The hot spot temperature of oil-immersed transformer winding is an important factor affecting the aging of material insulation. In this paper, a magnetic field simulation model is established based on the electrical and structural parameters of the oil-immersed transformer, and the loss distribution characteristics of each wall of the transformer core, winding and fuel tank are accurately calculated by using the finite element simulation software. The simulation model of transformer fluid-thermal field is established, the simulation results of transformer thermal field are obtained, and the temperature distribution of oil-immersed transformer core and winding and the flow velocity around it are obtained. According to the simulation results of thermal field, the characteristic temperature measuring points with strong correlation between tank wall and winding temperature were determined. The inversion models of tank wall and winding hot spot temperature were established by using the support vector regression and BP neural network algorithm respectively by central composite design method. The results show that the correlation coefficient of support vector regression algorithm in predicting winding hot spot temperature reaches 0.98, and the relative error between the model predicted value and the real value is less than 8%, which is more accurate than BP neural network. The above research provides the theoretical basis and technical support for real-time monitoring of oil-immersed transformer winding hot spot temperature.

Key words: Oil-immersed transformer; Hot spot temperature; Support vector regression; BP neural network

1. Introduction

As the key equipment of distribution system, Oil-immersed transformer plays an important role in voltage transformation and power distribution. The heat generated during the operation of the transformer will increase the internal temperature of the transformer and cause equipment damage. The heat generated by the transformer comes from the loss of the internal structural parts. The loss of
the transformer cannot be accurately calculated, the overall temperature distribution of the transformer and the hot spot temperature of the winding cannot be accurately obtained, which will have a certain impact on the subsequent inversion of the winding temperature. Therefore, the accurate calculation of the loss temperature rise of each transformer component is the key to ensure the safe and reliable operation of the transformer and improve the reliability rate of the power grid. At present, the surface impedance method and traditional finite element method are usually used to calculate the loss temperature rise of oil-immersed transformers [1]. In literature [2], the surface impedance method is used to calculate the depth of stray losses such as transformer oil tank, iron core and pull plate, so as to effectively calculate transformer eddy current loss and hysteresis loss. In literature [3], the field-route coupling method was used to conduct finite element calculation of the tank eddy current loss, analyze the simulation value of the loss, as well as the distribution of the tank surface magnetic flux density and eddy current loss. Literature [4] uses the traditional finite element method and surface impedance method to calculate the eddy current loss on the transformer core clamp. The eddy current density distribution obtained by the two modeling methods is compared and analyzed, and the accuracy of the surface impedance method to calculate the eddy current distribution on the conductor surface is verified. Literature [5] uses a multi physical field simulation analysis method to obtain the temperature and oil flow velocity distribution of transformers. Literature [6] simulates the three-dimensional electromagnetic field based on the finite element method, and the calculated results are coupled to the thermal field, and the hot spot temperature of the transformer winding is further predicted. Literature [8] proposes an equivalent method for transformer boundary radiation convection composite heat transfer based on mathematical description of heat transfer. Literature [9] uses an integral transform, namely Kashuri Fundo transform, by blending with the homotopy perturbation method for the solution of non-linear fractional porous media equation and time-fractional heat transfer equation with cubic non-linearity. Literature [10] solves Abel's integral equation by Kashuri Fundo transform and some applications are made to explain the solution procedure of Abel's integral equation by Kashuri Fundo transform. Literature [11] considers Kashuri Fundo transform, an integral transformation, which is proved to be an effective method to solve steady-state heat transfer problems. Literature [12] determines the percentage of heat energy transferred between the nanofluid and the bottom wall of the container under the influence of a set of criteria. Literature [13] studies the magnetohydrodynamic mixed convection of nano-encapsulated phase change material (NEPCM) in a hexagonal porous cavity in contact with a square obstacle. Literature [14] attempts to improve the thermal characteristics of nano-encapsulated phase change materials (NEPCMs) for heating and cooling applications. Literature [15] uses Galerkin finite element method to numerically solve the governing equation and discusses the influence of heat transfer factors on heat transfer rate. Literature [16] studies the rheological properties of fluids by changing the value of the power law index, and proves that the thermal activity of different objects is different. The above literature involves the application of surface impedance method in calculating losses, but most of them only focus on eddy current loss calculation, which cannot guarantee the accuracy of the simulation results of transformer thermal field. In the calculation of thermal field, the simplified model of transformer is used, which is difficult to accurately reflect the distribution of transformer thermal field.

