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Abstract 10 
For high-density cities, it is necessary for city managers to achieve precise regulation of carbon emissions and 11 
sequestration. For reference, taking Dongguan as example, this study proposed a complex framework to identify 12 
weak areas of urban land use carbon metabolism in high-density city. On the basic of defining the urban land use 13 
carbon metabolism units, LEAP, Markove-PLUS, and LANDIS model were applied to spatialize land use carbon 14 
emissions and carbon sequestration. Finally, the weak areas of urban land use carbon metabolism were clearly 15 
indicated through overlapping the spatial pattern of land use carbon emissions and sequestration. Accordingly, 16 
carbon emissions limit regions can be delimited, and its carbon emissions are recommended to be metabolize 17 
through connecting the limit regions to green spaces with various ecological corridors. The results will serve as 18 
a foundation to plan and control carbon emissions in high-density cities that are similar to Dongguan in 19 
international communities. 20 
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1. Introduction 22 

Although urban areas only make up 2% of the world’s surface area, they are responsible for around 75% 23 

of the world’s carbon dioxide emissions [1]. Dongguan, a manufacturing city in the east of China’s Pearl 24 

River Delta, it has undergone rapid industrialization in the past 30 years. Large tracts of vegetated 25 

surfaces were replaced with built-up land to support the growth of manufacturing. This highly 26 

unbalanced carbon emissions and sequestration caused variations in carbon metabolism among different 27 

land use types and geographic areas. Due to the barrier of buildings, carbon metabolism in high-density 28 

cities may not have obvious spatial correlation and spillover effect [2]. In order for city administrators 29 

to implement targeted measures to control carbon catabolism in high-density cities, it is necessary to 30 

develop specific ideas to identify weak areas of urban carbon metabolism. In an effort to gauge the 31 

degree of carbon emissions from cities, the urban carbon metabolism (UCM) concept was applied [3]. 32 

Researchers have paid close attention to this theory, which was first proposed by Baccini [4]. Recently, 33 

it was found it crucial to quantify urban carbon emissions and sequestration of both natural and 34 

anthropogenic components [5]. 35 

Ideas for accounting UCM can be divided into two categories [6]. The first category is to build 36 

top-down models that extend to the energy and climate systems based on traditional economic models 37 

[7]. Although top-down models were suitable for exploring the path of carbon metabolism under 38 

macroeconomic policies, climate policies and energy policies, they are insufficient to predict regional 39 

carbon metabolism and difficult to explain the related processes such as economic refinement, 40 

technological progress and regional linkage [8]. Another category is to build bottom-up models which 41 

evolves to the economic and environmental modules based on energy economic model [9]. Bottom-up 42 

models are more suitable for technical decision-making of energy supply and demand forecast. Among, 43 

Long-range Energy Alternatives Planning System model (LEAP) was widely employed to analyze the 44 

energy consumption and carbon emissions [10]. Nonetheless, in quantifying process, less consideration 45 

was given to the attribute difference of natural environment, which leads to insufficient spatial analysis 46 

of UCM [11]. Thus, the quantifying results may be too rough to be applicable for identifying weak areas 47 

of UCM at urban scale. In order to present spatial processes, UCM therefore should concentrate on 48 

carbon flows caused by land use cover & change (LUCC) between the different components of the 49 

urban land system [13]. To describe the relationship between LUCC and UCM, urban land use carbon 50 

metabolism (ULUCM) was advanced [14]. Methods for accounting ULUCM included field surveys, 51 

the process method, and the remote-sensing method [15]. In addition, scholars have combined empirical 52 

data, remote-sensing data, and geographic information to give better spatial expression of ULUCM. 53 

Traditional prediction models, such as CA and Markov model, were widely applied in simulating land 54 

use carbon emissions and sequestration at urban scale [16]. These studies are benefit for describing the 55 



pattern of land-use changes, enabling policymakers to create site-specific regulations that will limit 56 

land-use change in ways that boost carbon sequestration or lower carbon emissions. Current spatial 57 

pattern of ULUCM as well as its weak areas can be accurately distinguished.  58 

However, LUCC is a dynamic change process, the spatial pattern as well as weak areas of 59 

ULUCM will change accordingly. In the process of setting scenario parameters and accounting land use 60 

carbon coefficient, more attention was paid to historical law of land use change, less consideration was 61 

given to the demand of energy consumption require for socio-economic and industrial development. 62 

That is, results of carbon emissions prediction of energy consumption at regional scale may not 63 

consistent with the simulated pattern of land use carbon emissions at urban scale. If so, it will not be 64 

accurate enough to simulate the future spatial pattern of ULUCM. In order to implement targeted 65 

measures to reduce carbon emissions and increase carbon sequestration for high-density cities, UCM 66 

research should shift the focus to identify the weak areas of ULUCM that are consistent with the future 67 

demand of energy consumption required for socio-economic and industrial development.  68 

