
 

ANALYSIS OF CONTROLLING FACTORS FOR HYDRAULIC FRACTURING 
PARAMETERS AND ACCUMULATED PRODUCTION USING MACHINE LEARNING 

 

by 

 

Zhihua ZHUa, Maoya HSUb, Chang LIa, Jiacheng DAIb, Bobo XIEa, Zhengchao MAb, 

Tianyu WANGb,∗

Horizontal well fracturing is crucial for unconventional oil and gas development, 
necessitating accurate post-fracturing production prediction for optimal parameter adjustments 

, Jie LI a, and Shouceng TIANb 

 

aResearch Institute of Engineering Technology, PetroChina Xinjiang Oilfield Company, Karamay 
834000, China 

bNational Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, 
Beijing 102249, China 

 
This study, based on static data from over a thousand fracturing wells, 
employs data governance, data mining, and machine learning regression to 
uncover principal controlling factors for production in the fracturing context. 
Preprocessing methods, including outlier identification, missing value 
imputation, and label encoding, address the field data challenges. 
Correlations among geological, engineering, and production parameters are 
analyzed using Pearson coefficient, grey correlation, and maximum mutual 
information. The AutoGluon framework and SHAP post-explanation method 
compute feature importance. Utilizing multiple evaluation methods, the 
entropy weight method comprehensively scores and ranks the principal 
controlling factors. A machine learning production prediction model is 
established for validation. Results show that DBSCAN achieves better 
accuracy in identifying field anomaly data.  
Key words: hydraulic fracturing design, data-driven model, machine 
learning, production forecasting, feature selection, hyperparameter 
optimization. 

 
Introduction 

[1-4]. 
However, mechanistic models are time-consuming, hindering on-site development and rapid 
optimization, particularly in heterogeneous reservoirs [5]. With 1226 fracturing operations in Xinjiang 
oilfields, significant data is available for big data research. This study employs big data and artificial 

                                                        
∗ Corresponding author: RanZhang;e-mail: wangty@cup.edu.cn 

mailto:wangty@cup.edu.cn�


 

intelligence to manage on-site data, analyze production-controlling factors, and establish machine 
learning models for efficient fracturing design in unconventional oil reservoirs.Researchers have 
employed correlation algorithms and model evaluation methods to assess the relationship between 
well parameters and production, identifying principal controlling factors [6]. Machine learning 
techniques, such as dimensionality reduction and feature synthesis, capture nonlinear connections 
between geological engineering parameters and production [7]. Various algorithms, including random 
forest and Locally Preserving Projections, have been applied for nonlinear analysis and 
unconventional oil and gas production forecasting, demonstrating good applicability [8]. 

In summary, machine learning-based analysis of principal controlling factors and production 
forecasting has shown initial effectiveness. However, challenges such as small sample size and limited 
parameter ranges persist. This paper collects fracturing well data, conducts data governance and 
mining, comprehends principal controlling factors, and builds a machine learning production 
forecasting model based on field data from Xinjiang Oilfield, contributing to improved predictions and 
optimization. 
Material and method 
Data collection 
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Figure 1. Waterfall plot depicting the kernel density distribution of selected data points. 

This study compiled a dataset from Xinjiang oilfields, consisting of 1226 hydraulically 
fractured horizontal wells with 44 feature parameters. After preliminary cleaning, wells with a single 
well data missing rate exceeding 40% and parameters with a data missing rate exceeding 80% were 
excluded. The dataset includes geological, engineering, and production data. Parameters such as 
horizontal section length, porosity, permeability, oil saturation, reservoir length, and reservoir type 
constitute geological and engineering data. Engineering data include modified section length, number 
of fractured sections, number of fracture clusters, liquid intensity, proppant intensity, pre-flush fluid 
ratio, slip water ratio, maximum construction displacement, and average sand ratio.Geological and 
engineering data serve as input features during model training, while production data mainly involve 
cumulative oil production over 330 days per unit of modified section length, serving as the output 
target during model training. The data were normalized to the [0,1] interval, and kernel functions were 
employed to describe the data distribution, as shown in Fig. 1. 

Upon observation of Fig. 1, it is evident that the overall data distribution is uneven, with some 
data exhibiting a left-skewed pattern. Anomalies are particularly noticeable in parameters such as 
porosity, proppant intensity, and construction displacement, where significant outliers are present. 
 



 

Data governance 
Data governance encompasses outlier identification, missing value imputation, and categorical data 
encoding, as illustrated in Fig. 2. 

