network and response surface methodology models were 0.99761 and 

0.9877, respectively. Also, the accuracy of the models was assessed in terms 

of margins of deviation. The margin of deviation for the artificial neural 

network model ranged between +0.3926% and -0.4640%, whereas for the 

response surface methodology model, it was between +0.4137% and -

0.4166%. The comparison of the artificial neural network model indicates 

greater accuracy than the response surface methodology technique. This 

method for predicting the thermal conductivity of graphene nanoplatelets 

/SAE10W oil nanofluids is both cost-effective and inventive, minimizing 

experimental research durations. 

 

Key words: Thermal conductivity, Artificial neural network, Response 
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1. Introduction  

Nanofluids play a pivotal role in technological advancements across scientific domains  with their 

applications continually expanding. Enhancing the heat transfer efficiency of common fluids such as 

water, ethylene glycol (EG), and other fluids is difficult due to their inherent low thermal conductivity 

[1–3]. Consequently, a prominent area within nanotechnology focuses on augmenting the 
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characteristics of heat transfer fluids[4–6]. The processes of heat transfer play a vital role in numerous 

industrial applications such as electronic components, automotive, industrial and energy sectors. 

Nanofluids are comprised of colloidal suspensions of nanoparticles within a base fluid, resulting in 

improved properties of the base fluid and an elevated heat transfer rate [7–10].  Nanofluid particles 

comprise diverse metals, metal oxides, and carbon nanotubes under development to attain more 

effective heat transfer compared to conventional fluids. In their study, Choi et al. [11] found that the 

dispersion of copper (Cu) nanoparticles in water resulted in an improvement in the thermal 

conductivity of Cu/water nanofluids. Thermal conductivity was recognized as the most pivotal 

property for enhancing heat transfer rates. Several experiments were conducted to investigate the 

influence of various parameters, including size, shape, volume concentration (Ф), temperature (T) and 

surfactants, on the thermophysical properties of nanofluids.  

Over the past few decades, many researchers have investigated nanofluid thermal conductivity 

using mathematical models based on both experimental and theoretical data. Despite this, applying 

Maxwell's model, which is primarily intended for microparticle-based fluids, to other nanofluids 

results in significant deviations from experimentally measured thermal conductivity. Subsequently, 

several thermophysical models such as Hamilton-Crosser, Bruggeman, Yu and Choi, and Pak and Cho 

have been employed to improve prediction accuracy [12, 13]. Nevertheless, significant discrepancies 

persist in predicting nanofluid thermophysical properties as these models rely on conventional tools 

and cannot accurately forecast nanofluid properties under varying conditions using correlations 

developed solely from experimental data.  

Computer science and software advancements have resulted in the development of different 

approaches for predicting the characteristics of nanofluids in recent years. These approaches include 

artificial neural network (ANN), genetic, fuzzy logic algorithms  and respond surface methodology 

[14–18]. Researchers utilized diverse modeling techniques to predict the thermal conductivity of 

nanofluids, as summarized in tab. 1. ANN modeling has gained popularity among these methods to 

investigate nanofluid behavior and forecast thermophysical properties. For instance, Long Li et al.[19] 

Conducted experiments to investigate the viscosity and thermal conductivity of Al2O3/EG nanofluids 

with different mass fractions (0% and 2%) and T ranging from 20°C to 90°C. An ANN model was 

developed by them that achieved high coefficients of determination (R
2
) of 0.9984 for viscosity and 

0.9997 for thermal conductivity. Similarly, Alireza Akhgar et al.[20] Used an ANN model to analyse 

the thermal conductivity of MWCNT-TiO2/water-EG nanofluids, demonstrating that the ANN 

approach outperformed traditional correlations in predicting experimental results.  