Therefore, this paper integrated the ideas of scenario simulation of carbon emissions from 69 

energy consumption, simulation of land use carbon emissions, and estimation of land use carbon 70 

sequestration, to build special model that can identify the weak areas of ULUCM in consistent of future 71 

possible energy consumption. As shown in Fig. 1, the following aspects were addressed: 1) To predict 72 

the total carbon emissions from energy consumption of urban area under various carbon emissions 73 

reduction measures according to current situation of socio-economic development and industrialization 74 

with LEAP model; 2) To map the predict total carbon emissions on the future land use pattern to simulate 75 

the future land use carbon emissions pattern with Markov-Plus model; 3) To simulate the spatial pattern 76 

of future land use carbon sequestration according to the distribution of current urban green space and 77 

plant growth situation with LANDIS model; 4) To overlay the spatial pattern of land use carbon 78 

emissions and sequestration for the identification of ULUCM weak areas. 79 

 80 
Figure 1. The Research Roadmap 81 

2. Material and data sources 82 

2.1. Study area 83 

Dongguan, which located in the east of Pearl River delta Economic Zone, Guangdong Province, China 84 

(Fig.2). It is a high-density city which covers approximately 246,011.53 ha, 48.37% of which is built-85 

up land. It contains six sub economic zones. Many ecological lands were turned into built-up areas as a 86 

result of industrialization, which dramatically increased the urban greenhouse effect and created a 87 

significant imbalance in UCM. Therefore, Dongguan is a typical city to study the coupling of macro 88 

prediction of energy consumption and micro-optimization of ULUCM pattern. 89 

Considering that relevant policies need to be implemented by administrative districts, the 90 

administrative area of 672 village/block was set as ULUCM units.  91 

2.2. Data Resources and Processing 92 

This paper takes 2020 as the base year and 2030 as the target year. Data and parameters include energy 93 

consumption intensity data, tree species parameters, terrain elevation, etc. It is derived from the 94 



Guangdong Implementation Plan of Near Zero carbon Emission Zone Demonstration Project, the 95 

Guangdong 14th Five-Year Energy Plan, the Dongguan National Economic and Social Development 96 

14th Five-Year Plan and 2035 Vision Goals Outline, the Dongguan Energy 14th Five-Year Plan, the 97 

Dongguan Ecological Environment 14th Five-Year Plan, and so on. 98 

Land-use vector map and remote sensing image (1:2000) were provided by department of natural 99 

resources. Raster Data on population density was downloaded from Open Spatial Demographic Data 100 

and Research (https://www.worldpop.org/). Point-of-interest data was collected from Google Earth. 101 

Raster data for GDP was collected from Zhao (2017)’s research results. All pertinent data were merged 102 

into a geographic information system database using ESRI Corporation’s ArcGIS v10.2 software [17]. 103 

Urban land-use categories were identified using vectors with open-street maps and points-of-interest, 104 

as well as classification and visual interpretation of remote sensing monitoring. In order to connect the 105 

land use type with the industry type in the LEAP model, land use types were divided into eight categories: 106 

agricultural & forest land, green space, industry land, architecture land, specially-designated land, traffic 107 

land, water area, and unutilized land. 108 

 109 
Figure.2 The location of the study area of Dongguan 110 

3. Methodology 111 

3.1. Simulating land use carbon emissions pattern 112 

3.1.1 Predicting carbon emissions of energy consumption 113 

As LEAP model has low requirements on data richness and differentiation, and can realize specific 114 

scenario simulation, it is very suitable for predicting carbon emissions of urban energy consumption. 115 

Scenario comparison is the core function of LEAP model. For comparison, three scenarios are defined 116 

as follows: 1) Baseline scenario, which continues current Dongguan’s social and economic development, 117 

without considering the innovative application of new technologies and the implementation of new 118 

carbon emissions reduction policies. 2) Emission-reduction scenario, which refers to increasing urban 119 

emissions reduction measures based on baseline scenarios, such as increasing forestry carbon sinks. 3) 120 

High-limit scenario, which refers to the maximum increase of urban emissions reduction measures 121 

based on baseline scenario, such as promoting the large-scale and commercial application of carbon 122 

capture. 123 

As Tab.1 shown, according to the parameter requirements of LEAP model, the model structure 124 

was set by retrieving statistical data. Based on baseline scenario, referring to local government’s 125 

requirement and model decomposition, parameters of scenario indicators in three scenarios were set as 126 

Tab.2. 127 

Table.1 LEAP Model Structure Setting 128 
Department Activity level Energy intensity Energy structure Emission factor 

Urban dweller 

Permanent urban population 

* per capita housing floor 

area of urban residents 

Energy consumption of residential 

area of urban units 

Proportion of non-fossil 

energy (electricity, heat), 

proportion of fossil 

energy (coal, oil, gas, 

etc.) 

CO2, CH4 (residential and 

agriculture, forestry, animal 

husbandry and fishery), N2O 

default values Rural dweller 

Rural permanent population 

* per capita housing floor 

area of rural residents 

Energy consumption per 

residential area in rural areas 



Table.2 Parameters setting of scenario indicators 129 

Scenario indicators Parameters setting (by 2030) Baseline  
Emission-

reduction  
High-limit  

Measure of baseline scenario Current policy measures and technological level √ √ √ 

Optimizing industrial structure Increasing the proportion of the tertiary industry to 65% - √ √ 

Improving 

energy 

efficiency 

Optimizing 

Energy intensity in manufacturing and construction will be cut by 2% 

annually, and in agriculture and forestry by 4%. All urban residential 

buildings and rural residential-commercial buildings will be covered 

by the 50% and the 45% energy saving standard. By 2030, energy 

intensity of operational transportation will be reduced by 74% and that 

of private cars by 43.8%. 