To handle outlier data, we used the DBSCAN unsupervised clustering method. DBSCAN, a 
density-based clustering algorithm, categorizes and filters outliers by assessing the density of 
neighboring data points.For missing data, various methods were employed, including zero filling, 
mean imputation, and KNN modeling imputation. KNN imputation references known data from 
neighboring samples, improving imputation quality with different reference sample sizes. The impact 
of imputed data on subsequent model performance was observed through experimentation.For textual 
data, one-hot encoding converted textual label data into categorical labels for subsequent model 
predictions. 
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Figure 2. Data governance methods: (a) DBSCAN outlier identification; (b) KNN missing value 
imputation; (c) One-hot encoding of label data 

Feature importance evaluation 
This study employs grey correlation and maximum mutual information for correlation 

analysis, along with embedded feature evaluation and SHAP post-interpretation assessment for 
importance evaluation. Unlike typical research that often relies on a single method for analyzing main 
controlling factors, this study introduces the fuzzy mathematical entropy weight method. Utilizing 
results from various principal control analysis methods, it establishes an evaluation matrix for a 
comprehensive assessment of parameters through weighted calculations. 

The entropy weight method is an objective weighting technique that determines the weights 
of indicators based on the information entropy of each indicator. There are the formulas as follows: 
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where abn  denotes the normalized score value of evaluation parameter a for the positive evaluation 

indicator b, bE  represents the data vector of evaluation indicator b in the evaluation matrix, abe  

represents the value of evaluation parameter a in evaluation indicator b within the evaluation matrix, 

abP  denotes the weight of abe  in evaluation indicator b, max( )bE  and min( )bE  are the max and 

min values of bE , respectively, n  is the number of evaluation parameters, m is the number of 



 

evaluation indicators, and  br represents the information entropy value of evaluation indicator b. There 
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where bω denotes the entropy weight of evaluation indicator b. 

Finally, the evaluation matrix E is multiplied by the indicator weight vector ω to obtain the 

comprehensive evaluation vector [ ]1, , nS s s=  . There is  
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where [ ]1, , nζ ζ=ζ  is the evaluation vector obtained from the grey relational analysis, 

[ ]1, , nm m=M   is the evaluation vector obtained from the maximum mutual 

information, [ ]1, , nJ J=J  is the feature importance vector obtained from embedded feature 

evaluation, and [ ]1, , nω ω=ω  is the evaluation vector obtained from the SHAP method. 

This study utilized the AutoGluon machine learning framework for rapid model training 
andevaluation. AutoGluon achieves higher accuracy and faster predictions by integrating multiple 
models without the need for hyperparameter tuning. 
Results and discussion 
Model performance 

 

Figure 3.Comparative chart of autogluon prediction results 

The training data underwent DBSCAN outlier removal, with no imputation for missing values. 
A test set, comprising 20% of the total dataset, was separated and excluded from training. Utilizing the 
AutoGluon framework, the training process involved 5-fold cross-validation bagging and a 2-layer 
stacking approach, using RMSE as the loss function. The training results, as depicted in Fig.3., show 
an average error of 0 and an R2 of 1 for the training set. For the test set, the RMSE is 2.630, MSE is 



 

6.919, MAE is 1.588, and R2 is 0.768. 

 

Figure 4. Test metrics for different data governance combinations. 

Comparison of data governance methods 
Due to the limited number of training data samples, a large number of features, low data 

quality, and a high proportion of missing values, the data governance methods sig-nificantly affect the 
model results. The dataset was managed using DBSCAN, 3 standard deviations, and IQR methods to 
identify outliers, along with KNN nearest neighbor pre-diction, constant, and mean value imputation 
for handling missing values or not han-dling them, respectively. The model training results are 
compared in Fig.4. 
Analysis of controlling factors 

The results of grey relational analysis, maximum mutual information, embedded feature 
evaluation, SHAP analysis, and entropy weight analysis are depicted in Figure 5. 

 

Figure 5.Evaluation of parameter importance. 
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Figure 6. Impact of different principal evaluation methods on model accuracy. 

In the experiment with varying input feature quantities, the model error is minimized when 



 

the feature quantity is set to the top 4 parameters, as illustrated in Fig. 6(a). As the feature quantity 
further increases, the model error gradually increases. For different feature evaluation methods, 
subsets of data were created by taking the top 4 parameters and inputting them into the model for 
training. The model accuracy variations are depicted in Fig. 6(b). The results indicate that the 
combination of main controlling factors evaluated through entropy weight analysis exhibits lower 
error and better stability during model training. 
Conclusion 

This research effectively utilizes large-scale field data to extract key parameters affecting 
production, providing technical support for the establishment of high-precision prediction models and 
the optimization of parameters for unconventional reservoir production forecasts. 
Nomenclature 
a - evaluation parameter, [-] b - evaluation indicator, [-] 

br - the information entropy value, [-] bω  - the entropy weight, [-] 
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