The test dataset produced a mean squared error (MSE) of 0.019753449 and a mean absolute error 

(MAE) of 0.0117. Further, Ashutosh Pare et al. [21] Investigated the thermal conductivity of 

nanofluids consisting of distilled water with Al2O3, Chou, and Zinc oxide (ZnO). They varied the 

nanoparticle Ф between 0.02% and 2% and the T range between 20°C and 90°C. Compared to their 

proposed ANN model and theoretical correlations, their experimental results demonstrated accuracy 

levels within 2%. Nguyen et al. [22] Examined the thermal conductivity of Graphene Oxide (GO) and 

Silicon dioxide (SiO2) / water hybrid nanofluids. Based on experimental data, they created a numerical 

correlation and an ANN model. The ANN model achieved an R
2
 of 0.999, while the numerical model 

had an R
2
 of 0.9. Their proposed correlation was based on a relationship between biases and 

preferences, which showed promising results. Rostami et al.[23] An MWCNT-Chou/water nanofluid 

was synthesized, and an ANN model was used to predict its thermal conductivity. They observed a 

significant enhancement of approximately 30% in thermal conductivity under specific conditions with 

a Ф of 0.6% and T of 50°C. Arani et al. [24] Employed an ANN to predict the response variable (R
2
 = 

0.997) for Magnesium Oxide (MgO) /water nanofluid heat transfer, considering MgO particle size and 

Reynolds number. Yu-Ming Chu et al.[25] Conducted experiments and employed response surface 

methods (RSM) and ANN models to investigate the rheological behavior of hybrid nanofluids with 
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MWCNT-TiO2/5W40. The ANN model demonstrated a maximum error below 5% with an R
2
 value of 

0.999. Shaopeng Tian et al.[26] Predicted the thermal conductivity of GO-Al2O3/water-EG hybrid 

nanofluids using a perceptron feed-forward ANN. The trainbr algorithm showed that the ANN model 

had been well-trained and had a correlation coefficient of 0.999 for thermal conductivity.  

   Table 1. Summary of researches conducted for prediction of nanofluid properties. 

Author Nanofluid Purpose Method 

R. Dinesh et al.[27] GO-MO nano lubricants Thermal and rheological 

behaviour of nanofluid 

ANN 

Mehdi Jamei et 

al.[28] 

Oil based nanofluids Thermal conductivity 

prediction 

ANN/ RSM 

Tareq Salameh et al. 

[29] 

Al2O3/SiO2 nanofluid Thermophysical 

properties of nanofluid 

Fuzzy logic model and 

Yu Jiang et al.[30] Al2O3/deionized water Thermal conductivity 

prediction of nanofluids 

Fuzzy lookup table 

method 

Surendra D et al.[31] Ag/ZnO hybrid 

nanofluids 

Prediction of thermal 

conductivity of nanofluids 

ANN 

Chuan Sun et al.[32] WO3/Liquid Paraffin Thermal conductivity 

prediction 

Fuzzy Logic /ANN 

Ammar H et al.[33] Al2O3, CuO and TiO2)/ 

Water 

Prediction the thermal 

conductivity of nanofluids 

ANN 

 

As per existing literature, a significant portion of researchers has dedicated their efforts to 

examining and forecasting the thermophysical characteristics of nanofluids utilizing water and EG. 

Nevertheless, there has been relatively scant exploration into assessing the thermal conductivity of 

nanofluids incorporating oil as the base fluid. This study endeavors to analyze the improvement in 

thermal conductivity within SAE10W oil nanofluids through the incorporation of graphene 

nanoplatelets (GnPs). Furthermore, the aim is to establish a highly precise predictive model utilizing 

ANN and RSM techniques based on experimental data. 

2. Materials and Methods 

2.1. Preparation of nanofluid 

The functionalized GnPs were procured from Cheap Tubes Inc., located in Grafton, VT, USA, in 

the form of nanosheets. These GnPs exhibit a specific surface area of 700 m²/g, a thickness of 4 nm 

and lateral dimensions of 2 µm. They belong to grade 4O+ and possess a purity of 99%. Graphene was 

chosen due to its lower density and superior thermal conductivity properties when compared to 

metallic materials. The automotive damper oil with a grade SAE 10W was selected as a base fluid. 

The preparation of GnPs/SAE10W oil nanofluids involved a two-step method. The GnPs are initially 

suspended in SAE10W oil with concentrations of 0.050%, 0.075%, 0.100%, 0.150%, and 0.150%. 

Generally, the higher the Ф, the more pronounced the sedimentation and agglomeration of 

nanoparticles in the fluids [34–36]. Therefore, lower ranges [0.050% to 0.150%] of Ф were selected 

for this study to address this issue.  

