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For high-density cities, it is necessary for city managers to achieve precise regu-
lation of carbon emissions and sequestration. For reference, taking Dongguan as 
example, this study proposed a complex framework to identify weak areas of urban 
land use carbon metabolism in high-density city. On the basic of defining the urban 
land use carbon metabolism units, LEAP, Markove-PLUS, and LANDIS model 
were applied to spatialize land use carbon emissions and carbon sequestration. 
Finally, the weak areas of urban land use carbon metabolism were clearly indi-
cated through overlapping the spatial pattern of land use carbon emissions and 
sequestration. Accordingly, carbon emissions limit regions can be delimited, and 
its carbon emissions are recommended to be metabolize through connecting the 
limit regions to green spaces with various ecological corridors. The results will 
serve as a foundation to plan and control carbon emissions in high-density cities 
that are similar to Dongguan in international communities. 

Key words: weak areas, urban land use, carbon metabolism, 
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Introduction 

Although urban areas only make up 2% of the world’s surface area, they are respon-

sible for around 75% of the world’s CO2 emissions [1]. Dongguan, a manufacturing city in the 

east of China’s Pearl River Delta, it has undergone rapid industrialization in the past 30 years. 

Large tracts of vegetated surfaces were replaced with built-up land to support the growth of 

manufacturing. This highly unbalanced carbon emissions and sequestration caused variations 

in carbon metabolism among different land use types and geographic areas. Due to the barrier 

of buildings, carbon metabolism in high-density cities may not have obvious spatial correlation 

and spillover effect [2]. In order for city administrators to implement targeted measures to con-

trol carbon catabolism in high-density cities, it is necessary to develop specific ideas to identify 
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weak areas of urban carbon metabolism (UCM). In an effort to gauge the degree of carbon 

emissions from cities, the UCM concept was applied [3]. Researchers have paid close attention 

to this theory, which was first proposed by Baccini [4]. Recently, it was found it crucial to 

quantify urban carbon emissions and sequestration of both natural and anthropogenic compo-

nents [5]. 

Ideas for accounting UCM can be divided into two categories [6]. The first category 

is to build top-down models that extend to the energy and climate systems based on traditional 

economic models [7]. Although top-down models were suitable for exploring the path of 

carbon metabolism under macroeconomic policies, climate policies and energy policies, they 

are insufficient to predict regional carbon metabolism and difficult to explain the related pro-

cesses such as economic refinement, technological progress and regional linkage [8]. Another 

category is to build bottom-up models which evolves to the economic and environmental 

modules based on energy economic model [9]. Bottom-up models are more suitable for tech-

nical decision-making of energy supply and demand forecast. Among, long-range energy al-

ternatives planning (LEAP) system model was widely employed to analyze the energy con-

sumption and carbon emissions [10]. Nonetheless, in quantifying process, less consideration 

was given to the attribute difference of natural environment, which leads to insufficient spa-

tial analysis of UCM [11]. Thus, the quantifying results may be too rough to be applicable 

for identifying weak areas of UCM at urban scale. In order to present spatial processes, UCM 

therefore should concentrate on carbon flows caused by land use cover and change (LUCC) 

between the different components of the urban land system [12, 13]. To describe the relation-

ship between LUCC and UCM, urban land use carbon metabolism (ULUCM) was advanced 

[14]. Methods for accounting ULUCM included field surveys, the process method, and the 

remote-sensing method [15]. In addition, scholars have combined empirical data, remote-

sensing data, and geographic information to give better spatial expression of ULUCM. Tra-

ditional prediction models, such as CA-Markov model, were widely applied in simulating 

land use carbon emissions and sequestration at urban scale [16]. These studies are benefit for 

describing the pattern of land-use changes, enabling policymakers to create site-specific reg-

ulations that will limit land-use change in ways that boost carbon sequestration or lower car-

bon emissions. Current spatial pattern of ULUCM as well as its weak areas can be accurately 

distinguished. 

However, LUCC is a dynamic change process, the spatial pattern as well as weak 

areas of ULUCM will change accordingly. In the process of setting scenario parameters and 

accounting land use carbon coefficient, more attention was paid to historical law of land use 

change, less consideration was given to the demand of energy consumption require for socio-

economic and industrial development. That is, results of carbon emissions prediction of energy 

consumption at regional scale may not consistent with the simulated pattern of land use carbon 

emissions at urban scale. If so, it will not be accurate enough to simulate the future spatial 

pattern of ULUCM. In order to implement targeted measures to reduce carbon emissions and 

increase carbon sequestration for high-density cities, UCM research should shift the focus to 

identify the weak areas of ULUCM that are consistent with the future demand of energy con-

sumption required for socio-economic and industrial development. 

Therefore, this paper integrated the ideas of scenario simulation of carbon emissions 

from energy consumption, simulation of land use carbon emissions, and estimation of land use 

carbon sequestration, to build special model that can identify the weak areas of ULUCM in 

consistent of future possible energy consumption. As shown in fig. 1, the following aspects 

were addressed: 
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– To predict the total carbon emissions from energy consumption of urban area under various 

carbon emissions reduction measures according to current situation of socio-economic de-

velopment and industrialization with LEAP model. 