- - - 

Strengthening 

Energy intensity in manufacturing and construction will be cut by an 

average of 4% annually, and in agriculture and forestry by 6%. Energy 

conservation standards for urban housing and rural residential and 

commercial buildings will be fully covered by 65% and 50 percent 

respectively. Energy intensity of operational transportation will be cut 

by 75%, and that of private cars by 46.4%. 

- √ √ 

Electrificati

on 

Optimizing 

Annual consumption of non-fossil energy in manufacturing, 

construction, agriculture & forestry, urban housing, rural housing, 

commercial buildings, business transportation, and new energy 

vehicles will account for 60%, 40%, 60%, 70%, 80%, 85%, 30%, and 60%, 

respectively. 

- √ - 

Strengthening 

Annual consumption of non-fossil energy in manufacturing, 

construction, agriculture-forestry, urban housing, rural housing, 

commercial buildings, business transportation, and new energy 

vehicles will account for 80%, 80%, 80%, 80%, 90%, 95%, 60%, and 80%, 

respectively. 

- - √ 

Traffic 

Optimizing 
Operational traffic efficiency was optimized by 30%, and private cars 

in non-operational traffic was reduced by 30% 
- √ - 

Strengthening 
Operational traffic efficiency was optimized by 45%, and private cars 

in non-operational traffic was reduced by 50% 
- - √ 

Clean 

electricity 

Optimizing Non-fossil energy will account for 70% of electricity generation - √ - 

Strengthening Non-fossil energy will account for 80% of electricity generation - - √ 

commercialization of CCUS 
CCUS will be commercialized on a large scale, and the capture rate of 

carbon emissions from industrial fossil energy will reach 8.5% 
- - √ 

Forestry carbon sequestration Forest coverage will reach 42% - √ - 

3.1.2 Simulation of land use pattern 130 

The future land use pattern can be simulated according to the following step:  131 

Definition of Markov model. Markov model was selected as the simulation model to predict the 132 

number of land use types and simulate the land use pattern under the adaptive inertial cellular automata 133 

mechanism. The principle was: 134 

t+1 ij tS P S= 
 (1) 

Business service 

construction 

Area of commercial service 

land * average resident 

population density of 

commercial service land 

Per capita consumption of fossil 

energy (coal, oil, gas, etc.) per unit 

land area of commercial service 

buildings Proportion of non-fossil 

energy (electricity, heat) 

CO2, CH4 (business and 

institutions), N2O default 

values 

Operational traffic 

Permanent population * 

total passenger and freight 

turnover per capita 

Per unit passenger-freight 

turnover energy consumption 

ratio of fossil energy (coal, oil, gas, 

etc.) 
CO2, CH4 (energy and 

transportation), N2O default 

values 
Non-operational 

traffic 

Permanent resident 

population * number of 

private cars per capita 

Annual electricity consumption 

per unit of new energy private 

cars Proportion of fossil energy 

private cars (diesel, gasoline) 

Proportion of new 

energy private cars 

(electricity) 
Annual energy consumption 

of private cars per unit of 

fossil energy 

Manufacturing 

industry 
Industrial added value 

Percentage of fossil energy 

consumption per unit of industrial 

added value (coal, oil, gas, etc.) 

Proportion of non-fossil 

energy (electricity, heat) 

CO2, CH4 (manufacturing 

and construction), N2O 

default values Construction 

industry 

Value added of construction 

industry 

Percentage of fossil energy 

consumption per unit value added 

of construction industry (coal, oil, 

gas, etc.) 

Agriculture and 

forestry 

production 

Value added of the primary 

industry 

Percentage of fossil energy 

consumption per unit value added 

of primary industry (coal, oil, gas, 

etc.) 

CO2, CH4 (housing and 

agriculture, forestry, animal 

husbandry and fishery), N2O 

default values 

Forestry carbon 

sequestration 

Land area * forest coverage rate, proportion of newly increased 

forest area, carbon sink per unit afforestation area 

Proportion of original 

woodland area 

Carbon sequestration per 

unit of forest area 



where St+1, St represent the the land use status in period t+1 and t; Pij is the probability that land use 135 

type i converted to land use type j. 136 

Definition of PLUS model. The PLUS model was created using the Cellular Automata Model 137 

Based on Multitype Random Patch Seeds (CARS) and the Land Spread Analysis Strategy’s (LEAS) 138 

rule mining framework. In this study, LEAS module was applied, which overlays the land use data of 139 

two periods to extract the cell with changing state from the late data of land use data, representing the 140 

change area of each land use type. On this fundamental level, it applied the double decision random 141 

forest classification algorithm to transform the mining of each land use type’s conversion rules into a 142 

binary classification problem. The expression is: 143 

d 1
, ( )

( ( ) )
M

n

n
i k x

I h x d

P
M

=

=

=


 

