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 The current work numerically investigates free convection in a square box 

filled with a non-Newtonian conductive fluid, which is numerically analyzed 

and is subjected to a steady heat flux at the normal walls, while the 

horizontal walls are thought of as adiabatic. To examine the impacts of the 

regulating parameters, including Rayleigh number,   , behavior index,  , 

and Hartman number,   , on fluid flow and heat transfer, the governing 

equations are solved numerically by applying the finite volume method 

(FVM). The results are shown and analyzed in terms of streamlines, 

isotherms, flow intensity, medium Nusselt, and velocity profiles. 

 Key words: Natural convection, non-Newtonian fluids, Finite volume    

method,  magnetic field.  

1. Introduction  

Natural convection, which produces fluid movement due to density variation engendered by an 

applied temperature gradient, attracts attention owing to its various applications in the industrial field 

such as the production of electric power, cooling of electronic components, heat exchangers, solar 

energy collectors, chemical processes, food processing, and material processing [1, 2]. 

Given the linked physical phenomena that appeared, scientific researchers concentrated 

particularly on the impact of the magnetic flux on free convection. The magnetic force caused by the 

presence of magnetic flux can be exploited in applications such as the control of crystal growth. For 

example, Vives et al. [3] showed that the consequence of a magnetic flux at the time of the 

solidification process is characterized primarily by a reduction in superheat escape and an increase in 

consolidation rate. The focus has been mainly directed towards square cavities, where industrial plants 

and electronic component cooling are some of the crucial applications that are usually identified by the 

existence of an intense magnetic flux that reigns in the surrounding space; hence, the usefulness of 

introducing the magnetic flux in free convection studies. Further, the working fluids are generally non-

Newtonian fluids. Many published works investigate the rheological behavior of non-Newtonian fluids 

in the absence of a magnetic flux [4–7]. Turan et al. [8] demonstrated that the mean Nusselt value 

augments with enhancing values of    and reducing values of the power-law index, while the impact 

of the Prandtl number Pr is deemed to be negligible. Furthermore, for sufficiently high values of  , the 

Nusselt number, was found to be equal to unity(    ) , as heat transfer is mainly assured by 

conduction. 

In the existence of a magnetic flux, the literature review reveals different works that investigate 

the consequences of free convection within square cavities filled with Newtonian fluids under varying 

boundary conditions [9-17]. In all these works, intensifying the magnetic flux is always found to 



diminish convective fluid flow and heat transfer. However, and as mentioned before, the fluids 

encountered in the industrial files are mostly non-Newtonian, making the study of  natural convection 

for non-Newtonian fluids under the effect of magnetic field an essential research topic. Yet, the 

number of investigations conducted does not reflect their importance. For instance, Kefayati [18] used 

the finite difference lattice Boltzmann (FDLBM), to examine the effect of  magnetic flux on natural 

convection for non-Newtonian power-law fluids in a portion of a heated container. The obtained 

results showed that extending the behavior index in the nonexistence of the magnetic flux reduces the 

heat transfer rate, while introducing the magnetic flux diminishes the observed effect of the behavior 

index on heat transfer. On the other hand, the influence of the behavior index strengthened with 

increasing the size of the active heated section. Dimitrienko [19] studied the laminar 

magnetohydrodynamic free convection of a non-Newtonian fluid in a square box under a constant 

magnetic flux in various directions. This study demonstrated that the angle of inclination has an 

important influence on flow and heat transfer in addition to the magnetic flux. Liao et al. [20] operated 

a digital study of free convection induced by a thermally driven flow under the impact of an inclined 

magnetic flux  considering the effects of Rayleigh Ra, Hartmann Ha, and magnetic flux angles. Their 

findings demonstrated that the direction of the applied magnetic flux had a substantial impact on the 

streamlines and isotherms furthermore, as the Hartmann number increases, as the applied magnetic 

field grew stronger, the mean Nusselt Nu and maximum streamline function declined. Makaysi et al. 

