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The aim of the study was to investigate the changes in ultimate, proximate 

analysis and calorific properties of Miscanthus x Giganteus with three types 

of planting materials (two rhizomes - R1 and R2 - and one seedling – S) and 

three ash fertiliser treatments (P0, P2, and P5) were included in the study. 

The research further examined their effects on crop yield, stem height and 

various chemical properties. The results showed that the maximum yield 

was obtained with the R1 x P2 plant type, while the minimum yield was 

recorded with the R2 x P2 plant type. In addition, the greatest average stem 

height (3.34 m) was recorded for the R2 x P5 plant type. Significant 

differences were also found in the chemical components between the plant 

types and treatments. For example, the highest ash content of 2.25% was 

found in plant type 'S' x P5, while the highest coke content of 14.48 % was 

found in plant type R1 x P5. The statistical analysis confirmed that planting 

material and ash fertilisation had significant influence on the 

physicochemical properties of Miscanthus x Giganteus. This consequently 

affects the calorific value, with the average higher and lower heating value 

being 18.32 and 17.04 MJ/kg, respectively. The neural regression network 

models showed robust predictive performance for the higher (HHV) and 

lower heating value LHV, with low chi-square values (Χ2) and high 

coefficients of determination (R2). 

Key words: Miscanthus x Giganteus, fertilisation, energy properties, 

artificial neural network, modelling. 

1. Introduction 

Energy derived from biomass plays a crucial role in achieving the European Union's renewable 

energy targets for 2030 and beyond. However, this promising sector must manage the complexity of 

producing, processing and using biomass in a way that is both sustainable and efficient. Key to this 

strategy is achieving a balance that optimises greenhouse gas mitigation and preserves ecosystem 

services [1-3]. Compared to seed propagation, vegetative propagation of triploid Miscanthus x 

Giganteus is cost-intensive, making rhizomes the preferred choice for planting material due to their 
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integral role in vegetative propagation [4]. This biomass source not only has the potential to reduce 

greenhouse gas and pollutant emissions generally associated with increased fossil fuel use [5], but 

also offers exceptional opportunities for energy production due to its dense growth [6]. However, to 

realise the full potential of Miscanthus x Giganteus as a bioenergy feedstock, effective nitrogen and 

harvest management strategies are required [7], highlighting the need for targeted cultivation 

practises. Importantly, Miscanthus x Giganteus also has the added benefit of sequestering carbon in 

the soil, further contributing to climate change mitigation [8]. Morozova et al., (2020) [9] in research 

reports the average values of Miscanthus x Giganteus in the range of 20.5 – 30.4 t DM/ha in relation 

to different harvest periods. The increase in the global use of biomass for energy generation has 

implications for waste management, particularly in terms of the escalating volumes of biomass ash 

produced. Conventional landfill disposal methods are not only costly, but also result in potentially 

valuable resources being thrown away [10]. As an alternative, use biomass ash can as a fertiliser [11], 

which enriches agricultural soils with valuable nutrients, especially if mineral fertilisers are not used. 

This approach is not only resource-efficient, but also environmentally conscious and carries minimal 

risk of harmful environmental impacts [12]. Application of fly ash not exceeding 25% of soil weight 

can strengthen plant biomass while maintaining lower metal(loid) concentrations, potentially 

improving agricultural yields [13]. As a fertiliser, wood ash provides readily available nutrients such 

as phosphorus, calcium, magnesium, potassium and boron. It can increase soil pH and concentrations 

of the main nutrients while reducing the availability of aluminium and less important elements. It also 

reduces manganese toxicity, which could improve crop yields [14]. Ash in composting improves 

humification of organic matter and nutrient content, improving compost quality and plant health. It 

also helps to reduce volatile solids and improve the stability of the compost, increasing its 

marketability [15]. Ma et al., (2021) [16] notes that Miscanthus × giganteus shows inconsistent 

responses to nitrogen fertiliser, possibly influenced by environmental factors, soil types, nitrogen 

sources, plant age and timing of fertilisation. Fertilisation may possibly affect the associated microbial 

community in the soil, but the exact mechanisms remain unknown. Smith & Slater, (2010) [17] 

conducted a study on the effects of organic (cattle and pig manure, chicken litter and unlimed and 

limed sewage) and inorganic fertiliser (NPK) application on energy crops in Wales, including 