(2) 

where 
d

, ( )i k xP
 is the development probability of land use type k in unit i. d has a value of 0 or 1. When 144 

d =1, represents that other land use types have changed into type k. When d=0, represents the 145 

transformation of land use type into other types except k. x refers to a vector made up of multiple driving 146 

factors. I refer to the indicator function of the decision tree. hn(x) refers to the prediction type of decision 147 

tree n of vector x. M is the total amount of decision trees. 148 

Simulation of land use pattern. First, the expansion part of LUCC from 2010 to 2020 was 149 

extracted, and the significant factors that affected LUCC expansion were found out. Alternative factors 150 

include population, GDP, distance to road, distance to water area, slope, average annual temperature, 151 

and average annual precipitation. Second, based on LUCC’s conversion rule, Dongguan’s land use types 152 

and its amount in 2030 were predicted. Third, setting nature reserves as restricted areas, cellular 153 

automata with adaptive inertia mechanism in PLUS model was applied for spatial transformation 154 

allocation. Finally, the land use pattern in 2030 was simulated. 155 

3.1.3 Simulation of land use carbon emissions pattern 156 

The land use carbon emissions coefficient is the key to simulate land use carbon emissions pattern. Its 157 

relationship between carbon emissions of energy consumption and various land use types was set as 158 

follows: 159 

ni 1 1 2 2( )n n iCEEC AT A T A T= + + +
 

(3) 

where niCEEC  represent carbon emissions of energy consumption in scenario i that were predicted 160 

using LEAP; Tn refer to the total area of land use type n; An refer to the land use carbon emissions 161 

coefficient of land use type n, which were estimated by nonlinear fitting function on Matlab platform.  162 

We multiplied the area of each land unit that simulated by Markov-PLUS model with land use 163 

carbon emissions coefficient of the corresponding land use type respectively to obtain the carbon 164 

emissions of each land unit. Finally, ArcGIS software was applied to summarize carbon emissions of 165 

land units to ULUCM units, and carbon emissions on ULUCM units were calculated. 166 

3.2. Simulating land use carbon sequestration pattern 167 

LANDIS model was applied to define the ecological carbon sequestration potential level based on the 168 

vegetation growth and dominant tree species in the landscape patch. In the process of community growth 169 

and succession in the landscape patch, the richer the species diversity, the higher the distribution 170 

uniformity and the larger the distribution space of the tree community, the greater its carbon 171 

sequestration potential. 172 

The classification for site types. To run LANDIS model, the regions should be divided into 173 

effective and ineffective regions. Ineffective regions were industrial and mining land, transportation and 174 

other construction land, water and other non-forest land, while effective regions were divided into 8 site 175 

types according to local elevation, slope, aspect of slope, and tree growth habits (Tab.3). 176 

Table.3 Classification criteria for site types 177 
Serial number Slope Aspect Altitude Area (km

2
) 

S0 ≤25° Sunny slope ≤150 357.65 

S1 ≤25° Sunny slope >150 51.07 

S2 ≤25° Shade slope ≤150 402.12 

S3 ≤25° Shade slope >150 153.59 

S4 ＞25° Sunny slope ≤150 18.41 

S5 ＞25° Sunny slope >150 28.27 



Serial number Slope Aspect Altitude Area (km
2
) 

S6 ＞25° Shade slope ≤150 132.11 

S7 ＞25° Shade slope >150 141.67 

S8 Non-forest 1578.36 

Tree species parameter setting. Based on the forest characteristics of tree species, we selected 178 

the dominant species in the vegetation community as the model tree species. Dongguan’s forest 179 

vegetation type is mainly the South Asian monsoon evergreen broad-leaved forest. Therefore, camphor 180 

tree, masson pine, China fir, moso bamboo, tung tree and schima root-bark were selected as simulation 181 

tree species. In addition, based on field investigation and expert consultation, we set the life history 182 

characteristic parameters of the above tree species as simulation parameters (Tab.4). 183 

Table.4 Life history characteristic parameters of main tree species 184 

Tree 

species 
Life(age) 

Maturation 

age 

Shade 

tolerance 

Fire 

resistance 

Effective travel 

distance(m) 

Maximum 

propagation 

distance(m) 

Germination 

probability 

Germination 

age 

camphor 

tree 
200 30 5 1 63 200 0.66 6 

Masson 

pine 
300 10 4 1 250 1000 0 0 

China fir 200 10 5 1 200 750 0.2 3 

Moso 

bamboo 
60 10 2 1 250 800 0.3 2 

Tung tree 260 40 4 4 100 500 0.5 4 

Schima 

root-bark 
300 20 5 5 50 200 0.68 5 

Simulation of land use carbon sequestration pattern. Though the LANDIS model can be applied 185 

to predict the future vegetation type and distribution, it is difficult to accurately estimate the absolute 186 

amount of land use carbon sequestration. As previously mentioned, the amount of carbon sequestration 187 

is closely related to the area, shape and uniformity of vegetation. Therefore, we proposed carbon 188 

sequestration potential (CSP) from the above aspects to represent the relative value of carbon 189 

sequestration on ULUCM units, and to predict the future pattern of land use carbon sequestration. CSP 190 

on ULUCM units was calculated as follows: 191 

( ) ( ) _ ( ) ( )ULUCM i PLAND i a FRAC MN i b Al i cCSP Std Std Std  = • + • + •  (4) 

where CSPULUCM(i) represents the carbon sequestration potential on ULUCM unit i;  StdPLAND(i) 192 

represents the standardized value for the proportion of vegetation area on ULUCM unit i to the total 193 

vegetation area (PLAND). StdFRAC_MN(i) represents the standardized value for the mean fractal dimension 194 

index of vegetation patches on ULUCM unit i (FRAN_MN); StdAl(i) represents the aggregation index of 195 

vegetation patches on ULUCM unit i (AI); ωa, ωb, and ωc represents the weight of StdPLAND(i), 196 