– To map the predict total carbon emissions on the future land use pattern to simulate the 

future land use carbon emissions pattern with Markov-Plus model. 

– To simulate the spatial pattern of future land use carbon sequestration according to the dis-

tribution of current urban green space and plant growth situation with LANDIS model. 

– To overlay the spatial pattern of land use carbon emissions and sequestration for the identi-

fication of ULUCM weak areas. 

Material and data sources 

Study area 

Dongguan, which located in the east of Pearl River delta Economic Zone, Guangdong 

Province, China, fig. 2. It is a high-density city which covers approximately 246,011.53 ha, 

48.37% of which is built-up land. It contains six sub economic zones. Many ecological lands 

were turned into built-up areas as a result of industrialization, which dramatically increased the 

urban greenhouse effect and created a significant imbalance in UCM. Therefore, Dongguan is 

a typical city to study the coupling of macro prediction of energy consumption and micro-opti-

mization of ULUCM pattern. 

Considering that relevant policies need to be implemented by administrative districts, 

the administrative area of 672 village/block was set as ULUCM units. 

Data resources and processing 

This paper takes 2020 as the base year and 2030 as the target year. Data and parame-

ters include energy consumption intensity data, tree species parameters, terrain elevation, etc. 

It is derived from the Guangdong Implementation Plan of Near Zero carbon Emission Zone 

Demonstration Project, the Guangdong 14th Five-Year Energy Plan, the Dongguan National 

Economic and Social Development 14th Five-Year Plan and 2035 Vision Goals Outline, the 

Dongguan Energy 14th Five-Year Plan, the Dongguan Ecological Environment 14th Five-Year 

Plan, and so on. 

Figure 1. The Research Roadmap 
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Land-use vector map and remote sensing image (1:2000) were provided by depart-

ment of natural resources. Raster Data on population density was downloaded from Open Spa-

tial Demographic Data and Research (https://www.worldpop.org/). Point-of-interest data was 

collected from Google Earth. Raster data for GDP was collected from Zhao (2017)’s research 

results. All pertinent data were merged into a geographic information system database using 

ESRI Corporation’s ArcGIS v10.2 software [17]. Urban land-use categories were identified 

using vectors with open-street maps and points-of-interest, as well as classification and visual 

interpretation of remote sensing monitoring. In order to connect the land use type with the in-

dustry type in the LEAP model, land use types were divided into eight categories: agricultural 

and forest land, green space, industry land, architecture land, specially-designated land, traffic 

land, water area, and unutilized land. 

Methodology 

Simulating land use carbon emissions pattern 

Predicting carbon emissions of energy consumption 

As LEAP model has low requirements on data richness and differentiation, and can 

realize specific scenario simulation, it is very suitable for predicting carbon emissions of urban 

energy consumption. Scenario comparison is the core function of LEAP model. For comparison, 

three scenarios are defined as: 

– Baseline scenario, which continues current Dongguan’s social and economic development, 

without considering the innovative application of new technologies and the implementation 

of new carbon emissions reduction policies. 

– Emission-reduction scenario, which refers to increasing urban emissions reduction measures 

based on baseline scenarios, such as increasing forestry carbon sinks. 

– High-limit scenario, which refers to the maximum increase of urban emissions reduction 

measures based on baseline scenario, such as promoting the large-scale and commercial 

application of carbon capture. 

As tab. 1 shown, according to the parameter requirements of LEAP model, the model 

structure was set by retrieving statistical data. Based on baseline scenario, referring to local 

government’s requirement and model decomposition, parameters of scenario indicators in three 

scenarios were set as tab. 2. 

Figure 2. The location of the study area of Dongguan 
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Table 1. The LEAP model structure setting 

Department Activity level Energy intensity Energy structure Emission factor 

Urban dweller 

Permanent urban 
population * per capita 
housing floor area of 

urban residents 

Energy consumption of 
residential area of urban 

units 

Proportion of 
non-fossil energy 
(electricity, heat), 

proportion of fossil 
energy 

(coal, oil, gas, etc.) 

CO2, CH4 

(residential and 
agriculture, forestry, 

animal husbandry and 
fishery), 

N2O default values Rural dweller 

Rural permanent 
population * per capita 
housing floor area of 

rural residents 

Energy consumption per 
residential area in rural 

areas 

Business 
service 

construction 

Area of commercial 
service land * average 

resident population 
density of commercial 

service land 

Per capita consumption of 
fossil energy 

(coal, oil, gas, etc.) 
per unit land area of 
commercial service 

buildings 
Proportion of non-

fossil energy 
(electricity, heat) 

CO2, CH4 
(business and 
institutions), 

N2O default values 

Operational 
traffic 

Permanent population 
* total passenger and 
freight turnover per 

capita 

Per unit passenger-freight 
turnover energy 

consumption ratio of fossil 
energy 

(coal, oil, gas, etc.) 