In order to obtain the winding hot spot temperature of oil-immersed transformer, the hot spot temperature inversion research is carried out after analyzing the whole temperature distribution of transformer accurately. At present, the hot spot temperature calculation methods of oil-immersed
transformers at home and abroad are mainly divided into four categories: the multi-physical modeling calculation method, empirical formula method, artificial intelligence algorithm and hot path model method. Literature [17] extracts typical flow lines between the winding hot spot area and the shell heat dissipation area, selects characteristic temperature measurement points with strong correlation, and establishes a hot spot temperature inversion model. Literature [18] uses multi-physical field simulation technology to extract characteristic variables such as environmental temperature, top oil temperature, and load coefficient, and adopts backpropagation neural network to establish the inversion model of transformer hot spot temperature. Literature [19] applied the support vector regression machine to predict hot spot temperature using six characteristic variables such as transformer load current and ambient temperature. The above literature can all invert the temperature of winding hot spots. However, the selection of temperature points for these existing literature features is relatively blind, and the accuracy of inversion cannot be guaranteed.

In this paper, the loss calculation module in the finite element software is used to calculate each wall surface of the fuel tank based on the magnetic-thermal-fluid multi-physical field simulation analysis, and the overall temperature distribution of the oil-immersed transformer can be further obtained with higher accuracy. According to the simulation results of the temperature of the oil tank, the characteristic points were found, and six characteristic values, namely transformer core loss, winding loss, tank wall loss, ambient temperature, tank heat transfer coefficient and heat sink heat transfer coefficient, were taken as influencing factors. BP neural network algorithm and support vector regression algorithm were used to invert the hot spot temperature of the transformer winding, and the inversion accuracy of the model was demonstrated, which can be better applied to engineering practice.

2. The Basic Structure and Equivalent Model of Transformer

2.1. The basic structure and parameters of transformer

The research object of this article is a three-phase oil-immersed transformer, and its main electrical parameters are shown in Table 1. The iron core of the transformer is composed of cold-rolled silicon steel sheets stacked together, and the windings are divided into high-voltage, medium voltage, and low-voltage windings. The oil tank is filled with transformer oil, mainly for heat transfer. The chip type heat dissipation fins form the heat dissipation system of the transformer, achieving natural circulation cooling of oil.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>OSFSZ10-240000/220/115/37</td>
</tr>
<tr>
<td>Rated capacity</td>
<td>240000kVA</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50Hz</td>
</tr>
<tr>
<td>Connection group</td>
<td>Dyn11</td>
</tr>
<tr>
<td>Cooling method</td>
<td>SFSZ</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>220kV</td>
</tr>
</tbody>
</table>
2.2. Transformer Equivalent Model

The oil tank, iron core, and winding are important components of the transformer’s functional and structural support. Three-dimensional equivalent modeling of the transformer is carried out using simulation software based on the actual structural parameters of the transformer. Considering the influence of the internal structure of the oil immersed transformer on the calculation, the model is simplified: 1) It is approximately assumed that the resistivity and permeability of the oil tank material are constants; 2) Neglecting the losses generated in structural components such as clamps and pull plates, the heat source is mainly the losses of the iron core, winding, and oil tank; 3) There is no direct oil passage between the inner and outer cylinders of the low-voltage winding; 4) It is approximately believed that the oil tank is symmetrical in terms of the three-phase winding connection from top to bottom and from front to back. The three-dimensional equivalent model and internal structure of the transformer are shown in Fig. 2 (a) and Fig. 2 (b). The winding coils are divided into A, B, and C three-phase.

3. Magnetic field simulation calculation

When the load current flows through the transformer, in addition to the main magnetic flux generated through the iron core and winding, there is a small amount of leakage magnetic flux through the oil, whose calculation satisfies the basic equation of the electromagnetic field.

3.1. Basic Theory of Loss Calculation

In order to obtain the loss distribution of each component of the transformer under rated load, the rated current applied by the high voltage, medium voltage and low voltage windings of the winding coil is 3958.9A, 1204.9A and 602.5A respectively. The loss of iron core is calculated based on the finite element simulation software. The steinmetz formula [20], which is the most widely used in engineering, is expressed as follows:

$$Q_c = k_n f^a B_m^b$$ (1)
In the formula, Q_c is the core loss density; f is the frequency of the excitation signal; B_m is the peak magnetic induction intensity; k_h, α, β are the loss coefficients.