2.2. Thermal conductivity measurement 

The thermal conductivity of the GnPs/SAE10W oil nanofluid was assessed employing a Hot Disk 

Thermal Constants Analyzer (Hot Disk-Instrument TPS 2500S). This analyser has the capability to 

measure thermal conductivity within the range of 0.005 to 1800 W/mK with an accuracy exceeding 

5%. In order to calibrate the instrument, deionized water was used in a temperature range of 20°C to 

80°C before measurements of nanofluid thermal conductivity were performed. The objective of this 

calibration was to evaluate the accuracy and precision of the instrument's sensor. The refprop 9.0 
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database [37] was compared with the acquired data, and the measurements indicated an accuracy of 

less than 1% that complied with the manufacturer's declared accuracy standards.  

3. ANN modelling  

The use of ANNs as a method for addressing nonlinear systems has become widely accepted in 

recent years due to their significant advances in the field. The popularity of these approaches is 

attributed to their exceptional accuracy, cost-effectiveness and efficiency in terms of time. The parallel 

processing abilities of neural networks, which are comparable to those of the human brain enable a 

more profound comprehension of intricate relationships between input and output variables. A feed-

forward perceptron (ANN) with the Levenberg-Marquardt (Trainlm) algorithm was used to predict the 

thermal conductivity of GnPs/SAE10W oil nanofluids. 

 
Fig. 1. ANN architecture 

As illustrated in fig. 1, the architecture of the artificial neural network (ANN) comprises three 

layers: the input layer, hidden layer and output layer to minimize prediction errors. The use of feed-

forward ANNs for function estimation is particularly advantageous due to their significant promise in 

this area[38, 39]. The ANN model was implemented using MATLAB software, which is a reliable 

platform for creating and training the neural network model. The next step involved determining the 

optimal number of neurons in each layer. The input and output data can determine the number of 

neurons in a layer. This study considered two inputs: Ф, T and the output was thermal conductivity. 

The objective is to predict the thermal conductivity of the GnPs/SAE10W nanofluids. For training and 

testing, the dataset contains 35 data points that were obtained from 5 values of Ф and 7 values of T. 

tab. 2 shows an experimental dataset that was used to train the ANN. The dataset is divided into three 

segments, and 70% of it is dedicated to training, 15% to validation, and 15% to testing[40]. In this 

study, the correlation between the characteristic parameters of  the ANN neuron, including weight 

(wj), bias (bj), activation function (f), the input signal (xi) and output signal (y) is achieved through the 

following Eq. (1) [41]. The activation function used is the tangent sigmoid as described in Eq. (2) [41]. 

Moreover, the purelin activation function is utilized for the output layer.  

    (∑       
 
      )                                    (1) 

 

 ( )  
 

      (  )
                                                (2) 

 

The most effective number of neurons in the hidden layer was determined through iterative testing 

involving various neuron numbers and evaluating their performance. The performance measures for 

each neuron number are determined through training, validation, testing and overall performance. The 

minimum MSE and maximum R
2 

are the two metrics used to evaluate the performance of the ANN 
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modeling approach. By minimizing the MSE value to zero and approaching an R
2
 value of 1, a 

model's accuracy can be improved. The R
2
 and MSE are expressed [19] by Eqs. (3) and (4).  
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Table 2. Thermal conductivity of GnPs/SAE10W oil nanofluids (w/mK) 

4. Result and Discussion  

4.1. Experimental analysis 

fig. 2 (a), illustrates the relationship between Ф, T and thermal conductivity for GnPs/SAE10W 

oil nanofluids. Experimental data points that represent these relationships are also included. The 

horizontal axis (X) represents the Ф of the GnPs, while the vertical axis (Y) indicates the thermal 

conductivity of the nanofluids. With rising T, the base fluid's thermal conductivity decreases from 

0.1382 W/mK to 0.1274 W/mK, which is due to the fluid's inherent properties. Experimental results 

demonstrate improved thermal conductivity of SAE10W oil with increasing Ф of GnPs and T. The 

thermal conductivity of GnPs/SAE10W oil nanofluids shows a significant enhancement from 0.1641 

W/mK to 0.1728 W/mK at a Ф of 0.050%. This phenomenon can be observed in the T range of 20°C 

to 80°C. Subsequently, within the same T range, the thermal conductivity of nanofluid undergoes the 

following changes: from 0.1662 W/mK to 0.1728 W/mK at Ф of 0.075%, from 0.1692 W/mK to 

0.1759 W/mK at Ф of 0.100%, from 0.1698 W/mK to 0.1781 W/mK at Ф of 0.125%, and from 0.1711 

W/mK to 0.1796 W/mK at Ф of 0.150%. 

