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Abstract 

Models for enhancement of heat transfer in nanofluids made wide use of 

ANFIS and the multiphase Mixture model in recent years. These models 

originate from two separate but complementary branches of engineering: 

computational mechanics and machine intelligence. Not only have prior 

studies used only a small subset of nanofluid and flow parameters in their 

analyses, but no one has ever compared the two methods to determine which 

one is more applicable to certain flow regimes to forecast how much heat 

transfer development nanofluids will exhibit. The purpose of this study was to 

compare the accuracy of two methods—CFD and ANFIS in predicting the 

heat transfer improvement of water-Fe2O3 nanofluid for variety of nanofluid 

formations and flow characteristics, and recommend the method that would 

be most useful in predicting this enhancement for each flow regime. While 

ANFIS consistently outperforms the Mixture models in prediction of nanofluid 

heat transfer enhancement, the latter can sometimes produce results that 

differ greatly from experimental correlation; however, for nanofluid 

configurations, the Mixture model's predictions can be dependable (with 1% 

error). 
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1. Introduction 

Since the material was introduced by Choi and Eastman [1], researchers have performed a 

plethora of numerical studies and experimentation on heat transmission utilising nanofluids. The ease 

with which numerical simulation can anticipate the heat-transferring behaviour of nanofluids has made 

it a hot topic. Due to the method's popularity among specialists, several models have been developed in 

the past 20 years to simulate nanofluids using CFD. There are two main types of models utilised in these 

simulations: single-phase models and multiphase models [2]. A lot of recent studies have used both 

models, drawing parallels between the simulated and experimental data and correlations to draw 

conclusions. Although some research found more convincing results from single-phase models, 
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multiphase models generally better matched experimental data when it came to predicting the behaviour 

of nanofluids heat transfer. The optimal model was selected by comparing outputs of multi and single-

phase models; the criterion for success is the model that produced the smallest discrepancy between the 

predicted and observed outcomes [3]. 

To study the convective heat transfer of H2O / copper nanofluid with 0.3% particle concentration, 

authors [4] used single and multi-models. Results showed for two-phase model, there was an 8 % relative 

inaccuracy and for the one-phase model, it was 16 %. In their study of several PCs, Authors [5] used 

both single and multiphase techniques. They discovered that whereas the multiphase model could 

explain as much as single-phase model  and 10% experimental data, could only explain an average 

variation of 1%. Alternatively, the single-phase model demonstrated a 7% variance in wall heat transfer 

predictions. According to authors [6], who examined 5 distinct nanoparticle concentrations, the average 

errors produced by the single phase model range of Re of water-magnesium oxide nanofluid flow were 

11% and by 2% multiphase model. Compared to single-phase models, two-phase models offered more 

realistic predictions for laminar mixed convection flows with PCs below 2% [7]. Nanofluids comprising 

Cu, CuO, and Fe2O3 were studied by authors [8] in laminar flow via square-section conduit at PC levels 

up to 4% using a dispersion model to forecast Nu. For 0, 0.5 and 1% particle volume fractions for SiO2-

water nanofluid, the Nusselt number could be 7.8% accurately predicted using the single phase flow in 

sinusoidal channels also 7.3% in trapezoidal channels. Evidence from studies conducted by researchers 

suggests that the Nusselt number may be predicted on circular tube with constant heat flux using either 

a discrete phase model (DPM) or a single-phase model. When comparing two models' predictions for 

the mean coefficient of heat transfer, an 11% discrepancy was noted. There was a 10% difference 

between the experimental and simulated Nusselt values, and the PC in this study ranged from 1% to 4%. 

For their work on the heat transmission of a H2O/Fe2O3 nanofluid, researchers [9] used a micro 

channel heat sink. According to their findings, single phase model was 31% and 36% off for 1 % and 2 

% combinations of nanofluid, whereas two phase mixture model was 11.39% and 2% off for the same 

configurations. Using computational fluid dynamics (CFD) methods, authors [10] analysed turbulent 

heat transfer of a hybrid nanofluid (Fe2O3-CuO/water). A discrepancy of 8.1%, 10.2%, and 12.5% was 

discovered by the researchers between the experimental and simulation outcomes for DPM model, 

Mixture model, and Eulerian model respectively. Researchers discovered a discrepancy of about 40% 

among experimental data and single phase CFD simulation when they examined nanofluid heat transfer 

of a copper oxide/H2O in horizontal coil. 