CO2, CH4 

(energy and 
transportation), 

N2O default values Non-
operational 

traffic 

Permanent resident 
population * number 

of private cars per 
capita 

Annual electricity 
consumption per unit of 
new energy private cars 

Proportion of fossil energy 
private cars 

(diesel, gasoline) 

Proportion of new 
energy private cars 

(electricity) Annual energy 
consumption of 

private cars per unit of 
fossil energy 

Manufacturing 
industry 

Industrial added value 

Percentage of fossil energy 
consumption per unit of 
industrial added value 

(coal, oil, gas, etc.) 

Proportion of non-
fossil energy 

(electricity, heat) 

CO2, CH4 
(manufacturing and 
construction), N2O 

default values 
Construction 

industry 
Value added of 

construction industry 

Percentage of fossil energy 
consumption per unit 

value added of 
construction industry 
(coal, oil, gas, etc.) 

Agriculture 
and forestry 
production 

Value added of the 
primary industry 

Percentage of fossil energy 
consumption per unit 

value added of primary 
industry 

(coal, oil, gas, etc.) 

CO2, CH4 

(housing and 
agriculture, forestry, 

animal husbandry and 
fishery), 

N2O default values 

Forestry 
carbon 

sequestration 

Land area * forest coverage rate, proportion of 
newly increased forest area, carbon sink per unit 

afforestation area 

Proportion of 
original woodland 

area 

Carbon sequestration 
per unit of forest area 
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Simulation of land use pattern 

The future land use pattern can be simulated according to the following step: 

Table 2. Parameters setting of scenario indicators 

Scenario indicators Parameters setting (by 2030) Baseline  
Emission-
reduction  

High-limit  

Measure of baseline 
scenario 

Current policy measures and technological level √ √ √ 

Optimizing industrial 
structure 

Increasing the proportion of the tertiary industry to 
65% 

– √ √ 

Im
p

ro
v

in
g
 e

n
er

g
y

 e
ff

ic
ie

n
cy

 

Optimizing 

Energy intensity in manufacturing and construction 
will be cut by 2% annually, and in agriculture and 
forestry by 4%. All urban residential buildings and 

rural residential-commercial buildings will be 
covered by the 50% and the 45% energy saving 

standard. By 2030, energy intensity of operational 
transportation will be reduced by 74% and that of 

private cars by 43.8%. 

– – – 

Strengthening 

Energy intensity in manufacturing and construction 
will be cut by an average of 4% annually, and in 

agriculture and forestry by 6%. Energy 
conservation standards for urban housing and rural 
residential and commercial buildings will be fully 

covered by 65% and 50 percent respectively. 
Energy intensity of operational transportation will 
be cut by 75%, and that of private cars by 46.4%. 

– √ √ 

E
le

ct
ri

fi
ca

ti
o

n
 Optimizing 

Annual consumption of non-fossil energy in 
manufacturing, construction, agriculture & 

forestry, urban housing, rural housing, commercial 
buildings, business transportation, and new energy 

vehicles will account for 60%, 40%, 60%, 70%, 
80%, 85%, 30%, and 60%, respectively. 

– √ – 

Strengthening 

Annual consumption of non-fossil energy in 
manufacturing, construction, agriculture-forestry, 

urban housing, rural housing, commercial 
buildings, business transportation, and new energy 

vehicles will account for 80%, 80%, 80%, 80%, 
90%, 95%, 60%, and 80%, respectively. 

– – √ 

Traffic 

Optimizing 
Operational traffic efficiency was optimized by 
30%, and private cars in non-operational traffic 

was reduced by 30% 
– √ – 

Strengthening 
Operational traffic efficiency was optimized by 
45%, and private cars in non-operational traffic 

was reduced by 50% 
– – √ 

Clean 
electricity 

Optimizing 
Non-fossil energy will account for 70% of 

electricity generation 
– √ – 

Strengthening 
Non-fossil energy will account for 80% of 

electricity generation 
– – √ 

Commercialization of 
CCUS 

CCUS will be commercialized on a large scale, and 
the capture rate of carbon emissions from industrial 

fossil energy will reach 8.5% 
– – √ 

Forestry carbon 
sequestration 

Forest coverage will reach 42% – – – 
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Definition of Markov model. Markov model was selected as the simulation model to 

predict the number of land use types and simulate the land use pattern under the adaptive inertial 

cellular automata mechanism. The principle was: 

 t+1 ij tS P S=    (1) 

where St+1, St represent the land use status in period t+1 and t and Pij is the probability that land 

use type i converted to land use type j. 
Definition of PLUS model. The PLUS model was created using the cellular automata 

model based on multitype random patch seeds (CARS) and the land spread analysis strategy’s 

(LEAS) rule mining framework. In this study, LEAS module was applied, which overlays the 

land use data of two periods to extract the cell with changing state from the late data of land 

use data, representing the change area of each land use type. On this fundamental level, it ap-

plied the double decision random forest classification algorithm to transform the mining of each 

land use type’s conversion rules into a binary classification problem. The expression is: 

 1
, ( )

( ( ) )

M

n

d n
i k x

I h x d

P
M

=

=

=


  (2) 

where , ( )
d

i k xP is the development probability of land use type k in unit i and d has a value of 0 or 

1. When d = 1, represents that other land use types have changed into type k. When d = 0, repre-

sents the transformation of land use type into other types except k, x refers to a vector made up of 

multiple driving factors, I refer to the indicator function of the decision tree, hn(x) refers to the 

prediction type of decision tree n of vector x, and M is the total amount of decision trees. 