Miscanthus x Giganteus, Arundo donax and Phalaris arundinacea. The study found that Miscanthus x 

Giganteus responded with increased growth in the second year to all fertilisers applied, with inorganic 

nitrogen applications being more effective than organic fertilisers. Adjuik et al., (2020) [18] 

investigated the effects of different fertiliser treatments on biomass yield and greenhouse gas 

emissions of Miscanthus x Giganteus grown on set-aside agricultural land. No significant differences 

were found between the treatments, which included digestate from the biogas plant, synthetic fertiliser 

(urea), hydrochar and a control. Due to its robust combustion properties, Miscanthus x Giganteus can 

be used as a biofuel, especially in the form of pellets or briquettes [19]. In recent years, machine 

learning techniques have gained prominence in the renewable energy production sector, particularly in 

the area of modelling and prediction [20]. These computational strategies, such as artificial neural 

networks have been used to improve the prediction of biomass gasification process outcomes [21] 

In view of the evidence presented in the above findings, it is intended to further investigate the 

effects of different planting patterns and different ash treatments on the physicochemical composition 
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and energy potential of Miscanthus x Giganteus biomass. The feasibility of implementing artificial 

neural network regression models to estimate calorific value will also be evaluated.  

2. Materials and methods 

2.1. Establishment of the crop and application of ash fertiliser measures 

At the University of Zagreb experimental site (Zagreb, Croatia), an experimental field was 

established to investigate the impact of ash fertilization on the growth dynamics of Miscanthus x 

Giganteus. Three types of plant material were used for the experiment: rhizomes of the Croatian 

genotype (R1), rhizomes of the English origin (genotype R2) and seedlings of the Polish genotype (S). 

The rhizomes and seedlings are planted in plots of 4 m x 10 m (40 m
2
), while the seedlings are planted 

in plots of 2.4 m x 10 m (24 m
2
). A distance of 3 m is maintained both between plots and between 

replicates. The experimental design followed a split-split plot scheme with three repetitions, resulting 

in a total of 27 primary plots. The main factor in the experiment is the type of planting material (R1, 

R2, S), the sub-factor is the ash fertilisation (P0, P2, P5).  

2.2. Physicochemical and calorimetric analysis 

From the experimental point of view, the analysis of Miscanthus x Giganteus biomass was 

performed in the laboratory of the University of Zagreb, Faculty of Agriculture, according to standard 

testing methods. Within the scope of the study, several analyses were performed on the sample. Dry 

matter analysis (DM) was performed using a Memmert laboratory dryer [22] according to the 

procedure specified in CEN /TS 14774-2:2009 [23]. Proximate Analysis, which included the 

evaluation of ash, coke, volatile matter (VM), and Fixed Carbon (FC) concentration, was performed 

using the method of burning the oven-dry sample in a crucible in a muffle furnace [24] according to 

EN ISO 18122:2015 [25] and CEN /TS 15148:2009 [26]. Ultimate Analysis encompassed the 

measurement of carbon (C), hydrogen (H), nitrogen (N), oxygen (O) and sulphur (S) using a Vario 

Macro CHNS analyzer [27] as described in the standards EN 15104:2011 [28] and EN 15289:2011 

[29]. The heating value, in particular the HHV, was determined using an adiabatic bomb calorimeter 

[30] according to the method CEN /TS 14918:2005 [31]. 

2.3. Data processing 

After the laboratory analyses, the data obtained were analysed using TIBCO Statistica 13.3.0 

software (Palo Alto, CA, USA; 2017) [32]. In addition to basic statistical methods, principal 

component analysis (PCA) was also performed to reduce the dimensionality of the data and identify 

the most significant variability within the dataset, allowing for a better understanding of hidden 

structural patterns [33]. In parallel with the previously described methods, a univariate analysis was 

carried out to determine the influence of parameters such as the type of planting material, ash 

treatment and their interactive effects on the changes in biomass properties of Miscanthus x 

Giganteus.  