(a) 

 

(b) 

 

Fig. 2. (a) Effects of Ф and T on k of the GnPs/SAE10W oil nanofluids, (b) Mechanism     

for thermal conductivity enhancement in nanofluids [42]. 

Ф (%) 0 0.05 0.075 0.1 0.125 0.15 

T(°C) 

20 0.1382 0.1641 0.1662 0.1692 0.1698 0.1711 

30 0.1362 0.1656 0.1667 0.1699 0.1701 0.1723 

40 0.1348 0.1663 0.1681 0.1704 0.1711 0.1732 

50 0.1336 0.1669 0.1697 0.1711 0.1723 0.1741 

60 0.1323 0.1680 0.1715 0.1724 0.1739 0.1753 

70 0.1304 0.1701 0.1732 0.1748 0.1761 0.1771 

80 0.1274 0.1728 0.1745 0.1759 0.1781 0.1796 
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The findings show that thermal conductivity is improving as the Ф of GnPs/SAE10W oil 

nanofluids increases within the specified T range. Notably, the nanofluids exhibit thermal conductivity 

enhancements ranging from approximately 19% to 41% within the selected T range and Ф. As shown 

in fig. 2(b), the mechanisms responsible for enhancing the thermal conductivity of the GnPs/SAE10W 

oil nanofluid are the ones responsible for the T-dependent effects on nanofluids.  

The mobility of GnPs is significantly increased as the T rises, and as the intermolecular bonds 

within the fluid layers weaken. The heightened mobility of nanoparticles results in more frequent 

collisions between their surface atoms and fluid molecules[43, 44]. Consequently, there is a substantial 

improvement in overall heat conduction[45, 46]. The rise in T causes more Brownian motion, which is 

the random movement of fluid molecules and GnPs. This makes the GnPs/SAE10W oil nanofluids 

better at conducting heat. Furthermore, the presence Ф of GnPs improves the thermal conductivity of 

GnPs/SAE10W oil nanofluids. This is due to nanoparticles' higher thermal conductivity compared to 

the base fluid. As the Ф of GnPs increases, more nanoparticles are present in the nanofluid, leading to 

a more significant enhancement in thermal conductivity. This phenomenon has a significant impact on 

the thermal conductivity increase in f-GnPs/SAE10W oil nanofluids. 

4.2. ANN model performance analysis 

The performance outcomes for the ANN model, considering various neuron numbers for 

predicting nanofluid thermal conductivity, are presented in tab. 3. The correlation coefficients for 

different neuron numbers such as MSE and R
2
 values are displayed in this table. In the first column, 

the neuron numbers are represented with each row representing the correlation coefficient of a specific 

neuron number. These coefficients are a reflection of the correlations that were observed in the train, 

test, validation and overall datasets. The ANN model's performance is evaluated for up to 20 neurons.  

The results in tab. 3 show that the best ANN model for forecasting the thermal conductivity of f-

GnPs/SAE10W oil nanofluids has a single hidden layer with 12 neurons. The selection of this 

effective model is based on attaining the lowest MSE and highest R
2
 values. This configuration 

consistently demonstrated superior performance across all metrics (MSE and R
2
) for training, testing, 

validation, and overall dataset evaluation. In fig. 3, an ANN model with optimized structures is used to 

predict the thermal conductivity of GnPs/SAE10W oil. 