StdFRAC_MN(i), and StdAl(i), they were set as 0.4, 0.3, and 0.3, respectively. PLAND, FRAC_MN, and AI 197 

were calculated on Fragstats 4.2 platform. 198 

3.3. Identifying the weak areas of ULUCM 199 

The carbon metabolism capacity on ULUCM units were calculated according to: 200 

( ) ( ) / ( )i i iULUCM CE CS=
 (5) 

where (𝑈𝐿𝑈𝐶𝑀)𝑖 , (𝐶𝐸)𝑖 , and (𝐶𝑆)𝑖  represent the capacity of ULUCM, carbon emissions, and 201 

carbon sequestration on ULUCM unit i, respectively. Natural breakpoint classification method was 202 

applied to divide ULUCM’s capacity into 4 levels (strong area, sub-strong area, sub-weak area, and 203 

weak area).  204 

4. Results 205 

4.1. Carbon emissions from energy consumption 206 

As Fig.3a, 3b, and 3c shown, the total carbon emissions in 2030 were 71.2 Mt, 51 Mt, and 43.8 Mt in 207 

baseline, carbon-reduction, and high-limit scenario, respectively. In baseline scenario, Dongguan’s 208 

carbon emissions of energy consumption increase to 71.2 Mt in 2030. In carbon-reduction scenario, 209 

because of energy efficiency optimization, electrification optimization and other measures, the carbon 210 

emissions rise slowly to 51.0 Mt in 2030, 28% lower than baseline scenario. In high-limit scenario, due 211 

to the strict implementation of emissions reduction measures, the terminal energy consumption 212 

continues to decline, and the carbon emissions in 2030 are only 43.8Mt, 38% lower than baseline 213 

scenario. As the baseline scenario takes the current policy measures and technology level as the 214 

development direction, Dongguan’s final energy consumption will continue to rise, and it is difficult to 215 



achieve the carbon peak in 2030. In carbon-reduction scenario, measures such as industrial structure 216 

optimization, energy efficiency improvement, electrification, and promotion of clean electricity are 217 

added on the basis of the baseline scenario, so the terminal energy consumption is expected to rise 218 

slowly and carbon peak is expected to be achieved in 2030. In high-limit scenario, the emissions 219 

reduction measures are further strengthened, and the terminal energy consumption can be effectively 220 

reduced before and after 2025, and the carbon peak goal can be achieved in advance. 221 

In the carbon emissions structure, the LEAP model is broken down into four major industries, 222 

namely construction, transportation, industry, and agriculture and forestry. Overall, the industrial sector 223 

accounts for the largest share of carbon emissions. In all three scenarios, industrial carbon emissions 224 

account for more than 50% of total carbon emissions. In baseline scenario, industrial carbon emissions 225 

in 2030 can reach 39.25 Mt, and the carbon-reduction scenario and high-limit scenario can reach 28.44 226 

Mt and 25.58 Mt, respectively. In the transportation industry, due to the developed warehousing and 227 

logistics industry in Dongguan, transportation energy consumption is large. Even if emissions reduction 228 

measures are implemented, the transportation carbon emissions in the baseline scenario still increase 229 

significantly. However, the traffic carbon emissions of carbon-reduction scenario and high-limit 230 

scenario can be effectively controlled under emissions reduction measures, and the growth is slow. 231 

Among them, the transport carbon emissions in carbon-reduction scenario will increase to 13.4 Mt in 232 

2030, and in high-limit scenario will increase to 9.7 Mt in 2030. Compared with baseline scenario, 233 

carbon-reduction and high-limit scenario are more effective in energy conservation and emissions 234 

reduction measures, and the carbon emissions of industries can be effectively controlled. 235 

As Fig.3d, Fig.3e shown, in carbon-reduction scenario, the biggest contribution is the 236 

improvement of energy efficiency, which will reduce carbon emissions by 63.21 Mt. This is followed 237 

by electrification, which can reduce carbon emissions by 37.10 Mt. In high-limit scenario, the most 238 

effective carbon reduction measures are also the improvement of energy efficiency and electrification. 239 

In conclude, measures of energy efficiency improvement and electrification have a significant effect on 240 

reducing carbon emissions in the short term.  241 

 242 
Figure.3 Total carbon emissions of different industries under different scenarios (a, b, c) and 243 

contribution of different measures to carbon reduction (d, e) 244 

4.2. Carbon emissions on ULUCM units 245 

Fig.4a, Fig.4b, and Tab.5 depict the the land use structure in 2030 simulated with Markov-PLUS model. 246 