Simulation of land use pattern. First, the expansion part of LUCC from 2010 to 2020 

was extracted, and the significant factors that affected LUCC expansion were found out. Alter-

native factors include population, GDP, distance to road, distance to water area, slope, average 

annual temperature, and average annual precipitation. Second, based on LUCC conversion rule, 

Dongguan’s land use types and its amount in 2030 were predicted. Third, setting nature reserves 

as restricted areas, cellular automata with adaptive inertia mechanism in PLUS model was ap-

plied for spatial transformation allocation. Finally, the land use pattern in 2030 was simulated. 

Simulation of land use carbon emissions pattern 

The land use carbon emissions coefficient is the key to simulate land use carbon emis-

sions pattern. Its relationship between carbon emissions of energy consumption and various 

land use types was set as: 

 ni 1 1 2 2( )n n iCEEC A T A T A T= + + +   (3) 

where CEECni represent carbon emissions of energy consumption in scenario i that were pre-

dicted using LEAP, Tn refer to the total area of land use type n, and An refer to the land use 

carbon emissions coefficient of land use type n, which were estimated by nonlinear fitting func-

tion on MATLAB platform. 

We multiplied the area of each land unit that simulated by Markov-PLUS model with 

land use carbon emissions coefficient of the corresponding land use type, respectively, to obtain 

the carbon emissions of each land unit. Finally, ArcGIS software was applied to summarize 

carbon emissions of land units to ULUCM units, and carbon emissions on ULUCM units were 

calculated. 
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Simulating land use carbon sequestration pattern 

The LANDIS model was applied to define the ecological carbon sequestration poten-

tial (CSP) level based on the vegetation growth and dominant tree species in the landscape 

patch. In the process of community growth and succession in the landscape patch, the richer the 

species diversity, the higher the distribution uniformity and the larger the distribution space of 

the tree community, the greater its CSP. 

The classification for site types. To run LANDIS model, the regions should be divided 

into effective and ineffective regions. Ineffective regions were industrial and mining land, trans-

portation and other construction land, water and other non-forest land, while effective regions 

were divided into 8 site types according to local elevation, slope, aspect of slope, and tree 

growth habits, tab. 3. 

Tree species parameter setting. Based on the forest characteristics of tree species, we 

selected the dominant species in the vegetation community as the model tree species. 

Dongguan’s forest vegetation type is mainly the South Asian monsoon evergreen broad-leaved 

forest. Therefore, camphor tree, masson pine, China fir, moso bamboo, tung tree and schima 

root-bark were selected as simulation tree species. In addition, based on field investigation and 

expert consultation, we set the life history characteristic parameters of the above tree species as 

simulation parameters, tab. 4. 

Simulation of land use carbon sequestration pattern. Though the LANDIS model can 

be applied to predict the future vegetation type and distribution, it is difficult to accurately es-

timate the absolute amount of land use carbon sequestration. As previously mentioned, the 

Table 3. Classification criteria for site types 

Serial number Slope Aspect Altitude Area [km2] 

S0 ≤25° Sunny slope ≤150 357.65 

S1 ≤25° Sunny slope >150 51.07 

S2 ≤25° Shade slope ≤150 402.12 

S3 ≤25° Shade slope >150 153.59 

S4 ＞25° Sunny slope ≤150 18.41 

S5 ＞25° Sunny slope >150 28.27 

S6 ＞25° Shade slope ≤150 132.11 

S7 ＞25° Shade slope >150 141.67 

S8 Non-forest 1578.36 

Table 4. Life history characteristic parameters of main tree species 

Tree 
species 

Life 
[age] 

Maturation 
age 

Shade 
tolerance 

Fire 
resistance 

Effective 
travel 

distance [m] 

Maximum 
propagation 
distance [m] 

Germination 
probability 

Germination 
age 

camphor 
tree 

200 30 5 1 63 200 0.66 6 

Masson 
pine 

300 10 4 1 250 1000 0 0 

China fir 200 10 5 1 200 750 0.2 3 

Moso 
bamboo 

60 10 2 1 250 800 0.3 2 

Tung tree 260 40 4 4 100 500 0.5 4 

Schima 
root-bark 

300 20 5 5 50 200 0.68 5 
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amount of carbon sequestration is closely related to the area, shape and uniformity of vegetation. 

