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Abstract: The integrated energy system (IES) is an efficient way of utilizing energy in industry park. However, with 

the massive integration of renewable energy and disorganized charging of electric vehicles (EVs), the safe operation 

of this system faces several challenges. To address these issues, we propose a novel dispatch model that incorporates 

the flexible load characteristics of EV clusters. Firstly, we elucidate the operational framework for the IES in parks 

and establish models for users and microgrid operators incorporating carbon trading mechanisms. These models can 

effectively portray how an IES operates within a park setting. Secondly, using charging data from parks, we uncover 

potential dispatchable charging/discharging capacities for EV clusters and formulate strategies to utilize EVs as flex-

ible loads in our dispatch operation policy. By appropriately regulating EV charging/discharging behaviors, demand-

supply balance within the system can be better achieved. Subsequently, aiming to maximize benefits for all entities 

in the park area, we construct a master-slave game model that involves multiple users and microgrid operators. Lastly, 

employing reinforcement learning concepts, we establish an equivalent power output models for wind turbines(WT)， 

photovoltaic (PV) power generation and apply it to an IES in an industrial park in a specific city. An analysis reveals 

that our proposed model not only minimizes cost associated with energy storage equipment but also significantly 

reduces carbon emissions—yielding mutual benefits for both microgrid operators and users. 
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1 Introduction 

Under the backdrop of China's "14th Five-Year" energy development plan and dual carbon goals, the energy 

sector is transitioning towards a safer and more efficient direction. The IES can achieve complementary energy use 

effects by breaking down barriers between various energy subsystems, representing a future development trend[1]. 

However, the complexity of IES also poses challenges to its overall safe operation[2]. With regional economic devel-

opment, large quantities of renewable energy and coupled components are being added into grids, continually in-

creasing peak shaving pressures. Moreover, the rapid increase in EV numbers further magnifies this pressure[3]. 

Therefore, how to fully realize the flexible load storage characteristics of the overall optimization of EVs has become 

an important content of the current research, which is of great significance to reduce the carbon emission of Park IES. 

The Park IES aims to balance the economic interests of microgrid energy system operators and users by 



integrating user-side load characteristics. Ref [4] establishes an optimization scheduling model for AC-DC microgrids 

that includes EVs and transforms this model into a mixed integer second-order cone convex optimization problem. 

Sample results demonstrate that EVs, serving as mobile energy storage, can perform peak shaving and valley filling, 

thereby improving the economic operation of the microgrid. Ref [5] proposes a microgrid economic dispatch scheme 

for orderly charging and discharging of EVs. By guiding orderly charging and discharging behavior of EVs, good 

environmental benefits are achieved at lower power generation costs. From a load aggregator's perspective, Ref [6] 

improves synergy between EVs and PV—and achieves increased revenue while reducing emissions—by proposing 

an EV dispatch strategy that combines PV output characteristics with demand response forms. Furthermore, There 

are some researchers explored the coordinated operation of other devices such as energy storage[7] and concentrating 

solar power[8] to enhance the environmental benefits of the IES. For grid-connected microgrids aiming to achieve 

resource collaboration optimization. Ref [9] establishes a hierarchical optimization scheduling model considering 

demand response and carbon emission quotas while evaluating user satisfaction. However, most studies consider 

either EVs or flexible loads individually with few researching flexible loads, energy storage, and EVs collectively. 

Ref [10] proposes integrated dispatch strategies considering adjustable loads—establishing a scheduling model aimed 

at maximizing power system revenue alongside user-side income to facilitate overall optimization of power re-

sources—though these primarily focus on economic optimization without assessing their own absorption conditions 

for new energies or their impact on grids. While these studies achieve goals pertaining to economical operation of 

microgrids alongside improved absorption rates for new energies through optimizing flexible load dispatching—they 

do not consider potential effects on user satisfaction following flexible load regulation. 

Addressing the economic benefit issues of the Park IES, Ref [11] analyzes the impact of hydrogen energy storage 

equipment on electricity and heating prices based on park electricity-heat-gas characteristics. Ref[12] considers in-

corporating detailed heating modeling within the IES, taking into account user costs from an electricity-heating char-

acteristic perspective. Ref[13] establishes a mixed electric/thermal storage model to improve the economy of the Park 

IES. However, these researches overlook the relationship between microgrid operators' pricing strategies and user 

energy strategies, thereby disregarding interests of microgrid operators. 

Park IES requires high robustness against energy fluctuations. Due to significant variability in system energy 

supply and demand, a low-carbon operation model for integrated energy grounded on the flexible load storage char-

acteristics of EVs is proposed. Ref [14] encourages users to achieve maximum benefits by employing peak-shifting 

charging and discharging strategies using devices with flexible load storage characteristics. On this basis. Ref [15] 

enhances economic efficiency by planning charging and discharging times among different stakeholders across mul-

tiple parks. However, these studies do not consider the flexible load storage characteristics of EV clusters within Park 

IES context. Compared to previous approaches, we utilize the "storage" characteristic of EVs to diminish investment 

costs associated with energy storage equipment and exploit the "load" characteristic of EVs to reduce wind and solar 

curtailment probability, thereby enhancing overall energy utilization rate within the IES. 