[21] numerically studied the transfer of heat and mass  in a square enclosure filled with an electrically 

conductive non-Newtonian fluid in the presence of an inclined external magnetic flux. The authors 

observed that the increase in    leads to the decrease in the flow intensity, heat, and mass transfer 

rates dropped for both Newtonian and non-Newtonian fluids. Further, for a weak magnetic flux, 

decreasing the behavior index   significantly enhanced fluid circulation and heat and mass transfer, 

while for a great value of   , the mentioned effect of   starts to vanish. They also found that the 

orientation of the applied magnetics flux strongly affected heat and mass transfer. Kefayati [22] 

investigated the effect of a magnetic flux on free convection in a cavity with a linearly heated wall and 

filled with non-Newtonian power law fluids. Similarly, they reported the suppressing effect of the 

magnetic flux on heat transfer rate and the influence of the behavior index. According to the findings 

of Chtaibi et al. [23], an increase in the power index or Hartmann number has an adverse impact on 

both flow intensity and heat transfer. These outcomes were obtained through the application of the 

Boltzmann Lattice Boltzmann Method (LBM) and involved a uniform magnetic field influencing a 

non-Newtonian fluid in a state of natural convection within an inclined square cavity. In a similar vein, 

Nouri et al. [24] conducted a numerical assessment of the natural Rayleigh-Benard convection in a 

square cavity filled with a non-Newtonian fluid whose viscosity is temperature-dependent. Their 

investigation highlights that the initiation of convection is delayed with higher values of the power 

index (n) and Hartmann number (Ha). Moreover, it indicates a reduction in both flow intensity and 

heat transfer as the Hartmann number increases, a trend observed for both Newtonian and non-

Newtonian fluids. Notably, at significantly elevated Ha values, heat transfer is predominantly 

governed by the conduction regime. 

The primary objective of this study is to investigate the heat transfer characteristics by free 

convection within a closed cavity charged with non-Newtonian fluids in the presence of a magnetic 

flux. Unlike previous research that predominantly considered Dirichlet thermal conditions at the cavity 

borders, this study specifically aims to explore the influence of Neumann-type thermal boundary 



conditions in conjunction with the magnetic flux. The existing literature has primarily focused on 

Dirichlet thermal conditions, leaving a notable gap regarding the consideration of Neumann-type 

thermal boundary conditions. By incorporating this aspect into the study, we aim to provide a more 

comprehensive understanding of the thermal behavior within closed cavities with non-Newtonian 

fluids. The inclusion of a magnetic flux parameter introduces a practical dimension to the 

investigation. Understanding how magnetic flux interacts with non-Newtonian fluids in closed cavities 

can have implications in various fields, In summary, this research not only aims to fill a specific gap in 

the current literature but also strives to advance our understanding of heat transfer in complex systems, 

providing insights with practical applications and contributing to the broader theoretical framework in 

fluid dynamics. 

2. Mathematical formulation 

Figure 1 shows the studied configuration: a two-dimensional square cavity subjected to a 

horizontal magnetic field and heat flux on the vertical walls while the horizontal walls are  insulated. 

The cavity is filled with Non-Newtonian electically conductive fluids, whose rheological behavior can 

be characterized by the Ostwald-de Waele power-law model expressed as: 
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Figure 1.  Schematic representation of the cavity with imposed thermal conditions and magnetic 

field 

Where    represents the behavior of the flow, and    represents the consistency index and 

which are generally temperature dependent, However, the change of n as a function of temperature is 

negligible. ( nk≈constant = n) with respect to that of kT , This may be calculated using the Frank-

Kamenetskii exponential rule: 

                                                                
     

   
 
                       

Where  , also known as the thermal dependence coefficient, is an exponent connected to the 

flow energy activation and the universal gas constant. k is the consistency index at the reference 

temperature Tr.  

 



for      , the behavior is Newtonian, for          , the apparent viscosity reduces with the 

shear rate and the behavior is pseudo plastic (or shears thinning), and for n > 1, the viscosity increases 

as the shear rate rises, and the behavior is dilatant (or shear-thickening). 