Considering only the resistance loss and ignoring the eddy current loss caused by leakage flux, the calculation formula for the resistance loss of the winding [21] is:

$$Q_r = I_i^2 \frac{\pi D_i W_i}{k S_i}$$ \hspace{1cm} (2)

In the formula, Q_r represents the winding loss density of the i-th encapsulation, I_i, D_i, W_i, and S_i represent the i-th encapsulation current, diameter, turns, and cross-sectional area of the wire respectively, and k represents the conductivity of the metal conductor.

3.2. Boundary condition setting and meshing

When using the finite element method to calculate the eddy current loss of the transformer oil tank, due to the large volume of the transformer oil tank and the relatively small thickness of the oil tank wall, taking the surface of the tank as the boundary condition to solve the magnetic field can simplify the calculation process and save the calculation time. When the frequency of the magnetic field is calculated based on the power frequency of 50 Hz, it can be calculated from the penetration formula [22], and the penetration depth of the oil tank is 1.345 mm. The transformer tank and heat sink are meshed, and the tank surface, as the boundary layer of magnetic field, needs to be further refined.

3.3. Magnetic field simulation calculation results

(1) Distribution results of magnetic flux density of iron core and winding

For the iron core, a portion of the leakage magnetic flux generated by the winding during transformer operation will pass through the iron core column, while the B-phase iron core column is in the middle position and is greatly affected by the leakage magnetic flux, resulting in a higher magnetic flux density of the B-phase iron core column compared to other two phases. The highest magnetic flux density is located at the corners of both ends of the B-phase iron core. When conducting magnetic field simulation calculations, set a cycle time of 0.02s to obtain the magnetic flux density distribution of the iron core, winding, and oil tank at 0.015s.

The magnetic flux density distribution of the winding is shown in Fig.3 (a) and (b). The low voltage winding of the B-phase coil has a higher magnetic flux density, with a maximum magnetic flux density of 0.39 T.

![Figure 3 (a). Core flux density distribution](image1)

![Figure 3 (b). Winding flux density distribution](image2)

(2) Result of magnetic flux density distribution on the fuel tank wall

Using the finite element method, the distribution of magnetic flux density on each wall of transformer tank is calculated.
In Fig. 4 (a), it can be seen that the magnetic flux distribution on the left wall of the fuel tank is significantly higher than that on the right wall, and its magnetic flux density distribution is basically consistent with that of the winding. As the distance between the coil and the oil tank wall increases, the magnetic flux density on the oil tank wall decreases; through the analysis of the magnetic flux density on the right wall, it can be seen that the magnetic flux density distribution is more obvious near both ends of the oil tank wall; for the top and bottom of the tank, the magnetic flux density is relatively high near the A-phase and B-phase two-phase coils on the tank wall, and the distribution is basically consistent; for the front and rear wall surfaces, the magnetic flux density is more significant at the left one-third of the two wall surfaces.

4. Simulation and Analysis of Transformer Flow Field Temperature Field Coupling

4.1. Loss calculation

According to the calculation formula for core and winding losses mentioned in section 3.1, the final calculation results of core and winding losses are obtained by assigning parameters, as shown in Table 2.

<table>
<thead>
<tr>
<th>Part</th>
<th>Loss value (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron core</td>
<td>35777</td>
</tr>
<tr>
<td>Low voltage winding</td>
<td>326104</td>
</tr>
<tr>
<td>Medium voltage winding</td>
<td>118601</td>
</tr>
<tr>
<td>High voltage winding</td>
<td>67783</td>
</tr>
</tbody>
</table>

The volume loss density reflects the average heating power during the cycle. The loss density distribution of the iron core and winding can be obtained based on the above calculation results.
In Fig. 5 (a) and (b), it can be seen that the loss density of the core B-phase core column is relatively high, with the highest loss density of \(7.29 \times 10^9\) W/m\(^3\). The loss density of the B-phase coil is higher than that of the other two phases, which is basically consistent with the distribution of magnetic flux density in section 3.3 of the winding. The highest loss density of the B-phase coil is \(1.06 \times 10^9\) W/m\(^3\).

In order to analyze the eddy current losses formed on the transformer oil tank, this paper uses finite element simulation software to calculate the losses on the top, bottom, front, rear, left, and right walls of the transformer oil tank. The loss density distribution results of each wall are shown as follows:

In Fig. 6 (a), it can be seen that the loss density on the left wall of the oil tank is significantly higher than that on the right wall. The eddy current loss formed by the winding leakage flux on the left wall of the oil tank is greater, and the maximum loss density is located in the middle of the wall; the distribution of loss density at the top and bottom of the transformer oil tank is basically consistent, and the loss density at the bottom of the oil tank will be slightly higher than that at the top of the oil tank; the trend of loss density on the front and rear walls is basically consistent.