At present, some scholars have explored the dispatch potential of EV clusters. Ref [16] proposes a control strat-

egy that considers the participation of EV clusters in grid peak load regulation. Ref [17] fully exploits the dispatch 
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potential of EV clusters by establishing a bidding model for charging stations. Ref [18] treats the dispatchable poten-

tial model of EV clusters as energy storage devices participating in the game process with microgrid operators. These 

studies did not consider parameter uncertainty when establishing an EV cluster model. Although Ref [19] utilized a 

bidirectional long-short term memory network to handle uncertainty, it did not consider the flexible load storage 

characteristics of EV clusters. 

Addressing the carbon emission issue in Park IES, Ref [20]introduces a stepwise carbon trading mechanism 

during system optimization. Ref [21]proposes a novel stochastic planning model for zero-carbon multi-energy sys-

tems considering individual energy needs and environmental conditions' uncertainty. Ref [22] reduces system carbon 

emissions by using CO2 storage tanks. Ref [23] introduces a carbon trading mechanism with reward-penalty factors, 

leading to reduced energy consumption costs in the system. 

In summary, few research consider the integration of flexible load storage characteristics based on EV clusters 

and the source-load characteristics of the park when optimizing and dispatching Park IES that includes large-scale 

EVs. In fact, with the development of Park IES and an increase in EV ownership, EVs as flexible load storage devices 

play an integral role in implementing a "light-storage-direct-flexible" strategy[24]. Simultaneously, most existing re-

search focuses primarily on minimizing user costs without fully considering the interests of microgrid operators, thus 

failing to satisfy all stakeholders. 

Therefore, this paper targets a Park IES involving microgrid operators, EVs, and users. Based on the energy 

prices set by the microgrid operators, an equivalent solar output prediction model is established on the source side 

using reinforcement learning. On the load side, considering demand response, flexible load storage characteristics of 

EV clusters, and stepwise carbon trading mechanisms, a low-carbon optimization model for Park IES is constructed 

based on master-slave game theory and flexible load storage characteristics based on dispatchable potential of EV 

clusters. The effectiveness of this proposed scheme is validated through case analysis. 

2  Operation framework of IES based on EV flexible load storage characteristics 

In order to unified planning purposes, this paper counts the scattered users within the Park IES as a user model, 

with EVs undergoing charging and discharging processes at a unified charging station. The energy interaction process 

between users, microgrid operators, the power grid, and EV charging stations is also considered. The electric load 

and heat load on the user side are mainly supplied by gas engine sets on the microgrid operator side, with a small 

proportion supplied by WT, PV, and electric heating equipment on the user side. Users can purchase electricity from 

EV charging stations as depicted in Figure 1. 

As shown in Figure 1, a "source-load-storage" cooperative control microgrid topology is established, including 

renewable energy generation systems such as wind power and photovoltaics (PV), energy storage systems, EV charg-

ing and discharging systems, loads, and microgrid control systems. The microgrid control system monitors each 

internal system and can control the energy flow within the microgrid and the energy exchange between the microgrid 

and external power grid based on the internal electric energy dispatch needs. The EVs in the microgrid serve as a 

combination of flexible storage and flexible load. Under certain constraints, through unified scheduling by the mi-

crogrid control system, they can assist Park IES in peak shaving and valley filling functions while enhancing 



robustness of park's microgrids system and reducing carbon emissions. 
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Figure 1  Framework of Park IES based on EV flexible load storage characteristics 

The microgrid operator provides users with electricity and heat through combined heat and power generation, 

and the prices are market specific. The microgrid operator determines hourly electricity and heat prices based on 

information provided by users, earning revenue by selling electricity and heat to users. In addition, the microgrid 

operator can sell excess electricity to the grid for additional profit. Simultaneously, a stepwise carbon trading mech-

anism with reward-penalty factors is incorporated into the microgrid operator side to penalize systems when carbon 

emissions exceed quotas and reward them when emissions are below quotas, promoting a reduction in carbon emis-

sions. 

The energy demand on the user side mainly consists of electrical demand and thermal demand. Assuming that 

the price set by the microgrid operator does not exceed grid time-of-use rates, it is assumed in this paper that users' 

electrical energy comes from both the microgrid system and EVs. When PV on the user side cannot meet their power 

demands, users can purchase electricity from power grid or EVs. Meanwhile, when renewable energy generation on 

the user side exceeds user electricity consumption, EVs can be dispatched for charging or reverse discharging to the 

grid. 

Based on these analyses, Park IES operates as follows: The microgrid operator formulates reasonable selling 

strategies according to purchasing/selling electric prices from/to grid and historical heating purchase prices of users. 

On the user side they select optimal energy usage schemes according to their electric/thermal load conditions while 

optimizing their distribution of electric/thermal loads. The EV charging station can charge when electricity prices are 

low; during higher price periods it discharges in reverse by selling stored EV power to users for profit. 
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3 Modeling of Park IES 

3.1 Modeling of the EV flexible source charge characteristics 

3.1.1 Modeling of individual EV flexible source charge characteristics 

After entering the charging station, EV will charge and discharge according to its own energy demand and 

economic benefits. The individual EV charge-discharge model is as follows: 

{
 
 
 

 
 
 