The expansion of industry and architecture land will occupy part of agricultural & forest land, green 247 

space, and water area. The expansion mainly occurs in the dam area, river valley and low-lying area, 248 

although the expansion area is small, the scope is small, but the expansion ratio is large. Accordingly, 249 

the land use carbon emissions coefficient of agricultural & forest land, industry land, architecture land, 250 

and traffic land in different scenario was calculated. Other land-use types are not for living and 251 

production, and the total area is generally decreasing, their carbon emissions were assumed to be zero. 252 

Finally, the land use carbon emissions pattern of three scenarios were mapped as Fig.4c, 4d, and 4e. On 253 



the whole, high carbon emissions regions are mainly concentrated in the central, southwest and 254 

southeast of Dongguan. These regions are characterized by high energy consumption and carbon 255 

emissions. Baseline scenario has the largest area of high carbon emissions regions, followed by the 256 

carbon-reduction and high-limit scenario. 257 

In carbon-reduction scenario, the proportion of non-fossil energy consumption in the 258 

manufacturing industry has dropped to 70%, which basically meets the requirements of the “Dongguan 259 

Energy 14th Five-Year Plan” (by 2030, the proportion of natural gas consumption of Dongguan should 260 

reach 39%, and the proportion of primary electricity and other energy consumption should reach 36%). 261 

In addition, under the premise of increasing forestry carbon sink, the forest coverage rate of Dongguan 262 

would reach 42% by 2030, exceeding the target of 37% coverage rate in “Dongguan Ecological 263 

Environment 14th Five-Year Plan”. Furthermore, if measures of clean power are further adopted, the 264 

proportion of non-fossil energy power generation in Dongguan would reach 70% in 2030, which meets 265 

the requirements of 49% non-fossil energy power generation in “Guangdong 14th Five-Year Energy 266 

Plan”.  267 

Finally, the distribution of high carbon emissions regions did not conflict with the forest parks 268 

and ecological protection areas in “Dongguan 14th Five-Year Ecological Environment Plan”. The high 269 

carbon emissions regions could be restricted by constructing ecological corridor, setting up carbon 270 

emissions expansion control belt and repairing ecological base. Comparatively speaking, the high-limit 271 

scenario is the idealized scenario. Although the land use carbon emissions pattern tends to be reasonable, 272 

measures such as electrification, traffic operation optimization, and clean electricity temporarily lack 273 

conditions for implementation. 274 

 275 
Figure.4 Land use pattern (a, b) and land use carbon emissions pattern (c, d, e) 276 

 277 

Table.5 Structural change and carbon emissions coefficient of different land types 278 

Land type 
Area Land use carbon emissions coefficient (t/ha) 

In 2020(ha) In 2030(ha) 2030-2020(ha) Baseline Carbon-reduction High-limit 

Agricultural & Forest 40551.48 29942.02 -10609.46 0.4065 0.3393 0.2234 
Green space 50013.98 36505.67 -13508.31 - - - 

Industry 44812.7 60210.3 15397.6 6.5190 4.7244 4.2481 

Architecture 45377.26 55735.45 10358.19 2.5659 1.4581 1.4097 

Specially-designated  1247.1 1464.08 216.98 - - - 

Traffic 26587.16 30505.6 3918.44 5.3862 4.3959 3.1784 

Water area 36003.06 31595.57 -4407.49 - - - 



Unutilized land 1418.76 52.81 -1365.95 - - - 

4.3. Carbon sequestration on ULUCM units 279 

As Fig.5a shown, Due to the restriction of construction land, there is little space for the natural expansion 280 

of vegetation in Dongguan’s. The vegetation growth in the eastern and southern arboreal communities 281 

was the best, and the vegetation distribution area was the widest. The total vegetation area is 87209.71 282 

ha, which account for 35.45% of Dongguan’s administrative area. According to the simulation results, 283 

though the total amount of camphor trees and masson pines are roughly equivalent, their distribution 284 

characteristics are significantly different. Through analyzing the distribution of tree species and the land 285 

use pattern in 2030, it was found that the total vegetation area reached 24250.56 ha in industrial land, 286 

architecture land, specially-designated land, and traffic land, which accounted for 27.81% of the total 287 

vegetation area. Therefore, even the construction land has sufficient conditions for vegetation growth. 288 

For Dongguan, in order to enhance the overall carbon metabolism capacity, in addition to expanding a 289 

large area of green space, enhancing the carbon sink capacity of non-green space is also a long-term 290 

way. 291 

As Fig.5b shown, the maximum, minimum, mean, and median CSP values are 92.98, 0, 43.84, 292 

and 44.69. Only three ULUCM units have a CSP value greater than 70. However, there are 492 ULUCM 293 

units with CSP values between 40 and 50. It can be seen that the overall land use carbon sequestration 294 

capacity of high-density city is relatively limited in terms of the current rule of vegetation growth. The 295 

enhancement of UCM capacity has to rely more on far-sighted polices and planning tools. In addition, 296 

the most correlated variable with CSP value is AI. The focus of future green space planning should be 297 

to connect the existing green space, not only to expand the area of vegetation. FRAC of vegetation is 298 

also a very important variable, however, it is difficult to have room for improvement due to the 299 

restriction of the construction land pattern. Thus, in non-green space, the focus of enhancing carbon 300 

sequestration should be to optimize the shape and improve the concentration of vegetation. 301 