According to the distribution of loss density on each wall of the oil tank, the calculated loss values for each wall are shown in Table 3:
Table 3 Distribution of Tank Wall Loss

<table>
<thead>
<tr>
<th>Part</th>
<th>Loss value (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left side oil tank wall</td>
<td>29698</td>
</tr>
<tr>
<td>Right side oil tank wall</td>
<td>3625</td>
</tr>
<tr>
<td>Front oil tank wall</td>
<td>64444</td>
</tr>
<tr>
<td>Rear side oil tank wall</td>
<td>63451</td>
</tr>
<tr>
<td>Oil tank top</td>
<td>15916</td>
</tr>
<tr>
<td>Oil tank bottom</td>
<td>13395</td>
</tr>
<tr>
<td>Total oil tank loss</td>
<td>190529</td>
</tr>
</tbody>
</table>

4.2. Analysis of Transformer Heat Transfer Process

During the actual operation of the transformer, heat is generated inside and transferred to the outside air by convection heat transfer. The heat transfer process of an oil immersed transformer is shown in Fig.7.

Figure 7. Heat transfer process of oil immersed transformer

4.2.1 Governing equation

For transformers with oil circulation and heat dissipation, the transfer of heat inside the transformer is achieved by the transformer oil. The solution of the convective heat transfer process follows the three fundamental principles of mass conservation, momentum conservation, and energy conservation [23]. The control equation for transformer flow thermal coupling calculation is:

\[q = -k \nabla T \]

\[\rho C_p \vec{v} \cdot \nabla q = Q \] \hspace{1cm} (3)

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \] \hspace{1cm} (4)

In the formula: \(\vec{q} \) is the vector of heat conduction flux; \(k \) is the thermal conductivity; \(\nabla \) is a Hamiltonian operator; \(T \) is the temperature; \(\rho \) is the fluid density, kg/m\(^3\); \(\vec{v} \) is the velocity vector; \(C_p \) is the constant pressure heat capacity; \(Q \) is the total heat source.

4.2.2 Material Property Settings

In the simulation of transformer thermal field, it is necessary to set the winding metal conductor, iron core material and flow parameters [5]. The material property Settings are shown in Table 4.
Table 4 Material Property Settings

<table>
<thead>
<tr>
<th>Material</th>
<th>Features</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winding (copper)</td>
<td>thermal conductivity (W·m⁻¹·K⁻¹)</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>specific heat volume (J·kg⁻¹·K⁻¹)</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>density (kg·m⁻³)</td>
<td>8940</td>
</tr>
<tr>
<td>Iron core (silicon steel)</td>
<td>thermal conductivity (W·m⁻¹·K⁻¹)</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>specific heat volume (J·kg⁻¹·K⁻¹)</td>
<td>446</td>
</tr>
<tr>
<td></td>
<td>density (kg·m⁻³)</td>
<td>7550</td>
</tr>
<tr>
<td>Transformer oil</td>
<td>thermal conductivity (W·m⁻¹·K⁻¹)</td>
<td>0.134-8.05×10⁻⁵<T</td>
</tr>
<tr>
<td></td>
<td>specific heat volume (J·kg⁻¹·K⁻¹)</td>
<td>-13408.15+123.047T-0.33T²</td>
</tr>
<tr>
<td></td>
<td>density (kg·m⁻³)</td>
<td>1055.05-0.58T-6.4×10⁻²T²</td>
</tr>
<tr>
<td></td>
<td>dynamic viscosity (Pa·s)</td>
<td>91.45+1.33T+7.78×10⁻³T²-2.27×10⁻⁵T³</td>
</tr>
</tbody>
</table>

4.2.3 Boundary condition setting

At the junction of transformer oil and oil tank wall, it is considered that the fluid near the wall is relatively stationary relative to the wall, that is, the relative velocity of the oil flow near the oil tank wall is zero, and there is no slip on the wall. Set the initial temperature T_0, the ambient temperature is 20 °C. The boundary conditions are shown in Fig. 8.

![Figure 8 Schematic diagram of boundary conditions](image)

4.3. Simulation calculation results

1. Thermal field simulation results

Taking the loss density of the transformer core, winding and oil tank as the heat source, the overall temperature and flow velocity distribution of the transformer can be obtained through simulation calculation. The hot spot temperature of the transformer is 64.41 °C, and the temperature rise is 44.41 °C.