In the application of dual phase mixture model to water-Fe2O3 nanofluid, authors [11] utilised 

three distinct PCs. While looking at heat transfer improvements, this study found that maximum 

discrepancy among simulation and experimental outcome is 8%. Using the same methodology, 

researchers [12] compared the simulated and experimental results using a single, Eulerian model, and 

multiphase Mixture model, finding that variations are less than 9%, 14%, and 18%. Researchers [13] 

investigated a multiphase mixture using a VOF model with same nanofluid, boundary conditions, and 

geometry. Four distinct Re and three distinct PCs were considered by the researchers. The two models 

performed admirably. Errors reached approximately 30% at 1% and 6% PC, whereas the difference from 

experimental correlation data at 4% PC was 12%. The results showed that for 1% PC, both models 

under-estimated the heat transfer improvement, whereas for 4% and 6% PC, they overestimated it. 

The multiphase Mixture model is among popular multiphase models used to predict the 

improvement of nanofluids heat transfer within field of computational mechanics. Also hailing from the 

AI realm is ANFIS. Researchers have found both approaches to be quite trustworthy for making case-

to-case predictions of nanofluid heat transfer enhancement; nevertheless, there are certain gaps in the 

study on how to model nanofluid heat transfer using these two methods. The first issue is that all the 

prior work on ANFIS heat transfer enhancement modelling of nanofluids has relied on a small subset of 

possible nanofluid geometries and turbulence levels. Similar to how the majority of CFD research 



employing the Mixture model perform. It is necessary to compare these two methods for predicting the 

improvement of heat transfer on nanofluids for particular flow regions, but no study has done so yet. 

This is problematic for a number of reasons, including the fact that both methods are labor-intensive and 

have their own set of advantages and disadvantages. This research made use of the CFD in addition to 

ANFIS model. The objective is to compare the two methods' efficiencies with experimental correlation 

data in order to determine which one is better at forecasting the heat transfer improvement of water-iron 

oxide nanofluids over various applications of Re concentrations and nanoparticle to identify which 

method is better at determining heat transfer improvement for every flow region. 

2. CFD modeling 

For the incompressible flow and steady-state conditions, multiphase Mixture model was used in 

the computational fluid dynamics (CFD) modelling of a 2-dimensional geometry, with the realisable k-

ε turbulence model being considered. 

2.1. Geometry  

In this study, a circular pipe of Φ10 mm, 1 m in length, and positioned horizontal w.r.t.  ground 

is considered.  

 

Figure 1. Circular pipe 

 

2.1. Turbulence modeling 

The turbulent flow of nanofluid has been modelled using realisable turbulence model k-ε. This 

model takes consider both turbulent kinetic energy (k) and its dissipation rate (ε). According to this 

research, they are best understood as [14]: 

∂∂t (ρmk) + ∂∂x (ρmkv→m) = ∂∂x [(μt,m+μt,mσk) ∂k∂x] + Gk,m + Gb – ρmε−YM+Sk  

∂∂t (ρmε) + ∂∂x (ρmεv→m) = ∂∂x [(μt,m+μt,mσε) ∂ε∂x] + ρmC1Sε − ρmC2ε2k+vε+ C1ε 

εkC3εGb+Sε  (1) 

C1=max [0.43,ηη+5]   (2) 

η=2SijSij kε    (3) 

Eddy viscosity (μt,m), formation of turbulent kinetic energy (Gk,m) as result of mean velocity 

gradients, buoyance's contribution to turbulent kinetic energy (Gb), and the fluctuating dilation in 

compressible turbulence (YM) as a whole are represented in the equations described above. The values 

of C2 and C1ε stand as constants. The Turing Transform for k and ε is denoted by σk and σε, 

respectively. The following is a definition of the model constants: 

C1ε = 1.44, C2 =1.9, and σk=1 and σε=1.2 

2.2. Thermophysical properties and boundary conditions 

Utilizing the subsequent mathematical formulas, the essential thermophysical characteristics of 

nanofluids, including density (ρnf), specific heat (Cpnf), viscocity (μnf), and thermal conductivity (λnf), 

have been computed [15]: 

ρnf=(1−φ)ρbf+φρp      (4) 



Cpnf=(1−φ)Cpbf+φCpp    (5) 

μr=μnfμbf=123 φ2+7.3φ+1     (6) 

λr=λnfλbf=4.97 φ2+2.72 φ+1     (7) 

The relative thermal conductivity (λr) and relative viscosity (μr) of nanofluid is denoted as λr and 

λr, respectively. 