 302 
Figure.5 Simulation of tree species (a) and carbon sequestration on ULUCM units (b) 303 

4.4. Identification of weak areas in ULUCM pattern 304 

As Fig 6a, 6b, and 6c shown, the distribution curve of CE/CS in baseline scenario and high-limit 305 

scenario is steep, which means that the difference of CE/CS between various ULUCM units is small. In 306 

addition, the absolute value of CE/CS in the baseline scenario is higher, while in the high-limit scenario 307 

is smaller. The distribution curve of CE/CS in carbon-reduction scenario is slightly flat, which means 308 

that the difference of CE/CS between various ULUCM units is more obvious.  309 

As Fig 6d, 6e, and 6f shown, because of the difference in total carbon emissions, the ULUCM 310 

units in Dongguan showed different patterns in three scenarios after they were dividing into 4 categories. 311 

After calculation, there were 47, 70, and 65 ULUCM units were identified as weak area in in baseline 312 

scenario, carbon-reduction scenario, and high-limit scenario, respectively. The covering area were 8088 313 

ha, 13177 ha, and 12717 ha, respectively. The average CE/CS was 0.14, 0.095, and 0.083, respectively.  314 



 315 
Figure.6 Frequency (a,b,c) and distribution (d,e,f) of CECS in three scenarios 316 

On the whole, due to the large growth rate of industrial land, the total carbon emissions of energy 317 

consumption in Dongguan will be maintained at a high level in the future. At the same time, the space 318 

for vegetation growth is insufficient. If it is left to develop freely, the capacity of ULUCM will become 319 

increasingly weak. Looking forward to 2030, the emission-reduction scenario requires more specific 320 

policies to curb the adverse effects of weak carbon metabolism areas. 321 

5. Discussions 322 

5.1. Advantages and disadvantages of the study framework 323 

Green space planning is the main measure to enhance the capacity of ULUCM. When planning urban 324 

green space, planners usually investigate the current conditions in detail to summarize the current 325 

patterns of carbon flow in cities. This is intended to identify the path for minimizing the disturbance to 326 

the stability of UCM system due to economic development and land expansion [11]. After distinguishing 327 

the weak area of ULUCM, the green space can be purposefully reconstructed to increase the carbon 328 

metabolism capacity and ecological benefit. However, green space planning is a relatively passive and 329 

backward means of administrative management. Although it can solve the problems existing in the past 330 

and current UCM system, it is difficult to take into account the impact of future economic and industrial 331 

development.  332 

The prediction for ULUCM pattern was an important step to understanding UCM 333 

comprehensively, as well as a scientific reference for designing targeted measures to reduce carbon 334 

emissions and increase carbon sequestration in planning high-density city area [18-20]. They mainly 335 

focused on the ULUCM pattern generated by LUCC pattern. However, the prediction of land use carbon 336 

emissions at urban scale may not consistent with carbon emissions prediction of energy consumption at 337 



regional scale. The influence of regional carbon reduction policies on ULUCM pattern is uncertain. By 338 

analyzing a typical case of a high-density urbanized area, this study conducted a complex ecological 339 

framework aimed at identifying the weak area of future ULUCM, which belongs to the applied study 340 

of simulating ULUCM pattern. This framework combines the principles of LEAP, Markov-Plus, and 341 

LANDIS models, which serves the following purposes: 1) To spatialize the carbon emissions from 342 

energy consumption predicted at regional scale. 2) To evaluate the carrying capacity of urban vegetation 343 

habitats for carbon emissions reduction strategies under different scenarios. 3) To identify the weak 344 

areas of ULUCM pattern in high-density cities, and help administrators locate the carbon sequestration 345 

nodes under specific scenarios.  346 

Therefore, compared with previous studies, the significance of this study framework is that the 347 

carbon emissions of urban energy consumption and land use expansion are taken into account in 348 

simulating the UCM pattern. The effect of urban carbon reduction policies can be clearly spatialized. 349 

The green space planning formed according to the simulated pattern can also reduce certain 350 

uncertainties. 351 

5.2. Rationality for the spatial pattern of weak areas 352 

The significance of this study’s methodology is that it simulates the UCM pattern while also accounting 353 

for the carbon emissions caused by urban energy consumption and land use expansion. This is consistent 354 

with the findings of most studies [11]. In the calculation process, we assumed that the carbon emissions 355 

of energy consumption mainly come from four land use types of agricultural & forest land, industry 356 

land, architecture land, and traffic land. ULUCM units that with larger area of the above four land use 357 

types should have weaker capacity of carbon metabolism. However, this law is not absolutely true. As 358 