Therefore, we proposed CSP from the previous aspects to represent the relative value of carbon 

sequestration on ULUCM units, and to predict the future pattern of land use carbon sequestra-

tion. The CSP on ULUCM units was calculated as: 

 ULUCM( ) PLAND( ) FRAC_ MN( ) ( )i i a i b Al i cCSP Std Std Std  = + +   (4) 

where CSPULUCM(i) represents the carbon sequestration potential on ULUCM unit i, StdPLAND(i) 

represents the standardized value for the proportion of vegetation area on ULUCM unit i to the 

total vegetation area (PLAND), StdFRAC_MN(i) represents the standardized value for the mean 

fractal dimension index of vegetation patches on ULUCM unit i (FRAC_MN), StdAl(i) repre-

sents the aggregation index of vegetation patches on ULUCM unit i (AI), and ωa, ωb, and ωc 

represents the weight of StdPLAND(i), StdFRAC_MN(i), and StdAl(i), they were set as 0.4, 0.3, and 0.3, 

respectively. The PLAND, FRAC_MN, and AI were calculated on Fragstats 4.2 platform. 

Identifying the weak areas of ULUCM 

The carbon metabolism capacity on ULUCM units were calculated according to: 

 
( )

( )
( )

i
i

i

CE
ULUCM

CS
=   (5) 

where (ULUCM)i, (CE)i, and (CS)i represent the capacity of ULUCM, carbon emissions, and 

carbon sequestration on ULUCM unit i, respectively. Natural breakpoint classification method 

was applied to divide ULUCM’s capacity into four levels (strong area, sub-strong area, sub-

weak area, and weak area). 

Results 

Carbon emissions from energy consumption 

As figs. 3(a), 3(b), and 3(c) shown, the total carbon emissions in 2030 were 71.2 Mt, 

51 Mt, and 43.8 Mt in baseline, carbon-reduction, and high-limit scenario, respectively. In base-

line scenario, Dongguan’s carbon emissions of energy consumption increase to 71.2 Mt in 2030. 

In carbon-reduction scenario, because of energy efficiency optimization, electrification optimi-

zation and other measures, the carbon emissions rise slowly to 51.0 Mt in 2030, 28% lower than 

baseline scenario. In high-limit scenario, due to the strict implementation of emissions reduc-

tion measures, the terminal energy consumption continues to decline, and the carbon emissions 

in 2030 are only 43.8Mt, 38% lower than baseline scenario. As the baseline scenario takes the 

current policy measures and technology level as the development direction, Dongguan’s final 

energy consumption will continue to rise, and it is difficult to achieve the carbon peak in 2030. 

In carbon-reduction scenario, measures such as industrial structure optimization, energy effi-

ciency improvement, electrification, and promotion of clean electricity are added on the basis 

of the baseline scenario, so the terminal energy consumption is expected to rise slowly and 

carbon peak is expected to be achieved in 2030. In high-limit scenario, the emissions reduction 

measures are further strengthened, and the terminal energy consumption can be effectively re-

duced before and after 2025, and the carbon peak goal can be achieved in advance. 

In the carbon emissions structure, the LEAP model is broken down into four major 

industries, namely construction, transportation, industry, and agriculture and forestry. Overall, 

the industrial sector accounts for the largest share of carbon emissions. In all three scenarios, 

industrial carbon emissions account for more than 50% of total carbon emissions. In baseline 
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scenario, industrial carbon emissions in 2030 can reach 39.25 Mt, and the carbon-reduction 

scenario and high-limit scenario can reach 28.44 Mt and 25.58 Mt, respectively. In the trans-

portation industry, due to the developed warehousing and logistics industry in Dongguan, trans-

portation energy consumption is large. Even if emissions reduction measures are implemented, 

the transportation carbon emissions in the baseline scenario still increase significantly. How-

ever, the traffic carbon emissions of carbon-reduction scenario and high-limit scenario can be 

effectively controlled under emissions reduction measures, and the growth is slow. Among 

them, the transport carbon emissions in carbon-reduction scenario will increase to 13.4 Mt in 

2030, and in high-limit scenario will increase to 9.7 Mt in 2030. Compared with baseline sce-

nario, carbon-reduction and high-limit scenario are more effective in energy conservation and 

emissions reduction measures, and the carbon emissions of industries can be effectively con-

trolled. 

As figs. 3(d) and 3(e) shown, in carbon-reduction scenario, the biggest contribution is 

the improvement of energy efficiency, which will reduce carbon emissions by 63.21 Mt. This 

is followed by electrification, which can reduce carbon emissions by 37.10 Mt. In high-limit 

scenario, the most effective carbon reduction measures are also the improvement of energy 

efficiency and electrification. In conclude, measures of energy efficiency improvement and 

electrification have a significant effect on reducing carbon emissions in the short term. 