Concerning the dimensionless variables, the characteristic scales are as follows: 

          ⁄       ⁄      ⁄ ,      ⁄            corresponding to length, pressure, time, velocity, 

temperature and stream function, respectively, are used. As a result, the dimensionless governing 

equations are given as follows: 

2.1. Continuity Equation 
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2.2.  Momentum Equation 
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2.3. Energy Equation 
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The stream function   is used to study the flux structure: 
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2.4.  Dominant Parameters 

In addition to the power-law behavior index  , three other dimensionless parameters appear, 

namely Rayleigh, Prandtl, and Harman numbers, with their expressions as follows: 
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We mention that Pr is fixed at 100 and for the present case, the associated 

non-dimensional boundary conditions are: 
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2.5. Heat transfer 

The Nusselt number, measuring local heat transfer in the horizontal direction, is defined as 

follows: 

      
 

     
    

 

 

Where: ΔT(y) = T (0, y) − T (1, y) which represent the dimensionless local temperature difference 

between the two vertical walls x = 0 and x = 1. 

For the average horizontal Nusselt number describing the overall horizontal heat transfer, the 

following equation is used: 
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2.6.  Numerical solution 

The preceding Eqs. (2)-(5) associated with the boundary conditions Eq. (10) can be expressed 

generally as follows [12]: 
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With   the variable which can be either  ,   or  . To find the momentum equation, ɼ is 

replaced by      a, and for the energy equation it is set to 1 where    is the source term. To obtain a 

numerical solution, Eq. 12 must be converted into a linear system, which results in: 

                               (13) 

With    are the variables U, V and T on point P and the equation (13) is the discretized 

equation that connects the calculation point to its adjacent grid point. 

The discretized system is composed of a set of linear algebraic equations that can be quickly resolved 

using the line-by-line method based on the Thomas algorithm (TDMA) ([26], [27], [28]). The 

SIMPLE technique [29] is used to solve the connection between velocity and pressure. As for the 

convergence of the solution, it is evaluated as follows: 
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2.7.  Grid size 

Tab.1 investigates the variation of the results as a function of the number of grid points in order 

to identify the optimal mesh size that leads to a satisfactory balance between accuracy and 

computation time. The results obtained for              , and      , show that the      

     grid is sufficient to accurately simulate the problem at hand. 

 

 

 



Table 1: Maximum stream function |    | and Nusselt number     inside the enclosure for 

various mesh sizes 

Grids                     Dev(%) 

80 × 80 2.335 11.038 11.206 2.669 ------ 

120 × 120 2.334 11.053 11.242 2.668 0.32% 

200 × 200 2.335 11.054 11.246 2.665 0.112% 

300 × 300 2.334 11.055 11.248 2.669 0.149% 

2.8. Numerical code validation 

We compared our numerical results to previously published ones in order to confirm the 

numerical code. Tab.2 presents the results in terms of       and  |    | .As can be seen, the agreement 

is reasonable, with the deviation not exceeding 4.2%, indicating the precision of the adotep numerical  

code. 

Table 2: Validation of current numerical results with previously published research for different 

n, Pr, Ha, and Ra values. 

 Present study [30] [31] [32] 

Ra Pr n Ha |    |    |    |    |    |    |    |    

    0.7 1 0 17.07 8.98 17.00 8.90 ------ ----- 16.75 8.80 

   50 10.79 6.39 10.51 6.39 ----- ----- ----- ----- 

   150 3.91 2.57 3.77 2.64 ----- ----- ----- ----- 

        1 0 9.67 4.51 9.75 4.62 ----- 4.70 ----- ----- 

  0.6  28.49 14.99 ----- ----- ----- 15 ----- ----- 

  1.8  3.19 1.57 ----- ----- ----- 1.55 ----- ----- 

 

3. Results and discussions 

3.1. Effects of the Hartmann number on the dynamic and thermal structure of the flow: 

Figs. 2 and 3 depict the streamlines for various values of the Rayleigh number (Ra), behavior 

index (n), and Hartmann number (Ha) with the magnetic flux applied in the x-direction. This analysis 

aims to examine the flow structure within the square cavities. It is notable that the flow structure 

undergoes changes in the presence of the magnetic flux (Ha=60), where the streamlines elongate in the 

vertical direction perpendicular to the magnetic flux. This effect is more pronounced in the central 

region of the cavity, giving rise to the appearance of two small cells. The observed change becomes 

more evident as the behavior index (n) decreases and the Rayleigh number (Ra) increases. This 

alteration can be attributed to the impact of the magnetic force, acting perpendicular to the magnetic 

flux, on the fluid flow. Additionally, it is worth mentioning that the streamlines become more densely 

packed and nearly parallel to the adiabatic walls as both Ha and Ra increase. 