According to the simulation results of transformer thermal field, the temperature distribution of iron core and winding is extracted.
As shown in Fig. 9 (a), the highest temperature of the iron core is 59.57 °C, with a temperature rise of 39.57 °C, located at the center of the B-phase core column. For the winding, the overall temperature distribution of the low-voltage winding is the highest, with the B-phase coil having a slightly higher temperature. The overall temperature of the high-voltage winding is relatively low, and the overall temperature of the A-phase coil is slightly lower than that of the other two phases. The heat generated by the iron core and winding is transferred to the transformer oil, and the oil temperature rises and flows upwards. It flows through the oil tank wall and conducts convective heat exchange with the air, causing the highest temperature of the low-voltage winding to be in the upper part of the B-phase coil, and the end temperature of the winding to be lower. Considering that the low-voltage winding is located on the innermost side of the three windings, the heat dissipation effect is poor, resulting in the highest overall temperature rise of the low-voltage winding ultimately.

As shown in Fig. 10 (a), the highest temperature of the iron core is 59.57 °C, with a temperature rise of 39.57 °C, located at the center of the B-phase core column. For the winding, the overall temperature distribution of the low-voltage winding is the highest, with the B-phase coil having a slightly higher temperature. The overall temperature of the high-voltage winding is relatively low, and the overall temperature of the A-phase coil is slightly lower than that of the other two phases. The heat generated by the iron core and winding is transferred to the transformer oil, and the oil temperature rises and flows upwards. It flows through the oil tank wall and conducts convective heat exchange with the air, causing the highest temperature of the low-voltage winding to be in the upper part of the B-phase coil, and the end temperature of the winding to be lower. Considering that the low-voltage winding is located on the innermost side of the three windings, the heat dissipation effect is poor, resulting in the highest overall temperature rise of the low-voltage winding ultimately.

In order to better analyze the flow and heat transfer of transformer oil, the simulation results of transformer temperature and oil flow distribution are calculated. According to the overall temperature distribution of the transformer oil tank, it can be seen that the surface temperature of the oil tank is significantly higher than the temperature of the heat dissipation fins. The temperature of the top and bottom areas of the tank is higher, and the temperature of the surrounding wall and heat dissipation fin connection area is lower. The transformer oil transfers heat to the outside through the heat dissipation fins, and the temperature of the heat dissipation fins shows an uneven distribution.
(2) Fluid field simulation results and analysis

The simulation results of the transformer fluid field are obtained through simulation solution. The overall oil flow velocity distribution is shown in Fig. 11. The maximum oil flow velocity is 0.78 m/s, and the highest oil flow velocity is located near the B and C phase coils, with obvious eddy current phenomenon. After the iron core and winding generate heat, the transformer oil is heated and flows upward, forming part of the eddy current in the middle and upper part of the tank, flowing through the tank wall and heat sink, and returning to the bottom of the tank after cooling to achieve circulation flow inside the transformer.

Figure 11. Distribution of Transformer Oil Flow Velocity

4.4. Mesh Independence Study

At the same time, mesh independence study is carried out, and hot spot temperatures with different numbers of meshes are given in Table 5. It can be inferred that when the number of nodes is 898749, the temperature rise reaches a stable value.

<table>
<thead>
<tr>
<th>Number of nodes</th>
<th>210513</th>
<th>304582</th>
<th>470250</th>
<th>898749</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{\text{max}}/\degree\text{C}$</td>
<td>63.88</td>
<td>64.13</td>
<td>64.40</td>
<td>64.41</td>
</tr>
</tbody>
</table>

5. Transformer Hot Spot Temperature Inversion Model

5.1. Transformer Hot Spot Temperature Inversion Method Based on BP Neural Network

5.1.1 BP neural network algorithm

BP neural network is a multi-layer feedforward neural network learning algorithm. BP neural network is a hierarchical neural network composed of input layer, intermediate layer and output layer. The intermediate layer can be extended to multiple layers, and each layer can have several nodes. The nodes between adjacent layers are fully connected, while the nodes of each layer are not connected, and the connection status between layers is reflected by the weight. The main characteristics of BP neural network are forward propagation of signal and back propagation of error. In forward transmission, the input signal is processed layer by layer from the input layer through the middle layer until the output layer. The node status of each layer affects only the node status of the next layer. If the output layer does not get the expected output, it turns to backpropagation, and adjusts the weight and threshold according to the prediction error constantly, so that the BP neural network predicts the output error constantly tends to the given minimum value, that is, the learning process is completed. The total number of experimental design samples in this paper is 86. Through the continuous learning
of 86 groups of data in the BP neural network code program written in MATLAB, the algorithm can complete the learning after the 10th iteration.