2.4. Regression neural network modelling of calorific value  

The last part of the research involved building a regression model in the form of an artificial 

neural network to estimate the energy values (HHV and LHV) of Miscanthus x Giganteus biomass 

based on the input parameters of the ultimate analysis. The first step was to split the data into 70% for 

learning and 30% for testing the model, which is considered a standard data split [34]. After data 

preparation, the regression models were built according to the following equation (1) [35]: 
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1 2 2 1 1 2( ( ) )Y f W f W X B B         (1) 

 

Where Y is the output value; f1, f2 - transfer functions of the hidden and output layers; W1,2 - weight 

coefficients of the hidden and output layers; B1,2 - hidden and output layer biases. 

 

After calculating the output values, statistical error tests and residual analyses were 

performed, including Chi-square test (Χ
2
) (2), Root Mean Square Error (RMSE) (3), Mean Bias Error 

(MBE) (4), Mean Percentage Error (MPE) (5), Sum Squared Error (SSE) (6), Average Absolute 

Relative Error (AARD) (7) and Coefficient of Determination (R
2
) (8) [36,37]: 
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Where p in the index and exponent stands for predicted values; e in the index and exponent for 

experimentally determined values. 

The last part of optimizing neural network regression models involved the method of global 

sensitivity based on the data obtained by artificial neural networks to find the optimal pattern. The 

Yoon's global sensitivity method was used according to the following formula (9) [38]: 
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3. Results 

3.1. Yield 

Figure 1 shows a graphical representation of the yield and average plant height of Miscanthus x 

Giganteus in the study conducted. 

 

 

Figure 1. Miscanthus x Giganteus yield and plant height regarding planting type and ash 

treatment 

 

To facilitate plotting yield and plant height variables on the y-axis, a logarithmic scale was used 

as a method to adjust the resolution of the data in the plot [39].  

3.2. Ultimate analysis 

The table 1 presents the results of a study examining the impact of different treatments (P0, P2, 

P5) on three different planting types (R1, S, R2), assessing ultimate analysis. 

 

Table 1. Ultimate analysis of studied biomass of different Miscanthus x Giganteus in 

relation to different planting material and ash treatment 

No. 
Planting 

type 
Treatment N (%) C (%) S (%) H (%) O (%) 

1 

R1 

P0 0.57±0.17
a
 50.8±0.55

a
 0.05±0.02

a
 5.77±0.06

a
 42.8±0.61

c
 

2 P2 0.74±0.15
ab

 51.17±0.55
ab

 0.05±0.02
a
 5.81±0.14

a
 42.22±0.61

abc
 

3 P5 0.56±0.16
a
 51.03±0.79

ab
 0.11±0.06

b
 5.86±0.06

a
 42.45±0.95

bc
 

4 

S 

P0 0.81±0.09
b
 50.97±0.54

ab
 0.06±0.03

ab
 5.85±0.07

a
 42.31±0.64

abc
 

5 P2 0.8±0.14
b
 50.96±0.67

a
 0.07±0.02

ab
 5.76±0.28

a
 42.41±0.69

abc
 

6 P5 0.76±0.07
ab

 50.87±0.8
a
 0.07±0.03

ab
 5.81±0.08

a
 42.49±0.88

bc
 

7 

R2 

P0 0.75±0.18
ab

 51.52±0.17
ab

 0.06±0.03
ab

 5.92±0.04
a
 41.74±0.28

ab
 

8 P2 0.71±0.1
ab

 51.54±0.18
ab

 0.06±0.02
a
 5.91±0.01

a
 41.79±0.15

ab
 

9 P5 0.75±0.15
ab

 51.79±0.09
b
 0.06±0.01

ab
 5.91±0.06

a
 41.5±0.21

a
 

Significance * * ** n.s. * 

Min 0.56 50.80 0.05 5.76 41.50 

Max 0.81 51.79 0.11 5.92 42.80 

Average 0.72 51.18 0.06 5.84 42.19 
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R1 - Rhizomes of the Croatian genotype; R2 - Rhizomes of the English genotype; S - seedlings of the 

Polish genotype; P0= Ash fertilization treatment (0 t/ha); P2= Ash fertilization treatment (2 t/ha); P5= 

Ash fertilization treatment (5 t/ha); Different letters (in columns) indicate difference according to 

Tukey HSD post hoc test (p ≤ 0.05); Statistical significance; * p ≤ 0.01; ** p ≤ 0.05. 