0 ≤ 𝑃𝑛,𝑡
𝑐ℎ𝑎 ≤ 𝑃𝑛

𝑐ℎ𝑎,𝑚𝑎𝑥 × 𝑖𝑛,𝑡
𝑐ℎ𝑎

0 ≤ 𝑃𝑛,𝑡
𝑑𝑖𝑠 ≤ 𝑃𝑛

𝑑𝑖𝑠,𝑚𝑎𝑥 × 𝑖𝑛,𝑡
𝑑𝑖𝑠

𝑆𝑛,𝑡 = 𝑆𝑛,𝑡−1 + (𝜂
𝐸𝑉,𝑐ℎ𝑎 ∙ 𝑃𝑛,𝑡

𝑐ℎ𝑎 −
𝑃𝑛,𝑡
𝑐ℎ𝑎

𝜂𝐸𝑉,𝑑𝑖𝑠
)Δ𝑡

𝑆𝑛,𝑡
𝑚𝑖𝑛 ≤ 𝑆𝑛,𝑡 ≤ 𝑆𝑛,𝑡

𝑚𝑎𝑥

0 ≤ 𝑖𝑛,𝑡
𝑐ℎ𝑎 + 𝑖𝑛,𝑡

𝑑𝑖𝑠 ≤ 𝑖𝑛,𝑡
𝐸𝑉       𝑡 ∈ [𝑇𝑎𝑟𝑟𝑖𝑣𝑒 , 𝑇𝑙𝑒𝑎𝑣𝑒]

 (1) 

Where:𝑃𝑛,𝑡
𝑐ℎ𝑎, 𝑃𝑛,𝑡

𝑑𝑖𝑠 are the charge and discharge power of different types of EV at time 𝑡; 𝑃𝑛
𝑐ℎ𝑎,𝑚𝑎𝑥 , 𝑃𝑛

𝑑𝑖𝑠,𝑚𝑎𝑥
 

are the allowable limits of EV charge and discharge power; 𝑖𝑛,𝑡
𝑐ℎ𝑎, 𝑖𝑛,𝑡

𝑑𝑖𝑠 are Boolean variables for the EV charge-

discharge states; The EV cannot be conducted charge and discharge simultaneously; 𝑖𝑛,𝑡
𝐸𝑉 is the status of the EV 

location. When 𝑖𝑛,𝑡
𝐸𝑉  = 1, it means that the 𝐸𝑉𝑛 can be charged and discharged in the charging station at time t;𝑆𝑛,𝑡 is 

the state of the EV battery; The 𝑛 is the number of the EV;𝜂𝐸𝑉,𝑐ℎ𝑎,𝜂𝐸𝑉,𝑑𝑖𝑠 are the charge-discharge efficiency of EV; 

𝛥𝑡 is the time period of the EV cluster; 𝑆𝑛,𝑡
𝑚𝑖𝑛,𝑆𝑛,𝑡

𝑚𝑎𝑥 are the minimum and maximum power of EV; 𝑇𝑎𝑟𝑟𝑖𝑣𝑒,𝑇𝑙𝑒𝑎𝑣𝑒 

are the arrival time and the departure time of the EV. 

3.1.2  EV cluster schedulable potential modeling 

Due to the considerable uncertainty in individual EV arrival and departure times at charging stations, as well as 

their initial SOC, the flexible load storage characteristics of EVs cannot be fully utilized. Therefore, this paper con-

structs a dispatchable potential model for an EV cluster. The larger the sample size within the cluster, the more accu-

rate is its dispatchable potential. Dispatchable potential refers to predicting historical data such as EV arrival and 

departure times at charging stations and initial SOC, thereby clearly defining real-time EV flexible load storage ca-

pacity range and charging-discharging power. 

This paper aggregates an EV cluster into a flexible load storage characteristic model using Mincowsky sum 

theory and calculates envelope space boundaries for dispatchable potentials of the EV cluster. As Boolean variables 

are considered when calculating individual EV charging-discharging power, their station entry-exit times belong to 

the same feasible domain; therefore, individual EVs possess Mincowsky sum additivity. The upper and lower bound-

aries of an aggregated EV cluster can be formulated as: 
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 0 ≤ ∑ 𝑃𝑛,𝑡

𝑐ℎ𝑎

𝑛∈𝑁𝐸𝑉
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𝑑𝑖𝑠
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≤ ∑ (𝑃𝑛
𝑑𝑖𝑠,𝑚𝑎𝑥 × 𝑖𝑛,𝑡

𝑑𝑖𝑠)

𝑛∈𝑁𝐸𝑉

∑ 𝑆𝑛,𝑡
𝑛∈𝑁𝐸𝑉

= ∑ (𝑆𝑛,𝑡−1 + (𝜂
𝐸𝑉,𝑐ℎ𝑎 ∙ 𝑃𝑛,𝑡

𝑐ℎ𝑎 −
𝑃𝑛,𝑡
𝑐ℎ𝑎

𝜂𝐸𝑉,𝑑𝑖𝑠
)Δ𝑡)

𝑛∈𝑁𝐸𝑉

∑ 𝑆𝑛,𝑡
𝑚𝑖𝑛

𝑛∈𝑁𝐸𝑉

≤ ∑ 𝑆𝑛,𝑡
𝑛∈𝑁𝐸𝑉

≤ ∑ 𝑆𝑛,𝑡
𝑚𝑎𝑥

𝑛∈𝑁𝐸𝑉

 (2) 

