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This study, based on static data from over a thousand fracturing wells, employs
data governance, data mining, and machine learning regression uncover principal
controlling factors for production in the fracturing context. Preprocessing meth-
ods, including outlier identification, missing value imputation, and label encoding,
address the field data challenges. Correlations among geological, engineering,
and production parameters are analyzed using Pearson coefficient, grey correla-
tion, and maximum mutual information. The AutoGluon framework and SHAP
post-explanation method compute feature importance. Utilizing multiple evalua-
tion methods, the entropy weight method comprehensively scores and ranks the
principal controlling factors. A machine learning production prediction model is
established for validation. Results show that DBSCAN achieves better accuracy in
identifying field anomaly data.
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Introduction

Horizontal well fracturing is crucial for unconventional oil and gas development, ne-
cessitating accurate post-fracturing production prediction for optimal parameter adjustments
[1-4]. However, mechanistic models are time-consuming, hindering on-site development and
rapid optimization, particularly in heterogeneous reservoirs [5]. With 1226 fracturing opera-
tions in Xinjiang Oilfields, significant data is available for big data research. This study em-
ploys big data and artificial intelligence to manage on-site data, analyze production-controlling
factors, and establish machine learning models for efficient fracturing design in unconventional
oil reservoirs. Researchers have employed correlation algorithms and model evaluation meth-
ods to assess the relationship between well parameters and production, identifying principal
controlling factors [6]. Machine learning techniques, such as dimensionality reduction and
feature synthesis, capture non-linear connections between geological engineering parameters
and production [7]. Various algorithms, including random forest and Locally Preserving Pro-
jections, have been applied for non-linear analysis and unconventional oil and gas production
forecasting, demonstrating good applicability [8].
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In summary, machine learning-based analysis of principal controlling factors and pro-
duction forecasting has shown initial effectiveness. However, challenges such as small sample
size and limited parameter ranges persist. This paper collects fracturing well data, conducts
data governance and mining, comprehends principal controlling factors, and builds a machine
learning production forecasting model based on field data from Xinjiang Oilfield, contributing
to improved predictions and optimization.

Material and method
Data collection

This study compiled a dataset from Xinjiang Oilfields, consisting of 1226 hydrauli-
cally fractured horizontal wells with 44 feature parameters. After preliminary cleaning, wells
with a single well data missing rate exceeding 40% and parameters with a data missing rate
exceeding 80% were excluded. The dataset includes geological, engineering, and production
data. Parameters such as horizontal section length, porosity, permeability, oil saturation, res-
ervoir length, and reservoir type constitute geological and engineering data. Engineering data
include modified section length, number of fractured sections, number of fracture clusters,
liquid intensity, proppant intensity, pre-flush fluid ratio, slip water ratio, maximum construction
displacement, and average sand ratio. Geological and engineering data serve as input features
during model training, while production data mainly involve cumulative oil production over
330 days per unit of modified section length, serving as the output target during model training.
The data were normalized to the [0, 1] interval, and kernel functions were employed to describe
the data distribution, as shown in fig. 1.
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Figure 1. Waterfall plot depicting the kernel density
distribution of selected data points

Upon observation of fig. 1, it is evident that the overall data distribution is uneven,
with some data exhibiting a left-skewed pattern. Anomalies are particularly noticeable in pa-
rameters such as porosity, proppant intensity, and construction displacement, where significant
outliers are present.

Data governance

Data governance encompasses outlier identification, missing value imputation, and
categorical data encoding, as illustrated in fig. 2.

To handle outlier data, we used the DBSCAN unsupervised clustering method. The
DBSCAN, a density-based clustering algorithm, categorizes and filters outliers by assessing



Zhu, Z., et al.: Analysis of Controlling Factors for Hydraulic Fracturing ...
THERMAL SCIENCE: Year 2024, Vol. 28, No. 2A, pp. 1155-1160 1157

the density of neighboring data points. For missing data, various methods were employed, in-
cluding zero filling, mean imputation, and KNN modelling imputation. The KNN imputation
references known data from neighboring samples, improving imputation quality with different
reference sample sizes. The impact of imputed data on subsequent model performance was
observed through experimentation. For textual data, one-hot encoding converted textual label
data into categorical labels for subsequent model predictions.
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Figure 2. Data governance methods; (a) DBSCAN outlier identification,
(b) KNN missing value imputation, and (c) one-hot encoding of label data

Feature importance evaluation

This study employs grey correlation and maximum mutual information for correlation
analysis, along with embedded feature evaluation and SHAP post-interpretation assessment
for importance evaluation. Unlike typical research that often relies on a single method for an-
alyzing main controlling factors, this study introduces the fuzzy mathematical entropy weight
method. Utilizing results from various principal control analysis methods, it establishes an eval-
uation matrix for a comprehensive assessment of parameters through weighted calculations.

The entropy weight method is an objective weighting technique that determines the
weights of indicators based on the information entropy of each indicator:
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where n,, is the normalized score value of evaluation parameter a for the positive evaluation
indicator b, E;, — the data vector of evaluation indicator b in the evaluation matrix, e, — the
value of evaluation parameter a in evaluation indicator » within the evaluation matrix, P,, — the
weight of ¢, in evaluation indicator b, max(£,) and min(£}) are the max and min values of £,
respectively, n — the number of evaluation parameters, m — the number of evaluation indicators,
and r, — the information entropy value of evaluation indicator b:
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where w, is the entropy weight of evaluation indicator b.
Finally, the evaluation matrix £ is multiplied by the indicator weight vector @ to ob-
tain the comprehensive evaluation vector S = [sy,..., 5,]:
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where = [{},..., {,] is the evaluation vector obtained from the grey relational analysis,
M = [my,..., my] — the evaluation vector obtained from the maximum mutual information,
J =[Ji,..., J,] — the feature importance vector obtained from embedded feature evaluation, and
o = [wl,..., w,] the evaluation vector obtained from the SHAP method.

This study utilized the AutoGluon machine learning framework for rapid model train-
ing andevaluation. AutoGluon achieves higher accuracy and faster predictions by integrating
multiple models without the need for hyperparameter tuning.
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Comparison of data governance methods

Due to the limited number of training data samples, a large number of features,
low data quality, and a high proportion of missing values, the data governance methods
sig-nificantly affect the model results. The dataset was managed using DBSCAN, three
standard deviations, and IQR methods to identify outliers, along with KNN nearest neigh-
bor pre-diction, constant, and mean value imputation for handling missing values or not
han-dling them, respectively. The model training results are compared in fig. 4.
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Figure 4. Test metrics for different data governance combinations

Analysis of controlling factors

The results of grey relational analysis, maximum mutual information, embedded fea-
ture evaluation, SHAP analysis, and entropy weight analysis are depicted in fig. 5.

In the experiment with varying input feature quantities, the model error is minimized
when the feature quantity is set to the top four parameters, as illustrated in fig. 6(a). As the
feature quantity further increases, the model error gradually increases. For different feature
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evaluation methods, subsets of data were created by taking the top four parameters and input-
ting them into the model for training. The model accuracy variations are depicted in fig. 6(b).
The results indicate that the combination of main controlling factors evaluated through entropy
weight analysis exhibits lower error and better stability during model training.
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Conclusion

This research effectively utilizes large-scale field data to extract key parameters affect-
ing production, providing technical support for the establishment of high precision prediction
models and the optimization of parameters for unconventional reservoir production forecasts.

Nomenclature

a - evaluation parameter, [—]

Greek symbol
b — evaluation indicator, [-] w, — the entropy weight, [-]
r, — the information entropy value, [—]
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