Carbon emissions on ULUCM units 

Figures 4(a) and 4(b) and tab. 5 depict the land use structure in 2030 simulated with 

Markov-PLUS model. The expansion of industry and architecture land will occupy part of ag-

ricultural and forest land, green space, and water area. The expansion mainly occurs in the dam 

area, river valley and low-lying area, although the expansion area is small, the scope is small, 

but the expansion ratio is large. Accordingly, the land use carbon emissions coefficient of agri-

cultural and forest land, industry land, architecture land, and traffic land in different scenario 

was calculated. Other land-use types are not for living and production, and the total area is 

Figure 3. Total carbon emissions of different industries under different scenarios (a, b, c) and 
contribution of different measures to carbon reduction (d, e) 
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generally decreasing, their carbon emissions were assumed to be zero. Finally, the land use 

carbon emissions pattern of three scenarios were mapped as figs. 4(c)-4(e). On the whole, high 

carbon emissions regions are mainly concentrated in the central, southwest and southeast of 

Dongguan. These regions are characterized by high energy consumption and carbon emissions. 

Baseline scenario has the largest area of high carbon emissions regions, followed by the carbon-

reduction and high-limit scenario. 

In carbon-reduction scenario, the proportion of non-fossil energy consumption in the 

manufacturing industry has dropped to 70%, which basically meets the requirements of the 

Dongguan Energy 14th Five-Year Plan (by 2030, the proportion of natural gas consumption of 

Dongguan should reach 39%, and the proportion of primary electricity and other energy con-

sumption should reach 36%). In addition, under the premise of increasing forestry carbon sink, 

the forest coverage rate of Dongguan would reach 42% by 2030, exceeding the target of 37% 

coverage rate in Dongguan Ecological Environment 14th Five-Year Plan. Furthermore, if 

measures of clean power are further adopted, the proportion of non-fossil energy power gener-

ation in Dongguan would reach 70% in 2030, which meets the requirements of 49% non-fossil 

energy power generation in Guangdong 14th Five-Year Energy Plan. 

Finally, the distribution of high carbon emissions regions did not conflict with the 

forest parks and ecological protection areas in Dongguan 14th Five-Year Ecological Environ-
ment Plan. The high carbon emissions regions could be restricted by constructing ecological 

Figure 4. Land use pattern (a, b) and land use carbon emissions pattern (c, d, e) 
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corridor, setting up carbon emissions expansion control belt and repairing ecological base. 

Comparatively speaking, the high-limit scenario is the idealized scenario. Although the land 

use carbon emissions pattern tends to be reasonable, measures such as electrification, traffic 

operation optimization, and clean electricity temporarily lack conditions for implementation. 

Carbon sequestration on ULUCM units 

As fig. 5(a) shown, due to the restriction of construction land, there is little space for 

the natural expansion of vegetation in Dongguan’s. The vegetation growth in the eastern and 

southern arboreal communities was the best, and the vegetation distribution area was the widest. 

The total vegetation area is 87209.71 ha, which account for 35.45% of Dongguan’s administra-

tive area. According to the simulation results, though the total amount of camphor trees and 

masson pines are roughly equivalent, their distribution characteristics are significantly different. 

Through analyzing the distribution of tree species and the land use pattern in 2030, it was found 

that the total vegetation area reached 24250.56 ha in industrial land, architecture land, specially-

designated land, and traffic land, which accounted for 27.81% of the total vegetation area. 

Therefore, even the construction land has sufficient conditions for vegetation growth. For 

Dongguan, in order to enhance the overall carbon metabolism capacity, in addition to expanding 

a large area of green space, enhancing the carbon sink capacity of non-green space is also a 

long-term way. 

Table 5. Structural change and carbon emissions coefficient of different land types 

Land type 
Area 

Land use carbon emissions 
coefficient [t per ha] 

In 2020 [ha] In 2030 [ha] 2030-2020 [ha] Baseline Carbon-reduction High-limit 

Agricultural and 
Forest 

40551.48 29942.02 –10609.46 0.4065 0.3393 0.2234 

Green space 50013.98 36505.67 –13508.31 – – – 

Industry 44812.7 60210.3 15397.6 6.5190 4.7244 4.2481 

Architecture 45377.26 55735.45 10358.19 2.5659 1.4581 1.4097 

Specially-
designated  

1247.1 1464.08 216.98 
– – – 

Traffic 26587.16 30505.6 3918.44 5.3862 4.3959 3.1784 

Water area 36003.06 31595.57 –4407.49 – – – 

Unutilized land 1418.76 52.81 –1365.95 – – – 

Figure 5. Simulation of tree species (a) and 
carbon sequestration on ULUCM units (b)  
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As fig. 5(b) shown, the maximum, minimum, mean, and median CSP values are 92.98, 

0, 43.84, and 44.69. Only three ULUCM units have a CSP value greater than 70. However, 

there are 492 ULUCM units with CSP values between 40 and 50. It can be seen that the overall 

land use carbon sequestration capacity of high-density city is relatively limited in terms of the 

current rule of vegetation growth. The enhancement of UCM capacity has to rely more on far-

sighted polices and planning tools. In addition, the most correlated variable with CSP value is 

AI. The focus of future green space planning should be to connect the existing green space, not 

only to expand the area of vegetation. The FRAC of vegetation is also a very important variable, 

however, it is difficult to have room for improvement due to the restriction of the construction 

land pattern. Thus, in non-green space, the focus of enhancing carbon sequestration should be 

to optimize the shape and improve the concentration of vegetation. 