 

The analysis of the main components of the ultimate analysis variable is shown in figure 2. 

 

Figure 2. Prinicipal component analysis (PCA) of ultimate analysis 

 

3.3. Proximate analysis and calorific values 

Table 2 shows the results of a study that examined the effects of different treatments (P0, P2, P5) 

on three different types of plants (R1, S, R2), assessing proximate analysis and calorific values. 

 

Table 2. Proximate analysis and calorific values of studied biomass of different Miscanthus x 

Giganteus in relation to different planting material and ash treatment 

No. 
Planting 

type 
Treatment Ash (%) Coke (%) FC (%) VM (%) 

HHV 

(MJ/kg) 

LHV 

(MJ/kg) 

1 

R1 

P0 1.7±0.09
a
 12.97±0.43

ab
 10.12±0.41

a
 79.35±0.62

b
 18.21±0.34

a
 16.95±0.33

a
 

2 P2 1.79±0.09
ab

 12.21±1.11
a
 9.34±0.88

a
 80.06±1.55

b
 18.42±0.29

ab
 17.15±0.27

b
 

3 P5 2.1±0.11
c
 14.48±2.8

b
 9.7±0.92

a
 70.52±13.36

a
 18.2±0.25

a
 16.92±0.24

a
 

4 

S 

P0 1.98±0.31
abc

 13.2±0.57
ab

 10.08±0.63
a
 79.3±0.7

b
 18.29±0.3

ab
 17.01±0.29

ab
 

5 P2 2.01±0.09
bc

 13.23±0.54
ab

 10.03±0.51
a
 79.01±0.79

b
 18.28±0.27

ab
 17.02±0.28

ab
 

6 P5 2.25±0.38
c
 12.62±0.98

ab
 9.21±1.28

a
 79.36±0.74

b
 18.11±0.26

a
 16.84±0.25

a
 

7 

R2 

P0 1.81±0.16
ab

 12.83±0.41
ab

 9.86±0.46
a
 79.25±0.29

b
 18.46±0.22

ab
 17.16±0.21

ab
 

8 P2 1.8±0.06
ab

 12.65±0.84
ab

 9.75±0.76
a
 79.83±0.94

b
 18.28±0.16

ab
 17±0.16

ab
 

9 P5 1.78±0.12
ab

 12.28±1.32
a
 9.41±1.13

a
 79.91±1.25

b
 18.64±0.08

b
 17.35±0.08

b
 

Significance * ** n.s. * * * 

Minimum 1.70 12.21 9.21 70.52 18.11 16.84 

Maximum 2.25 14.48 10.12 80.06 18.64 17.35 

Average 1.91 12.94 9.72 78.51 18.32 17.04 

R1 - Rhizomes of the Croatian genotype; R2 - Rhizomes of the English genotype; S - seedlings 

of the Polish genotype; P0= Ash fertilization treatment (0 t/ha); P2= Ash fertilization treatment (2 
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t/ha); P5= Ash fertilization treatment (5 t/ha); Different letters (in columns) indicate difference 

according to Tukey HSD post hoc test (p ≤ 0.05); Statistical significance; * p ≤ 0.01; ** p ≤ 0.05. 

 

Principal component analysis (PCA) of proximate analysis and calorific values for Miscanthus 

x Giganteus is shown in the figure 3. 

 

 

Figure 3. Prinicipal component analysis (PCA) of proximate analysis and calorific values 

of Miscanthus x Giganteus 

 

3.4. Effect of planting material and treatment on changes in the biomass composition of 

Miscanthus 

 

To study the influence of the parameters of planting type, ash treatment and their interactions 

on the composition and energy value of biomass, a univariate analysis with the values of the sum of 

squares for each variable and their statistical significance according to the p coefficient is presented in 

Table 3. 

 

Table 3. Univariate analysis of the influence of the parameters type of planting material, ash 

treatment and their interactions on the change in biomass properties Miscanthus x Giganteus. 