Three areas of the pipe were considered when determining the boundary conditions: the entrance, 

the walls, and the outflow. A condition of uniform velocity was enforced at the inflow. The intake 

velocity (Vo) was determined as Reynolds number was raised from 10,000 - 90,000. A constant 

temperature (T0) of 293 K was maintained for the nanofluid at the input. A condition of constant wall 

temperature was adjusted at the pipe walls. At 350 K, the wall temperature (Tw) remained unchanged. 

The flow along the walls was not subject to a slide condition. The gauge pressure (Pout) was maintained 

constant at 0 Pa at exit of pipe due to a pressure condition. Following is an equational representation of 

boundary conditions: 

Tw=350K     (8) 

T0=293K     (9) 

P0ut=0 Pa     (10) 

dxdt|wall= 0 m/s    (11) 

Vo=dxdt|inlet= Re*μnfρnf*D  (12) 

2.3. Mesh independence test 

In order to run the simulation, ANSYS 2021 R1's 2-dimensional geometry was used to construct 

an orthogonal structured mesh. This mesh was then divided with horizontal and vertical edges using two 

different edge sizing. In order to perform the mesh independence test, divisions with vertical edges are 

adjusted from 20 to 130. To capture boundary layers, mesh was made denser at the walls using the 

biassing method. The mesh independence study was conducted by changing the number of divisions at 

intake and using mean outlet temperature as output parameter (Figure 2). 
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Figure 2. study of Mesh Independence 

 

After considering the maximum outlet parameter deviations in prior mesh and fact that computing 

time is increased by a high-density mesh, it was concluded that an optimal mesh would have 50 divisions 

at the inlet, 37,771 nodes, and 37,000 elements. We checked the skewness and mesh quality to find the 

best mesh. The mesh had an average skewness of 1.3062 x 10−10 and a maximum skewness of 1.3368 x 

10−10, all of which are within the allowed range. The aspect ratio is 3.96494. The optimal orthogonal 

meshing is shown by orthogonal quality of mesh, which is equal to one. 



2.4. Approach to numerical solutions 

For the simulations, CFD solver FLUENT 2021 was utilised. Using a segregated solver, 

governing equations are resolved utilizing finite volume approach. The volume fraction are discretized 

utilizing the QUICK arrangement, while convection terms, energy, turbulent kinetic energy, and 

turbulent kinetic energy dissipation rate were discretized using the second-order upwind strategy. Figure 

3 shows the utilized Pressure Implicit with Splitting of Operators (PISO) technique for velocity-pressure 

coupling handling. Because it is an improvement on the Semi-Implicit Method for Pressure Linked 

Equations (SIMPLE) technique, this one uses much less processing power. Factors including energy, 

mass, velocity components, volume fraction, turbulent kinetic energy, and turbulent kinetic energy 

dissipation rate formed on basis of the convergence criterion. A residual value of 10-6 was utilised in the 

energy equation, whilst residual values of 10-4 were employed in the continuity, velocity, turbulent 

kinetic energy, and turbulent kinetic energy dissipation rate equations. 

  

Figure 3. Algorithm of segregated PISO 

 

2.5. Validation 

Based on experimental correlation,  finding from authors [16], this investigation verified the 

Mixture model parameters. A nanofluid including water and iron oxide was validated. The simulation 

results were obtained using the identical boundary conditions that were described before in this paper. 

The Re was varied between 10,000 and 90,000 for 2.6 % PC in order to validate the process. Verification 

was carried out by comparing the Nu to Re. Equations for calculating the Reynolds number and the 

Nusselt number are as follows: 

Re=ρVDμ    (13) 

Nu=hDλnf    (14) 

This is where the variables V, h, and D stand for the developed region flow velocity, pipe 

diameter, and convective heat transfer coefficient, respectively. The λnf represents the nanofluid's 

thermal conductivity. Using a PC of 2.5 % and an experimental correlation error of 6 to 10 %, Fig 4 

shows comparison of simulated and experimental Nu vs. Re for the Mixture model. For nine distinct 

Reynolds numbers, the Mixture model has an average inaccuracy of 7.52%. 
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Figure 4. The 3% particle concentration on Nu vs. Re 

 

2.6. Modeling of ANFIS  

As a method of learning, ANFIS converts inputs into outputs by means of densely linked neural 

networks and fuzzy logic. In order to build the model for this study, MATLAB was utilised. For each 

input, the default ANFIS function has utilised the dataset, the amount of membership functions (MFs), 

and kind of MFs to build the model structure. In order to create the FIS structure, the grid partitioning 

method was used. The MATLAB ANFIS uses combination of back-propagation gradient origin and 

least-squares methods to train network's parameters. The MF number stands for fuzzy rule numbers, 

which is supposed to be three, as shown in Figure 5. 