Identification of weak areas in ULUCM pattern 

As figs. 6(a)-6(c) shown, the distribution curve of CE/CS in baseline scenario and 

high-limit scenario is steep, which means that the difference of CE/CS between various 

ULUCM units is small. In addition, the absolute value of CE/CS in the baseline scenario is 

higher, while in the high-limit scenario is smaller. The distribution curve of CE/CS in carbon-

reduction scenario is slightly flat, which means that the difference of CE/CS between various 

ULUCM units is more obvious.  

 Figure 6. Frequency (a,b,c) and distribution (d,e,f) of CECS in three scenarios 
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As figs. 6(d)-6(f) shown, because of the difference in total carbon emissions, the 

ULUCM units in Dongguan showed different patterns in three scenarios after they were divid-

ing into four categories. After calculation, there were 47, 70, and 65 ULUCM units were iden-

tified as weak area in in baseline scenario, carbon-reduction scenario, and high-limit scenario, 

respectively. The covering area were 8088 ha, 13177 ha, and 12717 ha, respectively. The aver-

age CE/CS was 0.14, 0.095, and 0.083, respectively. 

On the whole, due to the large growth rate of industrial land, the total carbon emissions 

of energy consumption in Dongguan will be maintained at a high level in the future. At the 

same time, the space for vegetation growth is insufficient. If it is left to develop freely, the 

capacity of ULUCM will become increasingly weak. Looking forward to 2030, the emission-

reduction scenario requires more specific policies to curb the adverse effects of weak carbon 

metabolism areas. 

Discussions 

Advantages and disadvantages of the study framework 

Green space planning is the main measure to enhance the capacity of ULUCM. 

When planning urban green space, planners usually investigate the current conditions in de-

tail to summarize the current patterns of carbon flow in cities. This is intended to identify the 

path for minimizing the disturbance to the stability of UCM system due to economic devel-

opment and land expansion [11]. After distinguishing the weak area of ULUCM, the green 

space can be purposefully reconstructed to increase the carbon metabolism capacity and eco-

logical benefit. However, green space planning is a relatively passive and backward means 

of administrative management. Although it can solve the problems existing in the past and 

current UCM system, it is difficult to take into account the impact of future economic and 

industrial development. 

The prediction for ULUCM pattern was an important step to understanding UCM 

comprehensively, as well as a scientific reference for designing targeted measures to reduce 

carbon emissions and increase carbon sequestration in planning high-density city area [18-20]. 

They mainly focused on the ULUCM pattern generated by LUCC pattern. However, the pre-

diction of land use carbon emissions at urban scale may not consistent with carbon emissions 

prediction of energy consumption at regional scale. The influence of regional carbon reduction 

policies on ULUCM pattern is uncertain. By analyzing a typical case of a high-density urban-

ized area, this study conducted a complex ecological framework aimed at identifying the weak 

area of future ULUCM, which belongs to the applied study of simulating ULUCM pattern. This 

framework combines the principles of LEAP, Markov-Plus, and LANDIS models, which serves 

the following purposes: 

– To spatialize the carbon emissions from energy consumption predicted at regional scale. 

– To evaluate the carrying capacity of urban vegetation habitats for carbon emissions reduc-

tion strategies under different scenarios. 

– To identify the weak areas of ULUCM pattern in high-density cities, and help administrators 

locate the carbon sequestration nodes under specific scenarios. 

Therefore, compared with previous studies, the significance of this study framework 

is that the carbon emissions of urban energy consumption and land use expansion are taken into 

account in simulating the UCM pattern. The effect of urban carbon reduction policies can be 

clearly spatialized. The green space planning formed according to the simulated pattern can 

also reduce certain uncertainties. 
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Rationality for the spatial pattern of weak areas 

The significance of this study’s methodology is that it simulates the UCM pattern 

while also accounting for the carbon emissions caused by urban energy consumption and land 

use expansion. This is consistent with the findings of most studies [11]. In the calculation pro-

cess, we assumed that the carbon emissions of energy consumption mainly come from four land 

use types of agricultural and forest land, industry land, architecture land, and traffic land. The 

ULUCM units that with larger area of the aforementioned four land use types should have 

weaker capacity of carbon metabolism. However, this law is not absolutely true. As fig. 7 shown, 

taking carbon-reduction scenario as example, we divided PLAND, FRAC, and AI into four 

categories of strong, sub-strong, sub-weak, and weak, to analyze the relationship between 

CE/CS and CSP on ULUCM units. We found that ULCUM units with strong PLAND can also 

be identified as areas with weak CE/CR (fig. 7(a), histogram ④), those with sub-weak PLAND 

could also be identified as areas with sub-strong CE/CR (fig. 7(a), histogram ②), those with 

sub-strong FRAC could also be identified as areas with sub-weak CE/CR (fig. 7(b), histogram 

③), those with sub-strong AI could also be identified as areas with sub-weak CE/CR (fig. 7(c), 

histogram ③). It can be inferred that vegetation coverage is not a decisive factor for carbon 

metabolism. The reason is that the poor shape and concentration of vegetation on these ULUCM 

units makes their CSP at a low level. Even ULUCM units with high carbon emissions, if the 

vegetation on them has better shape and concentration, their carbon metabolism capacity will 

improve. 