SoS 

Effect Df Ash Coke FC VM N C S H O HHV LHV 

Type 2 1.22* 5.67 0.13 143.88** 0.39* 7.61* 0.00 0.18* 10.82* 0.82* 0.67* 

Treatment 2 0.69* 2.65 4.54** 149.99** 0.05 0.29 0.01** 0.01 0.36 0.00 0.01 

Type × 

Treatment 
4 0.49** 24.74* 3.47 361.99* 0.15 0.78 0.01** 0.05 1.74 1.02* 1.03* 

Error 72 2.56 107.67 49.28 1483.83 1.40 21.40 0.07 1.00 27.43 4.58 4.38 

SoS – Sum of squares; Df – Degrees of freedom; FC – content of fixed carbon; VM – content of 

volatile matter; N – content of nitrogen; C – content of carbon; S – content of sulfur; H – content of 

hydrogen; O – content of oxygen; HHV – HHV; LHV – lower heating value; Statistical significance; 

* p ≤ 0.01; ** p ≤ 0.05. 
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3.5. Modelling the heating value of biomass 

 

Tables 4 and 5 show the basic characteristics and performance of the developed models 

 

Table 4. Basic information about the performance of the developed regression model 

  Performance Model error     Activation function 

Output Train Test Train Test 
Train 

algorithm 

Error 

function 
Hidden Output 

HHV 0.999 0.999 0.001 0.002 BFGS 8043 SOS Tanh Exp. 

LHV 0.972 0.999 0.001 0.004 BFGS 0 SOS Log. Iden. 

 

Table 5. Statistical error test and residual analysis of the developed regression models 

Model Output Χ
2
 RMSE MBE MPE SSE AARD R

2
 Skew Kurt StDev Var 

rNN 
HHV 0.001 0.032 -0.010 0.063 0.008 0.102 0.964 -2.963 8.846 0.032 0.001 

LHV 0.002 0.043 -0.014 0.152 0.015 0.471 0.927 -1.887 4.951 0.043 0.002 

rNN – regression neural network; HHV – HHV; LHV – lower heating value; Χ
2
- chi squared 

test; RMSE – root mean square error; MBE – mean bias error; MPE – mean percentage error; SSE – 

sum squared error; AARD – average absolute relative deviation;  R
2
 – coefficient of determination; 

Skew – skewness; Kurt – kurtosis; SD – standard deviation; Var – variance 

 

The rNN regression models for predicting HHV and LHV show robust performance. Prominent 

indicators include remarkably low chi-squared (Χ
2
) values (0.001 for HHV, 0.002 for LHV) and 

substantial coefficients of determination (R
2
 =  0.964 for HHV, 0.927 for LHV).  

After conducting Yoon's sensitivity analysis to determine the relative importance of the input 

variables on the output values of HHV and LHV, the influence of each variable of the ultimate 

analysis on the output value was determined (Figure 4). 

 

Figure 4. Relative importance (%) of ultimate analysis on the output value of a) HHV and 

b) LHV 

4. Discussion 

The average DM value of the tested samples was 21 t/h, while the average stem height was 3.10 

m. In general, ash provides plants with vital substances that can improve plant metabolism, promote 

root development and improve plant health. The use of ash as fertiliser can increase both fresh mass 
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and dry mass yield of the plants [40]. With regard to the results, it can be seen that the application of 

R2 in interaction with P5 had the greatest effect on stem height and was significantly above the 

average (3.34 m). Šurić et al. (2022) [41] found in their study that the use of sewage sludge as 

fertiliser increased the yield of the energy crop Virginia mallow. The application of 6.64 t/h sewage 

sludge increased the average stem height and dry matter yield from 3.12 m; 6.53 t/ ha to 3.28 m; 8.85 

t/ha, compared to the control treatment. The two-year study conducted by Saletnik et al., (2018) [42] 

showed an 8-68% increase in energy crop yields when biochar, biomass ash and their combination are 

used as soil amendments to replace classical mineral fertilisers and reinforce organic practises. To 

determine the properties of the input raw material in the production process, it was necessary to study 

the physico-chemical and chemical properties of the biomass [43]. The highest proportion of C 

(51.79%) and H (5.92%) was found in R2 rhizomes in all fertiliser treatments. Voća et al (2021) [44] 

reported the values for elements of the ultimate analysis Miscanthus x Giganteus for C (51.65%), H 

(6.09%), N (0.18%), S (0.08%), O (42.00%) after laboratory analysis. When comparing the results of 

the analysis, it was found that the values obtained were within the range of the literature researched. 

