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In the realm of unconventional reservoir hydraulic fracturing design, the 
conventional optimization of mechanistic model parameters is a time-
consuming process that impedes its responsiveness to the swift demands of 
on-site development. This study, rooted in Xinjiang oilfield data, delves into 
the utilization of machine learning methods for extensive field data. The 
research systematically elucidates the training and optimization procedures 
of a production forecasting model, achieving effective optimization of 
hydraulic fracturing design parameters. By employing polynomial feature 
cross-construction to generate composite features, feature filtering is 
performed using themaximal information coefficient. Subsequently, wrapper-
style feature selection techniques, including ridge regression and decision 
trees, are applied to ascertain the optimal combinations of model input 
parameters. The integration of stacking during model training enhances 
performance, while stratified K-fold cross-validation is implemented to 
mitigate the risk of overfitting. The ultimate optimization of hydraulic 
fracturing design parameters is realized through a competitive learning 
particle swarm algorithm. Results indicate that the accuracy of the data-
driven production forecasting model can reach 85%. This model proficiently 
learns patterns from mature blocks and effectively applies them to optimize 
new blocks. Furthermore, expert validation confirms that the optimization 
results align closely with actual field conditions.. 
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Introduction 
In the hydraulic fracturing design for unconventional oil reservoirs, significant time is 

traditionally spent using mechanistic models for parameter optimization, which may not meet the 
requirement for rapid on-site development. With the accumulation of oilfield data and advancements 
in machine learning methods, data-driven production prediction models can efficiently achieve 
fracturing design parameter optimization.In actual oilfield development, researchers face difficulties in 
acquiring a large number of accurate sample data due to block restrictions, incomplete records, and 
improper operations. Common data cleaning methods in big data preprocessing, such as deleting 
samples or features with missing values, removing outliers, and mean (median) filling, do not yield 
satisfactory results in the presence of data with substantial missing values and noisy data jumps [1]. 
Therefore, achieving accurate production forecasting results from small sample data has become a 
focal point for many scholars in recent years, with the primary focus on analysis and prediction of 
production [2]. Factors influencing oil and gas field production trends include geological parameters 
such as stress sensitivity, porosity, fracture pressure, and brittleness index, as well as production 
factors such as pressure, liquid intensity, sand addition intensity, displacement, fracturing segment 
length, inter-cluster spacing, and nozzle size[3]. Traditional analytical methods have limitations in 
high-dimensional data correlation analysis, while machine learning models demonstrate powerful 
nonlinear fitting capabilities, enabling them to learn complex nonlinear relationships [4,5].Researchers 
have employed various machine learning models, including Artificial Neural Networks (ANN) [6], 
Imperialist Competitive Algorithm (ICA) [7], Higher Order Neural Networks (HONN) [8], Nonlinear 
Autoregressive Neural Network (NARX) [9], and Multi-Valued Neuron Complex Neural Network 
(MLMVN) [10]. Neural network models are mainly applied in the prediction of time series data, such 
as in the prediction of production data. For instance, the construction of a fusion model of Multi-Layer 
Perceptron (MLP) networks and Long Short-Term Memory (LSTM) networks, utilizing geological 
and fracturing reservoir parameters, historical data, and other indicators to predict production [11,12]. 

This study, based on data from the Xinjiang Oilfield, discusses the application of machine 
learning methods to large-scale field data. It provides a detailed demonstration of the training and 
optimization process for a production prediction model. Additionally, the study utilizes the production 
prediction model to optimize fracturing design parameters. 
Material and method 
Data collection 

The study collected geological, engineering, and production data for hydraulic fractured 
horizontal wells in the study block from the Xinjiang Oilfield from 2017 to 2022. To meet the 
optimization requirements, 20 geological and engineering parameters were extracted as feature 
parameters. The specific parameters are outlined in Table 1. The target parameter is the Production 
Rate over 330 days (t/m), and after preliminary processing, a total of 112 wells were obtained. 