  

Figure 5. ANFIS architecture. 

 

One common design for ANFIS is shown in Figure 5. Nodes that can be moved or repositioned 

are shown by the squares and circles, respectively, in this diagram. Here is a description of the layer's 

functionality along with the equations that support it: 

Layer 1 

The Fuzzification layer is the name of the initial layer. The aim of this layer is to get input values 

and find membership functions for inputs. This layer is responsible for transforming regular inputs into 

fuzzy ones. The membership function is fed fuzzy values, which is transformed from crisp values at top 

layer. Most of the time, the nodes in the first layer can be adjusted. A connection is made between the 

parameters and constant values of membership functions. According to [17], bell-type membership 

function was defined by equation (15). 

mfij(x)= 11+ {((x−ci)/ai)2}bi  i,j = 1,2,3    (15) 

Considering the membership function in this case is x. As it learns, the algorithm changes ai, bi, 

and ci. Different nodes may use different membership functions. The fuzziness in the structure is 

typically introduced by the layer. 



Layer 2 

Layer 2 is known as ruler layer The second layer takes the first layer's output as its input. The 

nodes in second layer cannot be changed. As shown in Eq. (16), At its first node, this layer multiplies 

the output of each input's initial membership function. The rule firing strengths are the outputs of these 

nodes. This causes the number of nodes and membership functions to equalise. 

Wi=(mf 1j)(mf 2j)(mf 3j) for j=1,2,3  (16) 

Layer 3 

In third and final layer, known as Normalization layer, the nodes standardise the firing skills 

acquired in the previous layer.  

Win = Wi(W1 +W2 +W3)    (17) 

Layer 4 

Where fuzzy values are transformed into crisp values, this layer is called Defuzzification layer. 

The learning algorithm can modify the variables pi, qi, ri, and si at the adjustable nodes of the layer. The 

firing strength multiplies the nodes. The nodes' outputs are best understood in terms of: 

Pi = Win (pix+ qiy + si)    (18) 

Layer 5 

The output node gets its name from the fact that this layer's job is to aggregate all of the outputs 

from the levels below it. The following equation shows the system's final output [18]: 

OP=∑i=0npi     (19) 

 

 

Figure 6. Flowchart of ANFIS working. 

 

3. Results and Discussions 

3.1. Input parameters 

One output (Nu) and two inputs were used for ANFIS modelling. Nu was computed using the 

Pak-Cho correlation, and model was trained using Reynold’s number ranging from 10,000 to 90,000 

and PC from 0.5 to 4.5. 

Table 1 shows the study's ANFIS parameters, which were automatically created using the fuzzy 

inference system (FIS). 

 



Table 1. Parameters of ANFIS.  

Parameters Values 

Nodes 203 

Number of membership function for each input 9 

Epoch 1,000 

Number of fuzzy rules 81 

Input membership function type Triangular 

Optimization method Hybrid 

FIS structure Sugeno 

Input membership function type Constant 

3.2. Membership functions 

As can be observed in Figures 7 (a) and (b) , the MF’s were automatically created by both inputs 

of ANFIS. The ANFIS modelling has been executed using triangular membership functions. The 

mathematical equation for the triangle membership functions used in this investigation was given 

by[19]: 

Triangular(x,a,b,c)=max(min (x−ab−a,1,c−xc−b),0)   (20) 
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Figure 7 Membership functions (a)PC (b) Re. 
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Figure 8. prediction of CFD vs. ANFIS. 

 

The PC and Re values were used that were not in the training data at all to test ANFIS model. 

According to predictions of CFD Mixture model, the ANFIS model, and Pak and Cho correlation, the 

findings has been given as Nu with regard to Re. The Nu as a function of PC and Re changes are shown 



in Figure 8 (a) and (b). There is some discrepancy in the CFD forecast, but for all relevant locations, the 

data predicted by ANFIS overlaps with Pak and Cho's experimental correlation prediction. To further 

understand the findings, the following figures show the relationship between Nu and Re for specific 

PCs. 