![Core steps of neural network](image)

Figure 12. Core steps of neural network

5.1.2 Central composite experimental design

Central composite design is a widely used experimental design method, which can greatly reduce the number of experiments and the time required for simulation. The hot spot temperature of the transformer is taken as the output target of the BP neural network algorithm, and the temperature of the upper and lower dead corners of the oil tank and the ambient temperature listed in literature [24] are used as temperature characteristic variables. Literature [7] considers the influence of boundary conditions on the thermal field distribution of the transformer, and selects low-voltage heat source power, high-voltage heat source power, and convective heat transfer coefficient as temperature characteristic variables. This article ultimately selects six proportional coefficients as factor levels based on the selection results of the above temperature characteristic variables: the convective heat transfer coefficient h_1 of the transformer oil tank, the convective heat transfer coefficient h_2 of the transformer heat sink, the ambient temperature T, the iron core loss Q_c, the winding loss Q_i, and the oil tank loss Q_w. Establish a factor level table with 6 factors and 5 levels, as shown in Table 6.

<table>
<thead>
<tr>
<th>Factor level</th>
<th>Experimental factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h_1</td>
</tr>
<tr>
<td>1</td>
<td>600.00</td>
</tr>
<tr>
<td>2</td>
<td>636.10</td>
</tr>
<tr>
<td>3</td>
<td>700.00</td>
</tr>
<tr>
<td>4</td>
<td>763.89</td>
</tr>
<tr>
<td>5</td>
<td>800.00</td>
</tr>
</tbody>
</table>

5.1.3 The feature points select of transformer

According to the analysis of the temperature of transformer oil tank, the characteristic temperature points of transformer are selected for simulation calculation, and the hot spot temperature inversion is carried out by using BP neural network. The characteristic temperature points selected in literature [23], and the hot spot temperature obtained by simulation in section 4.3 are distributed in the middle and upper 2/3 of the winding, as shown in Fig. 13 (a). Finally, a total of 10 temperature
measurement points were selected for temperature inversion, including corresponding points of three-phase windings A, B and C at the middle and upper 2/3 height of the oil tank, corresponding points of three-phase windings A, B and C at the top of the oil tank, heat sink and corners. The distribution of 10 feature points is shown in Fig. 13 (b).

Figure 13 (a). Hot spot temperature distribution

Figure 13 (b). Feature point selection

5.1.4 Hot spot temperature inversion results and analysis

The hot spot temperature inversion model for oil immersed transformers based on BP neural network uses the temperature data of each characteristic point on the transformer oil tank wall obtained in section 5.1.3 as input and the hot spot temperature as output. The total number of samples is 86 groups. Divide the distribution of training and testing sets approximately into 80% and 20%. The BP neural network is trained by randomly selecting samples. The comparison between the training set and the test set and the predicted values is shown in Fig. 14 (a) and (b). After calculation, the maximum relative error between the training set and simulation values is 0.094, and the maximum relative error between the test set and simulation values is -0.111.

Figure 14 (a). Training set result

Figure 14 (b). Test set result

The BP neural network algorithm is used to predict the samples, and finally the correlation coefficient R^2 of BP neural network model is 0.87.

5.2. Transformer Hot Spot Temperature Inversion Method Based on Support Vector Machine

5.2.1 Support Vector Regression Algorithm

Support vector machine is a modeling method based on small sample statistical learning theory and structural risk minimization. It establishes a hyperplane by providing a set of sample training sets to describe the multi-dimensional nonlinear relationship between the input quantity x and the output target y, that is, $f(x)=\omega \cdot x+b$, and $f(x)$ satisfies the following relationship:

$$|y_i - f(x)| \leq \varepsilon, i = 1, 2, ..., (6)$$

Among them, x_i is the i-th input vector, y_i is the i-th output parameter, and ε is the insensitive loss coefficient.
For any point \((x_i, y_i)\) in the training set, the distance \(d_i\) from that point to the hyperplane can be represented by the following equation (7):

\[
d_i = \frac{|\omega \cdot x_i + b - y_i|}{\sqrt{1 + \|\omega\|^2}} \leq \varepsilon, i = 1, 2, ..., N
\]

A hyperplane that minimizes the distance between all training sample sets and the plane is found, this plane is the optimal hyperplane.