Where: 𝑁𝐸𝑉  represents a collection of EV sets, Equation (2) not only establishes the flexible load storage 

model of EV cluster with physical significance, but also realizes the aggregation of individual EV decision space 

from the perspective of optimizing the feasible domain. In conclusion, the flexible load storage model of EV sets can 

be expressed as follows: 

{
 
 
 

 
 
 𝑃𝑛,𝑡

𝑐ℎ𝑎,𝐸𝑉 = ∑ 𝑃𝑛,𝑡
𝑐ℎ𝑎

𝑛∈𝑁𝐸𝑉

𝑃𝑛,𝑡
𝑑𝑖𝑠,𝐸𝑉 = ∑ 𝑃𝑛,𝑡

𝑑𝑖𝑠

𝑛∈𝑁𝐸𝑉

𝑆𝑛,𝑡
𝐸𝑉 = ∑ 𝑆𝑛,𝑡

𝑛∈𝑁𝐸𝑉

 (3) 

Where:𝑃𝑛,𝑡
𝑐ℎ𝑎,𝐸𝑉𝑃𝑛,𝑡

𝑑𝑖𝑠,𝐸𝑉𝑆𝑛,𝑡
𝐸𝑉 are the charging discharging power and SOC of 𝐸𝑉𝑛 at time 𝑡, which participate in 

the scheduling as a decision variable. 

3.1.3  Probabilistic modeling of the charge-discharge time distribution of EVs 

According to the Ref [25], large number of statistics can be obtained, the probability density function of EV 

started charging time follows a normal distribution, and the probability density function of EV stopped charging class 

follows a log-normal distribution. 

𝑓𝑎𝑟𝑟𝑖𝑣𝑒(𝑡) =

{
 
 

 
 

1

√2𝜋𝜎
exp [−

(𝑡 − 𝜇)2

2𝜎2
]                    𝜇 − 12 ≤ 𝑡 ≤ 24

1

√2𝜋𝜎
exp [−

(𝑡 + 24 − 𝜇)2

2𝜎2
]          0 ≤ 𝑡 ≤  𝜇 − 12

 (4) 

𝑓𝑙𝑒𝑎𝑣𝑒(𝑡) =
1

𝑡√2𝜋𝜎′
exp [−

(𝑙𝑛𝑡 − 𝜇′)2

2𝜎′2
] (5) 

Where:𝜇, 𝜎are the mean and standard deviation of the normal distribution; 𝜇′, 𝜎′ are the mean and standard 

deviation of the lognormal distribution, t is the moment of the beginning or end of EV charging. 

3.1.4 Prediction EV’s parameters based on GBDT 

From Equations(2) and (3), it can be discerned that once historical data such as the maximum charging-discharg-

ing power and energy storage limits of EVs within the charging station are known, the range of real-time energy 

storage potential parameters for EVs can be calculated. Predicting these real-time data using algorithms with strong 

calculation capabilities can help minimize the impact of uncertainties. Therefore, this paper employs Gradient Boost-

ing Decision Tree (GBDT) method to analyze three historical datasets: initial SOC, entry-exit times of EV clusters. 
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Compared to other prediction methods, GBDT can further explore the connection between current data and past or 

future time-related data, enhancing prediction accuracy. The GBDT algorithm and its associated parameters refer to 

Ref[26]. 

The power purchase cost of EV charging stations to the power grid can be expressed as follows: 

𝐸𝑜𝑢𝑡
𝐸𝑉 =∑∑𝜆𝑐 × 𝑃𝑛,𝑡 

𝑐ℎ𝑎,𝐸𝑉

𝑁

𝑛=1

𝑇

𝑡=1

 (6) 

Where: 𝐸𝑜𝑢𝑡
𝐸𝑉  represent the daily purchase cost of EV charging station; 𝜆𝑐 is the charging cost coefficient of EV 

and the 𝑁 is the total number of EV. 

At the same time, the revenue of EV charging station sales to Park IES can be expressed as: 

𝐸𝐸𝑉 =∑∑𝜆𝑑 × 𝑃𝑛,𝑡 
𝑑𝑖𝑠,𝐸𝑉

𝑁

𝑛=1

𝑇

𝑡=1

 (7) 

Where:𝐸𝑖𝑛
𝐸𝑉 is the revenue obtained by EV charging station from Park IES; 𝜆𝑑 is the cost coefficient of EV 

discharge. 

Therefore, the revenue of EV charging station within one day can be expressed as: 

𝐸𝑖𝑛
𝐸𝑉 = 𝐸𝑖𝑛

𝐸𝑉 − 𝐸𝑜𝑢𝑡
𝐸𝑉  (8) 

3.2 WT -PV power model 

The power output of WT is influenced by the wind speed and blade angle. In this research, we focus on the 

impact of wind speed, and divided into three categories, the active power output of WT is calculated according to the 

following formula[27,28]. 