Therefore, for the green space planning of high-density cities, it is necessary to focus 

on the optimization of the shape and concentration conditions of existing vegetation, rather than 

increasing the coverage area of vegetation. These results were in line with those of Wang et al. 

Figure 7. The relationship between CECR and PLAND (a), FRAC (b), and AI (c) 
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[20], who took into account the factors influencing vegetation’s capacity to store carbon in the 

terrestrial environment. 

Practical applications for green space planning 

After identifying the weak areas of UCM, targeted methods can be adopted to recon-

struct the existing green space. Here, according to the enlightenment from the result analysis, 

we selected the ULUCM pattern in carbon-reduction scenario as the object, and tried to form 

an optimization path and strategy. 

As fig. 8 shown, first, the weak areas of ULUCM were regarded as nodes for increas-

ing carbon sequestration. Then, oxygen-source green space, carbon-source green space, and 

near-source green space of the study area were delimited according to the distribution of nodes 

and vegetation pattern simulated by LANDIS model. Among, oxygen-source green space is 

located upwind of the region and can provide the functions of carbon fixation, oxygen release 

and dust retention. It includes the green space between Coastal Economic Zone and Songshan 

Lake Industrial Zone, in the south of Songshan Lake Industrial Zone, and in the northeast of 

Southeast Economic Zone. Carbon-source green space is located downwind of the region and 

can effectively absorb urban carbon emissions. It includes the green space in the north of Water 

Township Economic Zone, in the north of Songshan Lake Industrial Zone, and in the north of 

East Industrial Zone. Near-source green space is located within the built-up area with local 

ecological function. Second, nodes were connected with similar spatial distances to form carbon 

emissions limit regions, which served as a barrier for carbon emissions from weak areas. Finally, 

various types of ecological corridors were delineated to connect the carbon emissions limit re-

gions, so as green spaces can effectively metabolize carbon emissions from weak areas. 

 Figure 8. The optimization of the green spaces based on the study results 
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Limitations and suggestions for future research 

The study has some issues that need to be addressed in further. First, the study may 

have been biased because the spatial difference of carbon emissions coefficient was ignored 

in the process of simulating the land use carbon emissions pattern. The future land use carbon 

emissions coefficient in the study was calculated according to the total future carbon emis-

sions from energy consumption and future land use area. In this way, the carbon emissions 

coefficient of each land patch in the region is the same. In fact, even in high-density cities, 

there are regional differences in carbon emissions. Although the difference may be small, it 

cannot be easily dismissed. This also makes the study framework may only be used in high-

density cities currently. Therefore, how to accurately predict the difference of carbon emis-

sions coefficient in different regions or even different land patches in the future is one of the 

key research points. 

Second, a comprehensive index was constructed using PLAND, FRAC, and AI to 

represent the CSP of vegetation simulated by LANDIS model. The capability for sequestering 

carbon is, however, very strongly correlated with the kind and development of plants. Accord-

ing to the current simulation results, the proportion of camphor and masson pine is large, and 

the proportion of other tree species is small, so the simulation results can not be considered 

accurate. In addition, the study did not take into account the growth of vegetation in different 

regions. These also make the calculation of ULUCM capacity biased. Therefore, further re-

search will be conducted on techniques to accurately simulate future tree species patterns and 

improve the calculation accuracy of CSP. 

Third, the ULUCM capacity was calculated by using the possible carbon emissions 

and carbon sequestration. This effectively assumed that ULUCM units were static and enclosed 

space. Previous studies have also shown that UCM is a dynamic process, which should be stud-

ied by using ecological network.  

Conclusion 

Using Dongguan as a research case, this study proposed a complex ecological frame-

work to identify the weak areas of future ULUCM pattern for high-density region facing a 

situation with high and increasing energy consumption. Through overlapping the spatial pattern 

of land use carbon emissions and carbon sequestration simulated by LEAP, Markov-Plus, and 

LANDIS mode, the future weak areas of carbon metabolism were clearly indicated. The novelty 

of this study is that it combines the prediction of carbon emissions from energy consumption at 

regional scale, of land use carbon emissions pattern at urban scale, which expands the technol-

ogy for simulating land use carbon metabolism pattern. With the help of these findings, urban 

planners will be better able to comprehend how patterns of carbon metabolism alter depending 

on the type of carbon emissions strategy being used. As a result, this article will serve as a 

foundation to plan and control carbon emissions in high-density cities that are similar to 

Dongguan in international communities. 
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