The solution to the optimal hyperplane problem can be expressed by equation (8), namely:

\[
\begin{cases}
\min \varphi(\omega) = \frac{1}{2} \|\omega\|^2 \\
\text{s.t.} |\omega \cdot x_i + b - y_i| \leq \varepsilon, i = 1, 2, ..., N
\end{cases}
\]

5.2.2 Support Vector Regression Hot Spot Temperature Inversion Model

The SVR requires fewer samples for prediction, and the selection of samples is more regular compared to BP neural networks, resulting in higher prediction accuracy. The comparison of the 10 feature point prediction training set and test set with the predicted value is shown in Fig. 15 (a) and (b).

![Figure 15 (a). Training set result](image)

![Figure 15 (b). Test set result](image)

The correlation coefficient of the support vector machine prediction model reaches above 0.98, it shows that the support vector machine prediction model has higher accuracy in predicting the hot spot temperature of transformer winding.

The support vector machine inversion model was used to perform hot spot temperature inversion on 10 feature points, and the inversion results of the test set are shown in Table 7.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Simulation value/°C</th>
<th>Predicted value/°C</th>
<th>Temperature difference/°C</th>
<th>Relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51.58</td>
<td>48.99</td>
<td>2.59</td>
<td>0.050</td>
</tr>
<tr>
<td>2</td>
<td>72.65</td>
<td>71.18</td>
<td>1.47</td>
<td>0.020</td>
</tr>
<tr>
<td>3</td>
<td>63.52</td>
<td>62.42</td>
<td>1.1</td>
<td>0.017</td>
</tr>
<tr>
<td>4</td>
<td>63.98</td>
<td>64.95</td>
<td>-0.97</td>
<td>-0.015</td>
</tr>
<tr>
<td>5</td>
<td>65.29</td>
<td>64.89</td>
<td>0.40</td>
<td>0.006</td>
</tr>
<tr>
<td>6</td>
<td>65.29</td>
<td>64.89</td>
<td>0.40</td>
<td>0.006</td>
</tr>
<tr>
<td>7</td>
<td>46.67</td>
<td>48.61</td>
<td>-1.94</td>
<td>-0.042</td>
</tr>
<tr>
<td>8</td>
<td>73.04</td>
<td>72.14</td>
<td>0.90</td>
<td>0.012</td>
</tr>
<tr>
<td>9</td>
<td>59.42</td>
<td>57.09</td>
<td>2.33</td>
<td>0.039</td>
</tr>
<tr>
<td>10</td>
<td>64.22</td>
<td>65.88</td>
<td>-1.66</td>
<td>-0.026</td>
</tr>
<tr>
<td>11</td>
<td>59.27</td>
<td>59.02</td>
<td>0.25</td>
<td>0.004</td>
</tr>
<tr>
<td>12</td>
<td>53.38</td>
<td>49.56</td>
<td>3.82</td>
<td>0.072</td>
</tr>
</tbody>
</table>
According to the Table 6, the maximum relative error between the training set and the simulation value using support vector machine inversion model is -0.117, and the maximum relative error between the test set and the simulation value is 0.071. The relative error of all 15 test samples is less than 8%.

5.3. Result analysis

5.3.1 Performance evaluation indicators

Error analysis is one of the important steps in transformer temperature inversion. It is possible to better scientifically evaluate the advantages and disadvantages of inversion models by error analysis. This article evaluates the predictive performance of the prediction model by predicting all samples using root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (R^2). The expressions of each evaluation index are shown in equation (9) - (11).

\[
RMSE = \sqrt{\frac{1}{k} \sum_{j=1}^{k} (y_j - \hat{y}_j)^2}
\]

\[
MAE = \frac{1}{k} \sum_{j=1}^{k} |y_j - \hat{y}_j|
\]

\[
R^2 = 1 - \frac{\sum_{j=1}^{k} (y_j - \bar{y})^2}{\sum_{j=1}^{k} (y_j - \bar{y})^2}
\]

The comparison of error evaluation indicators between the two models is shown in Table 8.