The lowest sulphur content (0.05%) was found when rhizomes from Croatia (R1) were used, i.e. when 

no ash was used (P0).  Considering the negative impact of sulphur on the environment, it is 

recommended to use fuel with a lower sulphur content [45]. Anshariah et al., (2020) [46] states that 

there is a strong correlation between the proportion of FC and the increase in calorific value, i.e. that 

the increase in FC directly affects the increase in energy values. Although in the study the highest 

proportion of FC (10.12%) shows that R1 without applying any fertiliser treatment does not have the 

highest calorific value and is even lower than the average (18.21 MJ/kg), which is also influenced by 

other variables in the proximate analysis [47]. The highest ash content was found in plant type 'S' 

under treatment P5 (2.25%). Gismatulina et al., (2022) [49] gives ash values in the range of 0.90-

2.95%.  The highest HHV and LHV values (18.64; 17.35 MJ/kg) were found in R2 with the P5 

treatment of ash fertilisation (5 tonnes per hectare). Significant differences were found in VM content 

between samples, which reached a maximum of 80.06% in R1 plant after P2 treatment. This result 

highlights the significant influence of plant type and treatment on critical properties of the plant 

material, which has potential implications for energy production and various industrial applications. 

Šurić et al. (2022) [41] reported that no significant differences in ash, coke, fixed carbon and calorific 

value were found after the application of different sewage sludge fertiliser treatments. However, the 

application of sewage sludge treatment at a rate of 1.66 t/h resulted in a significant increase in VM.  

Osman et al. (2018) [50] reported a volatile matter (VM) value of 72.5% and ash content of 3.38% 

after analysis. The study by Yorgun and Şimşek (2003) [51] reported a biomass composition of 71.4% 

volatile matter, 18.5% solid carbon, 3.3% ash and 6.8% moisture.   

In the final step of the study, an artificial neural network regression model was developed to 

model the HHV of biomass Miscanthus x Giganteus. 

When validating the regression neural network (rNN) model, the data was split as standard 

into 70% for training and 30% for testing to ensure a comprehensive assessment of the models 

predictive accuracy. The robustness of the model was confirmed by various statistical error tests and 

residual analyses, including the chi-square test, root mean square error (RMSE) and coefficient of 

determination (R²), demonstrating its effectiveness in predicting the higher and lower heating values 

(HHV and LHV) of Miscanthus x Giganteus biomass. 
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 The model used to estimate the HHV showed better performance in training and testing 

(0.999 and 0.999) in contrast to the model used to estimate the LHV (0.972 and 0.999). Comparing 

the predictive performance of the rNN model developed in this study with that reported by 

Noushabadi et al. (2021) [52], a number of observations become clear. The coefficient of 

determination (R²) achieved by the rNN model for HHV (0.964) and LHV (0.927) indicates a better 

fit to the data than the maximum R² of 0.96.  

The study limitations include a limited sample size and diversity, focusing on specific 

Miscanthus x Giganteus species and ash fertilisation treatments. Its regional focus may not fully 

represent the different geographical contexts. Future research should investigate how different 

climates and soils affect Miscanthus x Giganteus, assess the long-term environmental impacts of ash 

fertilisation, and use advanced technologies to better understand plant-environment interactions. 

These steps are critical to understanding the plant's role in sustainable biomass production and its 

environmental impact. 

5. Conclusions 

In this study of Miscanthus x Giganteus, different planting materials and ash fertilizers were 

found to have different effects on crop yields, growth, and composition. Notably, sample 3 had the 

highest yield, sample 8 had the lowest yield, and sample 9 had exceptional development with the 

greatest average stem height. Unfertilized seedlings had elevated nitrogen levels, while R1 types had 

low sulphur levels under certain conditions. Ash formation was notable in 'S' x P5 plants, while R1 x 

P5 combinations had high carbon content as evidenced by high coke levels. Energy content, as 

measured by HHV and LHV, varied in all cases, illustrating the effects of treatments. The artificial 

neural network (ANN) regression model showed high efficiency in predicting the higher heating value 

(HHV) and lower heating value (LHV) of Miscanthus x Giganteus. The model showed excellent 

performance metrics with robust coefficients of determination, indicating its potential as a reliable 

tool for estimating the energy content of biomass.Acknowledgement 
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