Fig.7 shown, taking carbon-reduction scenario as example, we divided PLAND, FRAC, and AI into 359 

four categories of strong, sub-strong, sub-weak, and weak, to analyze the relationship between CE/CS 360 

and CSP on ULUCM units. We found that ULCUM units with strong PLAND can also be identified as 361 

areas with weak CE/CR (Fig. 7a, histogram ④); those with sub-weak PLAND could also be identified 362 

as areas with sub-strong CE/CR (Fig. 7a, histogram ②); those with sub-strong FRAC could also be 363 

identified as areas with sub-weak CE/CR (Fig. 7b, histogram ③); those with sub-strong AI could also 364 

be identified as areas with sub-weak CE/CR (Fig. 7c, histogram ③). It can be inferred that vegetation 365 

coverage is not a decisive factor for carbon metabolism. The reason is that the poor shape and 366 

concentration of vegetation on these ULUCM units makes their CSP at a low level. Even ULUCM units 367 

with high carbon emissions, if the vegetation on them has better shape and concentration, their carbon 368 

metabolism capacity will improve.  369 

Therefore, for the green space planning of high-density cities, it is necessary to focus on the 370 

optimization of the shape and concentration conditions of existing vegetation, rather than increasing the 371 

coverage area of vegetation. These results were in line with those of Wang et al. (2022), who took into 372 

account the factors influencing vegetation’s capacity to store carbon in the terrestrial environment [20].  373 



 374 
Figure.7 The relationship between CECR and PLAND(a), FRAC(b), AI(c) 375 

5.3. Practical applications for green space planning 376 

After identifying the weak areas of urban carbon metabolism, targeted methods can be adopted to 377 

reconstruct the existing green space. Here, according to the enlightenment from the result analysis, we 378 

selected the ULUCM pattern in carbon-reduction scenario as the object, and tried to form an 379 

optimization path and strategy. 380 

As Fig.8 shown, first, the weak areas of ULUCM were regarded as nodes for increasing carbon 381 

sequestration. Then, oxygen-source green space, carbon-source green space, and near-source green 382 

space of the study area were delimited according to the distribution of nodes and vegetation pattern 383 

simulated by LANDIS model. Among, oxygen-source green space is located upwind of the region and 384 

can provide the functions of carbon fixation, oxygen release and dust retention. It includes the green 385 

space between Coastal Economic Zone and Songshan Lake Industrial Zone, in the south of Songshan 386 

Lake Industrial Zone, and in the northeast of Southeast Economic Zone. Carbon-source green space is 387 

located downwind of the region and can effectively absorb urban carbon emissions. It includes the green 388 

space in the north of Water Township Economic Zone, in the north of Songshan Lake Industrial Zone, 389 

and in the north of East Industrial Zone. Near-source green space is located within the built-up area with 390 

local ecological function. Second, nodes were connected with similar spatial distances to form carbon 391 

emissions limit regions, which served as a barrier for carbon emissions from weak areas. Finally, various 392 

types of ecological corridors were delineated to connect the carbon emissions limit regions, so as green 393 

spaces can effectively metabolize carbon emissions from weak areas. 394 



 395 
Figure.8 The optimization of the green spaces based on the study results 396 

5.4. Limitations and suggestions for future research 397 

The study has some issues that need to be addressed in further. First, the study may have been biased 398 

because the spatial difference of carbon emissions coefficient was ignored in the process of simulating 399 

the land use carbon emissions pattern. The future land use carbon emissions coefficient in the study was 400 

calculated according to the total future carbon emissions from energy consumption and future land use 401 

area. In this way, the carbon emissions coefficient of each land patch in the region is the same. In fact, 402 

even in high-density cities, there are regional differences in carbon emissions. Although the difference 403 

may be small, it cannot be easily dismissed. This also makes the study framework may only be used in 404 

high-density cities currently. Therefore, how to accurately predict the difference of carbon emissions 405 

coefficient in different regions or even different land patches in the future is one of the key research 406 

points. 407 

Second, a comprehensive index was constructed using PLAND, FRAC and AI to represent the 408 

carbon sequestration potential of vegetation simulated by LANDIS model. The capability for 409 

sequestering carbon is, however, very strongly correlated with the kind and development of plants. 410 

According to the current simulation results, the proportion of camphor and masson pine is large, and 411 

the proportion of other tree species is small, so the simulation results can not be considered accurate. In 412 

addition, the study did not take into account the growth of vegetation in different regions. These also 413 

make the calculation of ULUCM capacity biased. Therefore, further research will be conducted on 414 

techniques to accurately simulate future tree species patterns and improve the calculation accuracy of 415 

carbon sequestration potential. 416 

Third, the ULUCM capacity was calculated by using the possible carbon emissions and carbon 417 

sequestration. This effectively assumed that ULUCM units were static and enclosed space. Previous 418 

studies have also shown that UCM is a dynamic process, which should be studied by using ecological 419 

network.  420 

6. Conclusions 421 

Using Dongguan as a research case, this study proposed a complex ecological framework to identify 422 

the weak areas of future ULUCM pattern for high-density region facing a situation with high and 423 

increasing energy consumption. Through overlapping the spatial pattern of land use carbon emissions 424 

and carbon sequestration simulated by LEAP, Markov-Plus, and LANDIS mode, the future weak areas 425 

of carbon metabolism were clearly indicated. The novelty of this study is that it combines the prediction 426 



of carbon emissions from energy consumption at regional scale, of land use carbon emissions pattern at 427 

urban scale, which expands the technology for simulating land use carbon metabolism pattern. With the 428 

help of these findings, urban planners will be better able to comprehend how patterns of carbon 429 

metabolism alter depending on the type of carbon emissions strategy being used. As a result, this article 430 

will serve as a foundation to plan and control carbon emissions in high-density cities that are similar to 431 

Dongguan in international communities. 432 
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