𝑃𝑊𝑇(𝑣) = {

0                                                          𝑣 < 𝑣𝑠𝑡𝑒𝑝𝑖𝑛  or  𝑣 > 𝑣𝑠𝑡𝑒𝑝𝑜𝑢𝑡
𝑃0 𝑎𝑟𝑐𝑡𝑎𝑛(𝜔1𝑣 + 𝜔2) + 𝜔3       𝑣𝑠𝑡𝑒𝑝𝑖𝑛 ≤ 𝑣 < 𝑣𝑠𝑒𝑡
𝑃0                                                       𝑣𝑠𝑡𝑒𝑝𝑜𝑢𝑡 ≥ 𝑣 ≥ 𝑣𝑠𝑒𝑡

 (9) 

Where: 𝑃𝑊𝑇(𝑣) is the power out of WT, 𝑃0 is the maximum power of WT; 𝑣𝑠𝑡𝑒𝑝𝑖𝑛 , 𝑣𝑠𝑒𝑡 , 𝑣𝑠𝑡𝑒𝑝𝑜𝑢𝑡 are the min-

imum operational wind speed, rated wind speed, and cut-out wind speed of WT. 𝜔1, 𝜔2, 𝜔3 represent the fitting 

coefficients for wind speed and WT power and can get from Ref[27,28]. 

The equivalent PV power generation is controlled by the maximum power tracking, and the active power output 

is affected by factors such as ground radiation and temperature, and the active power output is calculated according 

to the following formula. 

{
 
 

 
 𝑉

𝑚𝑝(𝐺, 𝑇) = 𝑉𝑚𝑝,𝑆𝑇𝐶 + 𝐾𝑉(𝑇 − 𝑇STC) + 𝑉𝑡 𝑙𝑛( 𝐺/𝐺STC)

𝐼𝑚𝑝(𝐺, 𝑇) = (𝐼𝑚𝑝,𝑆𝑇𝐶 + 𝐾𝐼(𝑇 − 𝑇STC))𝐺/𝐺STC

𝑃𝑚𝑝(𝐺, 𝑇) = 𝑉𝑚𝑝(𝐺, 𝑇)𝐼mp(𝐺, 𝑇)

𝑃𝑃𝑉(𝐺, 𝑇) = 𝜂𝑝𝑣𝑃
𝑚𝑝(𝐺, 𝑇)

 (10) 

Where: 𝑉𝑚𝑝(𝐺, 𝑇), 𝐼𝑚𝑝(𝐺, 𝑇)are the voltage and current corresponding to the maximum power; 𝐺STC,𝑇STC are 

the ground radiation and temperature under the standard test conditions; 𝑉𝑚𝑝,𝑆𝑇𝐶 , 𝐼𝑚𝑝,𝑆𝑇𝐶and are the voltage and 

current corresponding to the maximum power under the standard test conditions; 𝐾𝑉 , 𝐾𝐼are the temperature coeffi-

cient of the voltage and current; 𝑉𝑡 is the diode thermal voltage and can according to the calculation 𝑉𝑡 = 𝑘𝑇/𝑞, 𝑘 

is the Boltzmann constant, 𝑞 is the amount of electronic charge, 𝑇 is the temperature and the unit is Kelvin; 𝜂𝑝𝑣 is 

the conversion efficiency of the inverter. 



3.3  Modeling of CHP 

CHP units are primarily categorized into back-pressure and extraction types, with this study focusing on the 

latter. Figure 2 illustrates the thermal-electrical characteristics of an extraction-type CHP unit[29]. In this figure, 

𝑃ℎ,𝑚𝑎𝑥 represents the maximum heat output of the CHP, while 𝑃ℎ,𝑚𝑖𝑛 refers to the heat power when the unit oper-

ates at minimum electrical output. 𝑃𝑒𝑙,𝑚𝑎𝑥、𝑃𝑒𝑙,𝑚𝑖𝑛, respectively, denote the maximum and minimum electrical output 

under pure condensation conditions. The overall operation range is represented by ABCDA in a graphical form. 

It can be inferred that when thermal load is fixed (as represented by 𝑃ℎ), adjustments can be made within the 

range PE~PF for CHP unit output. However, as heating power increases, there is a corresponding decrease in the 

adjustable range of electrical power. Consequently, during periods of low EV demand at night, forced escalation in 

Park IES output results in insufficient peak regulation capacity for electricity networks. This inability reduces wind 

energy absorption capacity leading to wind curtailment phenomena. 
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Figure 2 Working characteristics of the cogeneration unit 

Upon the installation of a thermal storage device, the electrical-thermal characteristic curve of the CHP unit 

changes, and the operation range expands from ABCD to AGHIJCKL. The heat release from the thermal storage 

device lowers the minimum heat output to 𝑃ℎ,0 and raises the maximum heat output to𝑃ℎ,𝑚𝑎𝑥 + ℎ𝑓𝑚𝑎𝑥. As depicted 

in Figure 2, when thermal load is fixed (as represented by 𝑃ℎ), adjustments can be made within PM~PH for CHP 

unit electrical output due to regulation by thermal storage. Compared with PE~PF range without storage, there is no 

longer a need for matching with thermal demand, significantly weakening strong coupling between electrical and 

heating outputs. This allows for more flexible adjustment ranges, thereby achieving decoupling of "heat-determined-

electricity" constraints. At this time, excess or insufficient heating can be stored or released by thermal storage devices 

to meet heat load requirements, thereby enhancing system peak-shifting capability. 

In Park IES environments, produced thermal energy from CHP equipment is utilized to fulfill park user demands. 