                        

 

 

 

 
Fig. 3. The optimal model of ANN architecture for prediction of thermal conductivity 

 

fig. 4 (a), depicts the performance graph, illustrating the fluctuation of Mean Squared Error (MSE) 

throughout the training stages for predicting the thermal conductivity of the f-GnP/SAE10W oil 

nanofluid. The horizontal axis represents epochs (X), while the vertical axis indicates the MSE during 

the training of the ANN model. With an increasing number of epochs, the observed trend consistently 

reveals a decrease in MSE values, ultimately reaching a point of stability. This trend indicates 

effective training of the neural network. Moreover, MSE's steady behavior even after more epochs 

confirms that the model is not overfitting. The best validation performance is represented by a small 

green circle in fig. 4 (a), which is achieved for the thermal conductivity of nanofluid with the lowest 

MSE for the validation dataset at epoch 7, measuring 2.5381e-07. The histograms of the error between 
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the experimental data and predicted ANN data for the thermal conductivity   of the GnPs/SAE10W oil 

nanofluids after training a feed-forward neural network are also shown in fig. 4(b). 

 

Table 3. The neural network performance results in different neuron numbers  

 

(a)   

 

 

(b) 

 

Fig. 4. (a) ANN model - MSE plot, (b) ANN error histogram 

 

The histogram graph has a horizontal axis for errors (X) and a vertical axis for instances (Y). 

The histograms display the distribution of errors using bar charts that illustrate various error values.  

An increased occurrence of data errors near the zero error line suggests a reduced error rate within the 

system, which indicates the successful training of the ANN model. The elevated bars next to the zero-

error line serve as evidence of the method's ability to closely align the model output with the 

experimental data. A zero line indicates an error rate of less than 1% in most cases. This observation 

Neuron 

number 

MSE R
2
 

Train 

 

Validation 

 

Test  Train Validation Test Overall 

6 8.05E-08 2.73E-07 1.09E-06 0.99567 0.99602 0.98227 0.9912 

7 4.03E-08 4.88E-08 6.73E-07 0.99861 0.99887 0.98718 0.99528 

8 5.11E-07 5.06E-08 4.91E-07 0.9825 0.98555 0.99259 0.98359 

9 1.07E-07 2.66E-07 3.17E-07 0.99513 0.9888 0.99583 0.99418 

10 9.25E-13 4.23E-07 8.97426-7 1 0.99379 0.96972 0.99331 

11 1.44E-10 1.25E-06 7.58E-07 0.99999 0.97938 0.95829 0.99003 

12 2.27E-08 2.53E-07 9.33E-07 0.99946 0.9965 0.99753 0.99761 

13 3.29E-08 5.04E-07 6.79E-07 0.99883 0.99509 0.98002 0.9936 

14 1.53E-08 2.92E-07 5.30E-07 0.99954 0.98288 0.98525 0.9954 

15 1.49E-08 6.37E-07 2.69E-07 0.99937 0.99538 0.9886 0.9949 

16 2.90E-11 6.51E-07 1.12E-06 1 0.98852 0.96014 0.99207 

17 2.96E-08 1.09E-06 6.80E-07 0.99909 0.98801 0.97947 0.99185 

18 2.44E-13 8.34E-07 8.24E-07 1 0.98795 0.98483 0.99174 

19 1.30E-11 6.56E-07 2.97E-07 1 0.9715 0.99742 0.99571 

20 2.76E-08 2.32E-07 7.16E-07 0.99914 0.97504 0.82964 0.99422 
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confirms the accuracy and reliability of the chosen approach in predicting thermal conductivity for 

GnPs/SAE10W oil nanofluids. 

As shown in  fig. 5(a), the horizontal axis represents experimental data (X), and the vertical 

axis represents predicted ANN data (Y). It might refer to the relationship between experimental data 

on the thermal conductivity of GnPs/SAE10W oil nanofluids and predicted ANN data. The results 

presented encompass the performance of the models in training, validation, testing, and the overall 

dataset, showing exceptional fits close to the equator line. Furthermore, R
2
 is offered for every dataset. 

The closeness of the R
2
 to one indicates a strong relationship between the experimental and predicted 

data sets. It is notable that the regression coefficients for all the datasets used in the model are above 

0.99, which further confirms the strong correlation between the experimental and predicted data sets. 

(a) 

 

(b) 

 

 

 

 

Fig. 5.(a) The correlation coefficient and regression diagram, (b) MOD for ANN  

 

The Margin of Deviation (MoD) can be used to assess the accuracy of the proposed ANN model, 

which quantifies the difference between experimental data and ANN predictions. In fig. 5(b), the 

formula provided [20] in Eq. (5) is employed to compute the MoD for the ANN data in predicting the 

experimental data. The MoD analysis results indicate a high level of accuracy for the network, with 

only a few instances falling within the positive and negative ranges, ranging from +0.3926% to -

0.4640%. 