The relationship between Nu and Re for PCs with a 2.2% PC and 3.2% PC is illustrated in Figures 

9 (a) and (b). When comparing the two PCs, the CFD model has a far worse prediction error than the 

ANFIS model. While the Pak-Cho correlation and ANFIS forecast values are almost indistinguishable, 

it seems that the Mixture model underestimates the Nusselt number in all the cases. In reality, mean 

CFD errors calculated for these PC were 24.1% and 10.2%, respectively, while the ANFIS model only 

generated errors of 0.18% and 0.29%. 
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Figure 9. The particle concentration of Re vs Nu for (a) 2.2 % and (b) 3.2% 

 

It appears that things take an intriguing turn for PCs of 3.5% and 3.9%. In Figures 10 (a) and (b), 

the Re range is shown with an average error of 2.1 % and a standard deviation of 1.2%, respectively, 

according to the Mixture model. In contrast, ANFIS forecasts Nu for identical scenarios with differences 

of 0.4% and 0.31%. 
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Figure 10. The particle concentration of Re vs Nu for (a) 3.5 % and (b) 3.9 % 

 

Finally, when looking at PCs of 4.3% and 5%, as well as Reynolds number range shown in Figures 

11 (a) and (b), ANFIS produces Nusselt number predictions with mean errors of 0.26% and 0.28%, 

respectively, while Mixture model overestimates Nu by 10.2% and 17.1% on average, respectively. 
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Figure 11. The particle concentration of Re vs Nu for (a) 4.3 % and (b) 5 % 

 

The results show that ANFIS outperforms the CFD model in predicting Nu in every single 

situation. Actually, ANFIS predicts an average inaccuracy of 0.16 % to 0.38 % for every case. When it 

comes to estimating heat transfer enhancement, however, the Mixture model outperforms the other PCs 

with an average inaccuracy of about 2% when the PC is around 4%. Nu increases as Re and PC rise, as 

shown in the figures. The rising PC causes these effects because it alters the nanofluid's flow velocity 

and thermophysical characteristics. The authors' previous work [20]–[22] explains the reasons and 

repercussions of these actions. 

Predictions made with the Mixture model are inaccurate for a number of reasons. Physical and 

geometrical modelling are only two of the many problems plaguing the CFD model. One of the main 

reasons why CFD results don't match experimental data is spatial discretization error. This is the 

difference between the exact solution to the partial differential equation and the numerical solution to 

the discretized equations. When solving differential equations, it is possible for higher-order terms to 

relax, which can lead to errors. Furthermore, computer round off errors and truncation error - the 

variations in partial differential and finite difference equations may contribute to inconsistencies 

between CFD and experimental data. It is the creation of the multiphase model that is to responsible for 

mistakes pattern shown by the Mixture model, in addition to the typical CFD flaws, as found in this 

work. First, the Mixture model overestimates the drag force at low mass loadings, which causes it to 

produce comparatively higher errors for both low and high PC. In reality, however, at low PC, the 

interphase interaction and, by extension, the drag force among primary and secondary phases was almost 

nonexistent. In experimental circumstances, increase in heat transmission is partially attributable to this 

lower drag force. Second, the Mixture model ignores the fact that nanoparticles' Brownian motion is 

significantly stronger in low PC due to decreased viscosity, density, and interparticle space, all of which 

contribute to an enhancement of heat transfer in real scenario. On flip side, heat transport is negatively 

impacted as Brownian motion decreases with increasing amounts of secondary mass loading. 

However, ANFIS consistently produces highly accurate predictions of heat transfer enhancement. 

This is due to ANFIS, that develops the non-discrete domain in various dimensions, making it intelligent 

tool for local prediction of multiphase flows. When it comes to evaluating intricate engineering 

mechanisms, ANFIS can undertake complex simulations because to its intelligence inference engine. In 

addition, the approach is capable of identifying and fixing accuracy issues. Another method that uses a 

neuro-network to learn the process and uses the FIS for prediction is the ANFIS technique. Hence, a 

precise mathematical model is unnecessary. More so than the most nonlinear model, it works with 

imprecise inputs, handles nonlinearity, and displays disturbance insensitivity. In complicated, nonlinear, 

or undefined systems where there is strong practical knowledge, ANFIS performs better than other 

models. 



4. Conclusion 

An extensive variety of PC and Re values have been tested using the ANFIS and CFD Mixture 

models. The findings demonstrate that ANFIS consistently produces accurate results across all flow 

conditions, with a margin of error ranging from 0.16% to 0.38%. As a result, it can be utilised to forecast 

the improvement of heat transfer in water-Fe2O3 nanofluids regardless of the flow regime. However, for 

other nanofluid configurations, the CFD Mixture model deviates significantly, even though it 

approaches ANFIS 4% accuracy for PC. Therefore, while Mixture model and ANFIS can be employed 

equally for PC near 4%, ANFIS is clearly the superior choice for predicting heat transfer improvement 

for all other nanofluid configurations. 
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