 

 

 



n=0.6 n=1 n=1.4 

   

   

Figure 2. Streamlines for        and various values of the power-low index    and Hartmann 

number (     (top) and       (bottom)). 

 

n=0.6 n=1 n=1.4 

   

   

Figure 3. Streamlines for        and various values of the behavior index    and Hartmann 

number (     (top) and       (bottom)). 
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Figure 4. Isotherms for        and various values of the behavior index    and Hartmann 

number (     (top) and       (bottom)). 

n=0.6 n=1 n=1.4 

   

   

Figure 5. Isotherms for        and various values of the behavior index    and Hartmann 

number (     (top) and       (bottom)). 



      The observed changes can be interpreted as a result of the combined effects of magnetic attraction, 

fluid properties, and buoyancy forces. At high Hartmann numbers (Ha), the magnetic field intensifies, 

promoting the deformation of the flow structure under the Lorentz force with an increase in Rayleigh 

number (Ra) or a decrease in the behavior index (n). The heightened flow intensity further amplifies 

the impact of the Lorentz force, leading to the elongation of the central cells and the formation of 

convective cells near the adiabatic horizontal walls. 

 

       These phenomena can be explained by the synergistic effect of the magnetic force and 

Archimedes' thrust. At sufficiently high Ha values, the flow is predominantly influenced by the 

magnetic force, which acts perpendicular to the direction of the magnetic field. For instance, when the 

magnetic field is horizontal in the (x) direction, the magnetic force acts solely in the (y) direction. 

Considering symmetry, the velocity u dominates along the vertical axis due to v = 0, indicating that the 

total velocity is nearly parallel to the magnetic field. Consequently, the magnetic force approaches 

zero since it can counteract the buoyancy effect. As a result, conductive fluids are stretched closer to 

the horizontal axis. 

       The corresponding isotherms are presented in Figs. 4 and 5, and they exhibit a tendency to align 

parallel to the active normal walls as Ha and n increase or Rayleigh number (Ra) decreases. These 

findings suggest that convective heat transfer weakens while heat conduction intensifies. 

Consequently, the Lorentz force is enhanced by the magnetic flux, mitigating the convective regime by 

counteracting the buoyancy force responsible for natural convection, which shows Nevaux that the 

magnetic field suppresses convection. 

3.2. Effects of Hartmann number on flow and heat transfer 

Figure 6 displays the profiles of the normal velocity   in the cavity center for various Rayleigh, 

Hartmann, and behavior index values. The velocity maximum strongly decreases as    increases 

confirming that the magnetic field slows down fluid circulation. The fluid flow intensifies for 

increasing    or decreasing   as natural convection intensifies where the observed diminishing effect 

of Hartmann number on velocity profiles strengthens. We also notice that the velocity maximum value 

shifts toward the vertical active walls as    and    increases and   decreases where the heart region 

of the enclosure becomes stagnant. 

Fig. 7 depicts the evolutions of flow intensity with the regulating Hartmann number, behavior 

index, and Rayleigh Ra. As expected, the fluid flow intensifies as    augments due to the enhanced 

contribution of buoyancy force. As for the Hartmann Ha, increasing it reduces       confirming what 

we mentioned about the magnetic field slowing down fluid circulation. Furthermore, a decreasing 

power-law behavior index   strengthens fluid flow as the fluid becomes less resistant to motion; 

however, the magnitude of the effect diminishes as the applied magnetic field further intensifies.  



 

 

Figure 6. Normal velocity profiles at the center of the cavity         for various values of the 

Hartman number Ha, behavior index n, and Raleigh number     (       (top) and    
    (bottom)). 