                   ( )  [
((   )(            ) (   )(         ))

(   )(            )
]              (5) 

4.3. RSM model performance analysis 

Experimental data was used to develop a mathematical model that predicts the behavior of the 

nanofluid using RSM techniques. The input variables used in this technique are the Ф of nanomaterials 

and T, with the thermal conductivity of nanofluid representing the third dimension on the surface. The 

3D-fitted surface for the experimentally measured data is shown in fig. 6(a). The black dots on its 

representation closely match the 3D- fitted surface and accurately depict the behavior of 

GnPs/SAE10W oil nanofluid. A third-order function for both input variables was selected after 

experimenting with different orders of functions. The resulting equation for the fitted surface is 

presented in Eq. (6). 
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   (   )=0.1712+0.0024 Ф +0.0025T-0.0003  +0.00069  +0.0001      ( ) 

 

Eq. (6) is pertinent for the range of 20°C ≤ T ≤ 80°C, 0.050 ≤ Ф ≤ 0.150%. This correlation 

predicts the thermal conductivity of GnPs/SAE10W oil nanofluids. The plot shows that the thermal 

conductivity of nanofluid is directly related to  Ф and T. These findings emphasize the significance of 

Ф and T in determining the thermal conductivity of GnPs/SAE10W oil nanofluids. 

      Fig. 6. (a) 3D surface fitted graph, (b) MOD for RSM 

 

The correlation coefficients for thermal conductivity of nanofluid were 3D surface-fitted and 

resulted in an R2 value of 0.9877 with an RMSE of 0.0005. The correlations are well-fitted and highly 

accurate, as demonstrated by the high R2 and lowest RMSE values. Fig. 6(b) shows the distribution of 

MoD for the RSM technique, with a range of MoD values between 0.4137% and -0.4166%. 

In the results of the ANN and RSM techniques, the MSE is 2.5381e-07 and 0.0005, while the 

MODs are 0.3926% and 0.4137%, respectively. The ANN and RSM techniques also exhibit 

correlation coefficients of 0.99761 and 0.9877, respectively. Fig. 7(a) shows that the RSM and ANN 

techniques produce results that are similar to experimental ones. The absolute error of the ANN 

method is smaller than that of the RSM method in most data points, as shown in fig. 7(b). 

(a) 

 

(b) 

 

Fig. 7. (a) Comparison of the Experimental, ANN, and RSM data, (b) Absolute errors in ANN and RSM 

data 

 

 

(a)

 

(b) 
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4. Conclusion 

The thermal conductivity of GnPs/SAE10W oil nanofluid was measured at various volume 

concentrations and temperatures. The results show that the thermal conductivity of GnPs/SAE10W oil 

nanofluids has improved from 19% to 41%.  This improvement in thermal conductivity is attributed to 

the enhanced heat transfer properties of the nanofluids. Furthermore, a novel and generalized approach 

to ANN and a mathematical model have been developed for predicting the thermal conductivity of the 

nanofluid. In the ANN model, the best performance was reported using a trainlm algorithm with 12 

neurons in the hidden layer, as R
2
 and MOD were 0.99761 and 0.3926%, respectively. The 

mathematical model developed by RSM techniques with R
2
 and MOD was 0.9877 and 0.4137%, 

respectively. The ANN model showed higher accuracy in predicting the thermal conductivity of the 

GnPs/SAE10W oil nanofluid compared to the mathematical model.  

Future perspective 

The proposed research work has identified an approach for modeling the thermal conductivity 

properties of nano damper oils. The model has been formulated for GnPs based nanofluids. The 

modeling algorithm and utilization of ANN/RSM techniques can be deployed for similar heat transfer 

applications, such as automotive radiators, solar panels, etc. 

Nomenclature  

k - thermal conductivity [Wm
-1

K
-1

] 

T - temperature [°C] 

R
2 - coefficient of determination [-] 

n - number of neurons [-] 

N - number of sample data [-] 

 
Greek symbols  

Ф - volume fraction [%] 

 

Subscripts 

nf  - nanofluid 
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