When combined electricity outputs from this equipment and renewable energy devices exceed park electricity needs, 

surplus power will be fed back into the main grid. Contrarily if electricity supply falls short of demand levels it will 

be necessary to purchase additional power from major networks. The gas consumption cost of CHP units and its 

corresponding electric power output can be represented as: 
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𝐸𝑡
𝐶𝐻𝑃  =

𝑃𝑡
𝑒𝑙

𝜂𝑒
𝐶𝐻𝑃 × 𝑃𝑔𝑎𝑠  (11) 

𝑃𝑒𝑙,𝑚𝑖𝑛 ≤ 𝑃𝑡
𝑒𝑙 ≤ 𝑃𝑒𝑙,𝑚𝑎𝑥 (12) 

Where: 𝐸𝑡
𝐶𝐻𝑃is the gas consumption cost of CHP during the period 𝑡, 𝜂𝑒

𝐶𝐻𝑃 is the power generation efficiency 

of CHP, 𝑃𝑡
𝑒𝑙 𝑖𝑠 the electric power output of CHP during the period 𝑡, and 𝑃𝑔𝑎𝑠 means the price of natural gas. 

Among them, the relationship between heating and power supply in CHP can be expressed as follows: 

𝑃𝑡
ℎ  = 𝜂ℎ𝑒 × 𝑃𝑡

𝑒𝑙  (13) 

Where: 𝑃𝑡
ℎ it is the thermal power of CHP during the period 𝑡, and 𝜂ℎ𝑒 is the thermoelectric ratio coefficient. 

4 Thermoelectric pricing model and solution strategy based on main and slave game 

4.1  Modeling the Principal-Agent Game among Different Entities within the Park 

Microgrid operators chose the best energy selling scheme through a main and slave game with park users. Park 

users, by comparing the electricity sale scheme and EV charging station prices, make rational use of EV charging 

station services and electric heating equipment while dynamically adjusting their flexible electrical and thermal loads. 

If the price set by the microgrid operator does not align with expectations, park users will adjust their proportion of 

flexible load and energy purchase; meanwhile, microgrid operators will also dynamically adjust pricing schemes 

based on changes in park user's energy purchases. It is evident that there is an order to their decision-making: mi-

crogrid operators are main players while park users are slaves in this game. The game process of this model is shown 

in Figure 3. 

Park user

Device：

CHP

Carbon trading 

Objective function：

Maximize profits

Minimize carbon emissions.

Constraints：

Power balance

Heat balance

Device：

Power Loads

Heat Loads 

Objective function：

Maximize User s profits

Microgrid operator

Charging 

Strategy

Selling 

price

Constraints：

Power balance

Heat balance

 

Figure 3 Schematic diagram of the master and slave game process of the IES 

There is no other heat source in the Park IES, and the heat production of CHP is all used to meet the heat needs 

of users.𝐿𝑡
ℎ So there are: 

𝑃𝑡
ℎ ≥ 𝐿𝑡

ℎ (14) 

The strategy set of the micro grid operator provides heat and electric energy for users, and obtains the optimal 

selling price strategy set by using the master and slave game. The electricity price and thermal price constraints are 

as follows: 

𝑃𝑡
𝐶𝐻𝑃_𝑒𝑙,𝑏 < 𝑃𝑡

𝐶𝐻𝑃_𝑒𝑙 < 𝑃𝑡
𝐶𝐻𝑃_𝑒𝑙,𝑠

 (15) 

𝑃𝑡
𝐶𝐻𝑃_ℎ,𝑚𝑖𝑛 < 𝑃𝑡

𝐶𝐻𝑃_ℎ < 𝑃𝑡
𝐶𝐻𝑃_ℎ,𝑚𝑎𝑥

 (16) 



Where: 𝑃𝑡
𝐶𝐻𝑃_𝑒𝑙 , 𝑃𝑡

𝐶𝐻𝑃_ℎ
 are the electricity sale price and heat sale price set by the micro grid system after the 

master and slave game; 𝑃𝑡
𝐶𝐻𝑃_𝑒𝑙,𝑏, 𝑃𝑡

𝐶𝐻𝑃_𝑒𝑙,𝑠
 are the electricity purchase price of the power grid; and 𝑃𝑡

𝐶𝐻𝑃_ℎ,𝑚𝑖𝑛
 , 

𝑃𝑡
𝐶𝐻𝑃_ℎ,𝑚𝑎𝑥

 are the upper and lower limits of the heating price of the user. 

The income and cost of the micro grid system mainly consists of the following parts: the income from the 

electricity sale and heat sale of the micro grid system 𝐸𝐿,𝑒 , 𝐸𝐿,ℎ; the income generated by the micro grid and the 

electricity sale to the large power grid 𝐸𝐺,𝑒; the gas cost of the micro grid 𝐸𝑡
𝐶𝐻𝑃and the cost generated by the carbon 

trading mechanism 𝐸𝐶𝐸𝑇; and the net profit of the park.𝐸𝑝𝑟𝑜𝑓𝑖𝑡 

𝐸𝐿,𝑒 =∑𝑃𝑡
𝐶𝐻𝑃_𝑒𝑙 ×

𝑇

𝑡=1

𝐿𝑡
𝑒 

(17) 

𝐸𝐺,𝑒 =

{
 
 