The probability density distribution of the primary data in the study area is illustrated in Fig. 1. 
For the majority of the data within the block, a symmetrical distribution is observed, including 
parameters such as horizontal section length, thickness of Type I oil reservoir, permeability, oil 
saturation, and liquid injection intensity. However, there are some outliers present. A small portion of 
the data exhibits a skewed distribution, as seen in Type II oil reservoir, porosity, and thickness with 
sanding strength. The remaining portion displays a bimodal distribution, such as maximum 
construction displacement, construction sand ratio, and pre-flush liquid ratio. 
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Table 1.Geological-Engineering Parameters 

Geological Parameters Engineering Parameters 
Horizontal Section Length (m) 

Type I Oil Layer (m) 
Type II Oil Layer (m) 
Type III Oil Layer (m) 

Porosity _min/avg/max(%) 
K_min/avg/max (mD) 
So_ min/avg/max (%) 

Actual average section spacing(m) 
Actual average cluster spacing(m) 

Construction Sand Intensity (m³/m) 
Construction Liquid Intensity (m³/m) 

Construction Proppant Ratio (%) 
Construction Pre-Flush Liquid Ratio (%) 

Maximum Actual Construction Discharge (m³/min) 

 

 
Figure1. The kernel density distribution plots of key parameters 

The distribution pattern of the data indicates a significant presence of artificial interference 
traces in the samples from the study area, resulting in a distinctive personalized distribution of the data. 
This may impact the generalization performance of the trained prediction model, rendering it less 
applicable to other blocks. 
Feature engineering 

To more effectively capture nonlinearity and correlations among feature parameters, we 
introduce a feature cross method, augmenting the model's comprehensive understanding of data 
patterns. This polynomial feature cross entails combining two or more features to generate novel 
features.210 cross-features were generated through the combination of original features. Initially, a 
filter approach was employed for feature selection, involving the calculation of maximum mutual 
information between feature variables and the target variable. Features with a mutual information 
below 0.2, indicating weak correlation, were filtered out. Subsequently, a wrapper approach was 
implemented for feature evaluation.Various feature subsets were assessed for their importance using 
linear regression, ridge regression, L1 regularization (Lasso regression), Elastic Net with both L1 and 
L2 regularization, and decision tree regression models as base models. Different quantities of features 
were selected as inputs for the final predictive model.  
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Model training 
This study utilized the AutoGluon machine learning framework for rapid model training and 

optimization, achieving higher accuracy and faster predictions without the need for hyperparameter 
tuning. AutoGluon integrates multiple models using fusion techniques such as stacking, k-fold cross-
bagging, and multi-layer stacking. Stacking involves independently training multiple models and 
calculating weighted results through a linear model. K-fold cross-bagging performs cross-validation 
on all models and averages the outputs, while multi-layer stacking merges data with the results of a 
single stacking process to form a new linear weighted model. These techniques contribute to improved 
fitting performance and prevent overfitting. The specific framework of AutoGluon is illustrated in Fig. 
2. 

 
Figure 2.Flowchart of the AutoGluon framework. 

Resultand discussion 
The impact of feature combinations on model error was observed, as illustrated in Fig. 3.The 

results indicate that using decision tree regression as the base learner for feature selection is the most 
stablemodel. When the top 7 features are selected, the overall prediction model achieves the minimum 
error. 

 
Figure3.The Impact of Feature Quantities on the Predictive Performance of the Model 

 
Figure 4. The increase in prediction accuracy by feature cross. 

The inclusion of cross-features contributes to the reduction of prediction model errors, leading 
to 4% increase in prediction accuracy,as illustrated in Fig. 4. 
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This study employed simple learners, including KNeighborsUnif, LightGBMXT, LightGBM, 
RandomForestMSE, CatBoost, ExtraTreesMSE, XGBoost, NeuralNetTorch, and LightGBMLarge. 
Utilizing stacking technique, the outcomes of simpl learners were combined through a weighted layer 
to form the integrated model named WeightedEnsemble. The average absolute errors of each model in 
the test and validation sets are compared, as illustrated in Fig. 5. 

 
Figure5. The average absolute errors of different models. 

The weighted ensemble model, while sacrificing a certain degree of fitting accuracy, achieves 
optimal predictive performance. This enhances the model's robustness and reduces overfitting. 
Conclusion 

This study optimized predictive models for hydraulic fractured horizontal wells in Xinjiang 
Oilfield, utilizing geological, engineering, and production data from 2017 to 2022. Analysis of diverse 
distribution patterns highlighted potential interference traces, impacting model generalization. Feature 
engineering, introducing 210 cross-features and employing decision tree regression, improved 
nonlinearity capture. Model training with the AutoGluon framework, featuring stacking techniques, 
demonstrated high accuracy and rapid predictions without hyperparameter tuning. The inclusion of 
cross-features significantly reduced prediction errors, leading to a 4% increase in accuracy. Despite 
sacrificing fitting accuracy, the weighted ensemble model, named WeightedEnsemble, achieved 
optimal predictive performance, enhancing robustness and reducing overfitting. In summary, the 
study's comprehensive approach, incorporating advanced techniques in feature engineering, machine 
learning frameworks, and hybrid optimization, effectively optimized predictive models for hydraulic 
fractured wells, resulting in improved accuracy and robustness. 
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