 

The variations of the average Nusselt    are illustrated in Fig. 8 for different values of the 

Hartmann   , power-law index, and Rayleigh   . First, it is clear that increasing the Rayleigh 

enhances the influence of decreasing the behavior index on the heat transfer rate. Further, raising 

Hartmann decreases the average Nusselt    with the introduction of the magnetic flux, significantly 

reducing the observed effect of the behavior index on the heat transfer rate    especially for shear-

thinning fluids     .  

 

Figure 7. Variations of flow intensity        for different values of Hartman number   , 

behavior index  , and Rayleigh number   . 



Fig. 9 shows how the maximum temperature      varies as a function of Hartmann number   , 

behavior index  , and Rayleigh number   . First, increasing    decreases the maximum temperature 

due to the associated strong convective heat transfer. Second, raising the behavior index increases the 

maximum temperature due to increasing fluid apparent viscosity, which slows down fluid circulation 

resulting in lower heat transfer. Finally, strengthening the applied magnetic field augments     , 

where an increase of    from   to    results in     augmentation for      , while only       

augmentation is observed for       . Thus, the fluid nature influences the observed magnetic force 

effect with shear thickening fluids, which are less sensitive to magnetic field presence compared to 

shear thinning fluids. This is due to the fact that increasing the behavior index   weakens convective 

fluid flow and heat transfer.  

 

 

Figure 8. Variations of average Nusselt number    for different values of Hartman number   , 

power-law index  , and Rayleigh number   . 

 

Figure 9. Variations of maximum temperature      for different values of Hartman 

number   , power-law index  , and Rayleigh number   . 

4. Conclusion 

The present numerical work implements the (FVM) to investigate free convection in a square 

cavity charged with non-Newtonian conducting fluids and subjected to constant heat flux on the 

vertical walls and a uniform horizontal external magnetic flux. The examination of governing 



parameters: Rayleigh number   , behavior index n, and Hartman number    effects on fluid flow and 

heat transfer characteristics lead to the following key findings: 

 The absence of magnetic flux and the lowering of the behavior index increase the intensity of 

the flux and the heat transfer, and the maximum temperature decreases. 

 The application of the magnetic flux affects the flow structure as the streamlines stretch in the 

vertical direction perpendicular to the direction of the applied magnetic flux while the 

isotherms become parallel to the active vertical walls. 

 Applying the magnetic flux slows down fluid circulation and decreases the heat transfer rate as 

the magnitude of the applied magnetics flux, increases. 

 The magnetic flux diminishes the enhancing role of the decreasing behavior index. 
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Nomenclature  

    –  magnetic field strength, [T] 

     –  gravitational acceleration, [ms
-2

] 

H’  –  cavity dimension, [m] 

Ha –  Hartmann number,[–] 

k   –  Consistency index for a power-lawfluid,[Pas
n
] 

n   –  Flow behavior index for a power-law fluid,[–] 

Nu  – average nusselt number ,[–] 

P   – Dimensionless pressure ,[–] 

Pr  – Generalised Prandtl number ,[–] 

q’   – constante heat flux,[wm
-2

] 

Ra –  Generalized Rayleigh number,[–] 

T   – Dimensionless temperature ,[–] 

U   –  Dimensionless normal velocities,[–] 

    –  normal velocities,[ ms
-1

] 

V   –  Dimensionless  horizontal velocities,[–]       

    –  horizontal velocities,[ ms
-1

]                               

X   –  Dimensionless normal coordinates,[–] 

    –  normal coordinates,[m] 

Y   –  Dimensionless horizontal coordinates,[–] 

    –  horizontal coordinates,[m] 

Greek Symbols 

α  –  Thermal diffusivity of fluid,[m
2
s

-1
] 

β  –  Thermal expansion coefficient of fluid,[k
-1

] 

Ϭ –  Electrical conductivity of fluid,[sm
-1

] 

λ  – Thermal conductivity of fluid,[wm
-1

k
-1

] 

  –  Dimensionless effective viscosity,[–] 

   –  Dynamic viscosity,[Pas] 

 ρ – Density of fluid ,[Kgm
-3

] 

 ψ  – Dimensionless stream function ,[–] 

                       Superscript                                                                  

 ’  – Dimensional variables.                                                  
                        Subscripts    
a       – Effective variable.         
max   – Maximum value.          
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