 
 ∑𝑃𝑡

𝐶𝐻𝑃_𝑒𝑙,𝑏 ×

𝑇

𝑡=1

(𝐿𝑡
𝑒 − 𝑃𝑡

𝑒𝑙 − 𝑃𝑡
𝑃𝑉 − 𝑃𝑡

𝑊𝑇)      𝐿𝑡
𝑒 < 𝑃𝑡

𝑒𝑙 + 𝑃𝑡
𝑃𝑉 + 𝑃𝑡

𝑊𝑇

∑𝑃𝑡
𝐶𝐻𝑃_𝑒𝑙,𝑏 ×

𝑇

𝑡=1

(𝑃𝑡
𝑒𝑙 + 𝑃𝑡

𝑃𝑉 + 𝑃𝑡
𝑊𝑇 − 𝐿𝑡

𝑒)      𝐿𝑡
𝑒 ≥ 𝑃𝑡

𝑒𝑙 + 𝑃𝑡
𝑃𝑉 + 𝑃𝑡

𝑊𝑇

 

(18) 

𝐸𝐿,ℎ =∑𝑃𝑡
𝐶𝐻𝑃_ℎ ×

𝑇

𝑡=1

𝐿𝑡
ℎ 

(19) 

𝐸𝐶𝐸𝑇 = (𝑒𝑠
𝑐ℎ𝑝

×
𝑃𝑡
𝑒𝑙

𝜂𝑒
𝐶𝐻𝑃 +∑𝑒𝑠

𝐺𝑟𝑖𝑑 × (𝐿𝑡
𝑒 − 𝑃𝑡

𝑒𝑙 − 𝑃𝑡
𝑃𝑉)

𝑇

𝑡=1

− 𝐸𝑎𝑙) × 𝛿𝑠𝑡𝑒𝑝
𝑐𝑎𝑟𝑏𝑜𝑛 

(20) 

𝐸𝑝𝑟𝑜𝑓𝑖𝑡 = 𝐸
𝐿,𝑒 + 𝐸𝐿,ℎ + 𝐸𝐺,𝑒 − 𝐸𝐶𝐸𝑇 −∑𝐸𝑡

𝐶𝐻𝑃

𝑇

𝑡=1

 

(21) 

Where: 𝑇 is the synthesis of all periods of the day; 𝑃𝑡
𝑃𝑉 is the power generation of PV; 𝑃𝑡

𝑊𝑇the power gener-

ation of WT; 𝐸𝑎𝑙 is the overall carbon emission quota of the Park IES, 𝑒𝑠
𝑐ℎ𝑝

 represents the emission coefficient of 

CHP; 𝑒𝑠
𝐺𝑟𝑖𝑑  indicate the indirect emission coefficient of purchased power; and 𝛿𝑠𝑡𝑒𝑝

𝑐𝑎𝑟𝑏𝑜𝑛 is the stepped carbon trad-

ing price with reward and penalty factors. 

4.2  Model solving equation and process of master and slave game 

The objective of Park IES operators is to maximize revenue, based on which they design the optimal electricity 

and heat pricing schemes. The pricing strategy of the upper-level MGO is initialized and updated by a genetic algo-

rithm. After receiving prices from the upper-level MGO, the lower-level UA uses CPLEX solver to determine the 

optimal revenue. The process flow diagram is shown in Figure 4. 
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Figure 4 Solving method and process of multi-agent master and slave game model in the park 

5 case analysis 

The study's example is a Park IES in a city of Guangdong China. Assuming one day is divided into T=24 periods, 

The power characteristics of WT obtained by calculating, based on the wind speeds of the park IES, according to the 

Ref[30], the characteristics of thermal and electric loads, PV output, parameters of CHP from microgrid operators, 

time-of-use electricity price from the grid and upper and lower limits of thermal and electric loads from park users 

are referred to in Ref[31]. The relevant parameters of EVs and GBDT algorithm are cited from Ref[26]. To reflect the 

reality that there are multiple users in the park, calculations are carried out for different user energy demands. The 

historical data of the EV cluster is processed using GBDT method. For the introduced model of Park IES featuring 

reward-penalty mechanism for carbon trading as well as flexible storage load characteristic of EVs, comparison anal-

yses were made among four scenarios through MATLAB simulation. Moreover, relative advantages of proposed 

models were analyzed from economic perspective and carbon emission aspect regarding Park IES. The four scenarios 

are set up as follows: 

Scenario 1: no EV, excluding the stepped carbon trading mechanism; Scenario 2: consider EV, no the stepped 

carbon trading mechanism; Scenario 3: consider the stepped carbon trading mechanism, no EV; and Scenario 4: 

consider EV and the stepped carbon trading mechanism. The optimized run results for the 4 scenarios are shown in 

Table 1. 

Table 1 Benefit and cost analysis of different scenarios 

scene Operator revenue / 

yuan 

User revenue / 

yuan 

EV revenue / yuan Carbon trading 

cost / yuan 

carbon emission 

/kg 



1 11876  25357    39308  

2 13581  23928  2688   38089  

3 7768  27087   5291  33101  

4 7328  27651  2609  4683  30927  

According to data presented in Table 1, it indicates that considering either carbon trade (scenario 3) or charging 

station for EV(scenario 2), compared with considering regular storage device without considering EV charging sta-

tion or mechanism for carbon trade (scenario 1), can lead to higher Profits for Park IES operators. Specifically, sce-

nario 2's model based on flexible storage load brought about by Electric Vehicles resulted in a CO2 emission reduction 

by as much as 1219 kg compared with scenario 1, while income from park users and EVs increased by 1429 yuan. 