<table>
<thead>
<tr>
<th>Error evaluation indicators</th>
<th>$RMSE$</th>
<th>MAE</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP neural network</td>
<td>3.64</td>
<td>3.10</td>
<td>0.88</td>
</tr>
<tr>
<td>Support Vector Machine</td>
<td>1.88</td>
<td>1.59</td>
<td>0.98</td>
</tr>
</tbody>
</table>

The error evaluation indicators of the inversion model are given in Table 8. Among them, the lower the mean absolute error (MAE) and root mean square error (RMSE), the smaller the error. The closer the correlation coefficient (R^2) is to 1, the closer it is to the true value, and the more accurate the predicted model results. The root mean square error of the BP neural network is 3.64, the average absolute error is 3.10, and the correlation coefficient is 0.88; The root mean square error of the support vector machine is 1.88, the average absolute error is 1.59, and the correlation coefficient is 0.98. The BP neural network temperature inversion model has greater error and the fitting effect is general. The use of support vector machine models can reduce the error of inversion results and make predictions more accurate. Its prediction performance is far better than that of BP neural network models, verifying the superiority of support vector regression algorithms in predicting hot spot temperatures. The use of temperature inversion models can monitor and predict the hot spot temperature of transformer winding in real time, saving a lot of labor and financial costs, while ensuring the safe and stable operation of transformers.
6. Conclusion

Firstly, three-dimensional equivalent modeling is carried out for the oil-immersed transformer, and accurate loss density distribution of the transformer core, winding and oil tank is obtained from the magnetic field calculation results. The loss density can be substituted into the temperature field calculation as a heat source to obtain a more accurate overall temperature distribution of the transformer.

Secondly, the temperature and flow velocity distribution of the transformer were obtained through flow field temperature field simulation. The hot spot temperature of the transformer was 64.46 °C. Literature [25,26] discusses the effect of thermal buoyancy on the characteristics of convective heat transfer. Literature [27,28] discusses the effects of natural convection control parameters, such as Prandtl number and Rayleigh number, on fluid motion and heat transfer rate. Different from previous studies, this paper uses the heat transfer module in the finite element simulation software to directly set the convective heat transfer coefficient, and obtains the maximum oil flow velocity of the transformer as 0.78 m/s. According to the distribution results of the transformer fluid - thermal field, it can be seen that the hot spot of the transformer is located at the upper middle of the low-voltage winding B and C-phase coils. The eddy current phenomenon near the C-phase coils is more obvious due to the higher temperature of the C-phase high-voltage winding compared to other two-phase windings.

Finally, according to the simulation distribution results of the transformer fluid - thermal field obtained by our research, a sample database for the temperature of the external characteristic points of the transformer is established, and invert the hot spot temperature of the transformer through support vector regression and neural network algorithms. After comparing various performance evaluation indexes of the two algorithms, and find that the correlation coefficient of the support vector machine model in the inversion prediction is above 0.98, and the relative error between the predicted value of the model and the real value is less than 8%. The prediction performance of support vector regression algorithm is proved to be superior.

Acknowledgment

This work is supported by the National Natural Science Foundation of China (52307179); the Open Fund of Beijing Key Laboratory of Distribution Transformer Energy-Saving Technology (PDB51202301652).

Nomenclature

\(B_m \) — Peak magnetic induction intensity, [T]
\(C_p \) — Constant pressure heat capacity, [J·Kg\(^{-1}\)·K\(^{-1}\)]
\(D_i \) — i-th diameter of the wire, [mm]
\(d_i \) — Distance to the hyperplane, [mm]
\(f \) — Frequency of the excitation signal, [Hz]
\(I_i \) — i-th encapsulation current of the wire, [A]
\(K \) — Conductivity of the metal conductor, [S/m]
\(k \) — Thermal conductivity, [W·m\(^{-1}\)·K\(^{-1}\)]
\(Q \) — Total heat source, [kWh]
\(Q_c \) — Core loss density, [W]
\(Q_i \) — Winding loss density of the i-th encapsulation, [W]
\(\mathbf{q} \) — Vector of heat conduction flux
\(S_i \) — i-th cross-sectional area of the wire, [mm\(^2\)]
\(T \) — Temperature, [°C]
\(\mathbf{v} \) — Velocity vector
\(W_i \) — i-th turns of the wire
\(x_i \) — i-th input vector
\(y_i \) — i-th output parameter

Greek symbols

\(\rho \) — Fluid density, [kg/m\(^3\)];
\(\mathbf{V} \) — Hamiltonian operator
\(\varepsilon \) — Insensitive loss coefficient
\(\omega \) — The weight of the optimal hyperplane
\(k_h, \alpha, \beta \) — Loss coefficients

References

[22] Du C., Calculation and shielding study of eddy current losses in the oil tank wall of power transformers, MSc thesis, Harbin University of Science and Technology, Harbin, China, 2012.

Paper submitted: 20.11.2024
Paper revised: 04.01.2024
Paper accepted: 11.01.2024