This outcome is due to the addition of EVs, as park users can opt to purchase electricity from EV charging stations 

when the price offered by Power Gid operators is relatively high, thereby reducing their energy purchasing costs. 

This also encourages a reduction in CHP output and decreases carbon emissions from Park IES. 

In Scenario 3, by considering the carbon trading mechanism, compared with scenario 1, the carbon emissions 

of the park IES are reduced by 6207 kg. This is because after the addition of the carbon trading mechanism, in order 

to promote the system emission reduction, the output of CHP on the side of the micro grid operator decreases. Users 

in the park give priority to power supply for their own electric load, reduce the charge time of EVs, increase the heat 

purchase from the CHP, and increase the energy cost. 

Combining the advantages of scenario 2 and 3, scenario 4 reduces the carbon emission by 7162 kg and 2174 kg 

respectively compared with scenario 2 and scenario 3, greatly reducing the carbon emission of the park IES; Mean-

while, compared with scenario 3, the revenue of park users in scene 4 is increased by 564 yuan after joining EV. It is 

proved that the carbon emission of the system can be greatly reduced by adding the flexible load storage model based 

on EV. In addition, the overall income of the park IES has been increased to a certain extent. Compared with the 

traditional energy storage equipment, it not only reduces the early investment cost of the park, but also brings addi-

tional economic income to the users and the park IES. 

 

Figure 5 Optimal power balance strategy in scenarios 1 
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Figure 6 Optimal power balance strategy in scenarios 4 

Figure 5 and Figure 6 shows power balance curves for electricity and heat among Park Users under scenarios 

one and four respectively. Compared with scenario one that considers energy storage devices replacing them in park 

IES with models based on flexible storage load brought about by EVs while considering stepwise carbon trading 

featuring rewards-penalties factor (scenario four) reveals more available periods where transferable loads or reduced 

loads are available for user three under scenario four. This is because to reduce their own energy costs, park users opt 

to transfer flexible load from high energy price periods to low energy price periods, proving that models based on 

flexible storage load characteristic brought about by EVs can improve flexibility of loads on Park User side. At the 

same time within periods where heat supply price from microgrid operators exceeds their power supply price com-

pared with scenario one there are more instances in scenario four where park users choose to use electric heating 

devices indicating a higher degree of flexibility in their electric-thermal loads and that incorporating stepwise carbon 

trading mechanism featuring rewards-penalties factor can better encourage park users to use electric heating devices 

thereby reducing both system's CO2 emissions as well as energy costs. 



 

Figure 7 Optimal power balance strategy in the park in different scenarios 

Figure 7 presents the total energy storage capacity changes in EV charging stations and the charging-discharging 

power variations across different stations. According to the electricity variation diagram of the sets, it is observed 

that the EVs opts for charging during 00:00—09:00, 14:00—18:00, and 21:00—24:00 periods. This is due to lower 

time-of-use electricity prices during these periods, which allows for cost reduction through charging. During periods 

with higher prices from10:00—14:00 and18:00—21:00, varying degrees of discharging operations are observed 

among EVs. This indicates that park users choose to obtain electricity from EVs when prices are high which conse-

quently reduces their own energy purchasing costs. Moreover, Figure 7 also demonstrates that when the charging-

discharging power of the EV cluster is within dispatchable potential boundaries, models based on flexible storage 

load characteristic brought about by EVs exhibit strong robustness offering surplus energy storage for future planning 

in parks. 

6 conclusion 

This study constructs a IES suitable for industrial park. In light of issues such as high initial investment in park 

energy storage devices, it proposes using the flexible load characteristics based on the dispatchable potential of EV 

sets to participate in the dispatch process. Simultaneously, a master-slave game model between microgrid operators 

and park users is established, effectively increasing park user income, and significantly reducing system carbon emis-

sions, achieving a win-win situation for both parties. The main conclusions obtained are as follows: 

1) The proposed model fully exploits the flexible load characteristics of EV sets. EV charging stations autono-

mously decide their charging and discharging processes, bringing benefits to the park while also reducing its carbon 

emissions. Furthermore, models based on flexible storage load characteristic brought about by EVs exhibit strong 

robustness and extendibility, providing surplus energy storage for future planning in parks. 

2) The incorporation of models based on flexible storage load characteristic brought about by EVs can enhance 

the flexibility of loads from park users' side, lower their energy costs and provide insights for upper-level microgrid 

operators' pricing strategies. 
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3) After introducing a carbon trading mechanism, microgrid operators change their own energy selling strategy 

by adjusting CHP unit outputs. After comparison, carbon emissions from the system fell 15%, proving that introduc-

ing stepwise carbon trading mechanism with reward-penalty factor has some advantages in reducing carbon emis-

sions. The strategy proposed in this article utilizes EV's flexible load characteristics to reduce park's energy costs 

which is conducive to building IES under "dual-carbon" goals within parks. 

If there are no gas turbine units among park IES operators then this paper's model can be simplified: Park IES 

operators purchase power from grid then sell it to users to gain profits; thermal part would depend on each user's 

situation where they either generate heat or purchase it externally while models based on flexible storage load char-

acteristic brought about by EVs will still provide users with energy storage services. Future research will further 

explore the application of EV route planning in IES within parks and the cooperative game process among users 

within park users. 
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