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Once there is a velocity gradient in a viscous fluid flow, such as that across a
shock wave, a viscous force and viscous energy loss exist inside the flow
according to the Navier-Stokes equation (NSE), which may confuse the
relative contribution of compressibility and viscosity. In this paper, a viscous
shear vector is defined as the component of gradient vector of local velocity
magnitude perpendicular to the velocity vector. Then, a local viscous energy
flux vector is defined from the viscous shear vector after being multiplied by
the viscosity and the velocity magnitude. The divergence of the viscous
energy flux vector results in new expressions for viscous force and loss of
viscous energy, in which all the square terms of derivative of velocity
components correspond to irreversible energy loss. The rest part can be
taken as a kind of mechanical energy transfer done by the viscous force,
from which the viscous force components can be got based on the
assumption that the viscous force vector is parallel to the velocity vector. The
new equations are different from and more complex than those in the
traditional NSE. By the new theory, it is shown that there is no shear viscous
force and shear viscous energy loss in the flow across a normal shock wave
without velocity gradient perpendicular to the flow direction.
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Introduction

The role of turbulence can be seen in many different fields [1-4]. At present, turbulence can
not be described by any direct method, and the statistical and structural characteristics of turbulence
can also not be predicted by the Navier-Stokes equations (NSE) [5]. Long-range and short-range
forces are the two types of force that affect fluid flow used in fluid mechanics [6]. The Euler equation
for invisicd fluid has achieved great success [7]. The two types of forces are the basis to set up the
famous NSE, and then the thermodynamic energy equation [6, 8-12].

In the past, some of the work of the author of this study was related to fluid flow, such as
instability of incompressible flow [13], and laminar diffusion flame [14]. It can be said that the
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author's research experience on the Radiation Transfer Equation (RTE) [15-16] provides an
opportunity to think about the possible lack of rigor in NSE. In the previous study [17], the concept of
a local viscous energy in a fluid was defined using the product of the local viscous force and the
velocity, where the viscous force is got from the velocity gradient multiplied by the viscosity. For the
flow across a shock wave, a viscous stress was given by the velocity difference divided by the
thickness, also being a velocity gradient, of shock wave and multiplied by the viscosity, from which
the thickness of shock wave was estimated [18]. The author of [18] also noted that, usually, viscosity
plays a role when there is a velocity gradient perpendicular to the flow direction. What is the effect of
viscosity when away from the boundary?

The purpose of this article is to explore the possibility that there may not be viscous stress in
the direction across a normal shock wave, despite the presence of velocity gradient. At first, a concept
of viscous shear vector is newly defined to clarify the relations between spatial velocity gradient and
the effect of viscosity. Then, a local viscous energy flux vector in the fluid, which is extended from the
local viscous energy proposed in [17], is defined from the viscous shear vector, and the divergence of
the viscous energy flux results in new viscous force and loss of viscous energy, which are different
from those in the traditional NSE.

Theoretical Derivation
Concept derivation in 2-D, steady, unidirectional, laminar flows

In order to quantitatively describe the dissipation process of mechanical energy in fluid
motion by viscosity, we consider two cases in 2-D, steady, unidirectional, laminar flows as shown in
Fig. 1(a) and (b). The velocity fields for the two flows are given as below:
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Figure 1. Steady, unidirectional, laminar flow of viscous fluid between two plates. (a) Case I, (b) Case 11
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Case II: V=u,=9g(x), u,=0, u,=0 (1)

z

{Case I: V=u="f(y), u,=0 u,=0

where u,,u, and u, are the velocity components. Obviously, the flow in Case Il in Fig. 1(b) must
be compressible. Assume that the viscosity is constant in the flows for simplicity. According to the
NSE [12], the viscous force in x-direction, f,, , in the two cases reads o°f /oy? and
(4/3)uo?g 10x?, where 4 is the viscosity. The viscous force component in x-direction for Case |
is correct. But we can find that the viscous force component in x-direction for Case Il is not zero, even
the velocity does not have gradient in y-direction.

The viscous energy loss < for the two cases can be got as u(of /oy)’ , and
(44:13)og /1 6x)?, respectively, which indicates a fact that in the Case Il, the viscous force exists,
and causes a non-zero irreversible energy loss. One example of this flow is that across a shock wave
[18].

Here we can figure out the velocity vector V:uxi+uyj and the gradient vector of
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velocity magnitude wvv , where v = m , as also shown in Fig. 1. The problem comes from the
directional relationship between these two vectors. As shown in Fig. 1(a), these two vectors are
perpendicular to each other, and the viscous force obtained from NSE is correct. But in Fig. 1(b), these
two vectors are parallel to each other, and the viscous force obtained from NSE maybe not correct. In
essence, the Newtonian friction law stands for the gradient vector of velocity magnitude perpendicular
to the velocity vector in such as a boundary layer.

For Case | shown in Fig. 1(a), the flow is driven by the upper plate, and the mechanical
energy is input by the external force F, in the fluid. The work done by the force F, acting on a
body with velocity V will be Fy-V . It will be transferred into the fluid, and then partially or totally
dissipated into heat. Thus, viscous energy flux was introduced as [17]:

du
EV = FV XuX = uX . 2
Y , ’u dy ( )

where F,, is a Newtonian internal friction stress, and represents the viscous force in the x-direction
caused by the gradient of velocity in the x-direction. Obviously, the dimension of E, is [N/ m? - (m/
$)] = [J/ m?/s] = [W/ m?, and it is a kind of energy flux, and also a vector. Similarly, concept of
mechanical energy in fluid motion was adopted in literature (for the example, see [19]).

If we take the derivative of eq. (2), we get [17]

. 9B, _df v (du) o d%, -
o Tay ay Uy ) T ey ) T ey

with the assumption of constant viscosity for simplicity, which represents the change of viscous energy
flux in the fluid along the vertical direction, as the change of an internal energy. Under the plate
laminar flow condition as shown in Fig. 1(a), the dissipation rate of viscous energy per unit volume of
fluid caused by the viscous effect is exactly equal to x(du, /dy)’ [17]. As analyzing a steady, straight
flow in a horizontal pipe in literature (e.g., see p181 of ref.[6]), the energy dissipation rate of viscous
fluid per unit mass in a horizontal pipe is obtained as @ = (u/ p)du/dr)’.

Under unsteady flow conditions, the second term on the right-hand side of eq. (3),
yux(d Zuxldyz), may appear, which can be positive or negative, representing the mutual transformation
with mechanical energy in the process. From eq. (3), y(dzux /dyz) , the remaining part of
yux(dzuxldyz) after removal of the speed term u,, is just a viscous, body force, f,x, which would
occur in the momentum equation as an acting force and cause acceleration of fluid [17].

Therefore, eq. (3) satisfies the first law of thermodynamics: the left-hand side of the
equation represents the change in internal energy, the first term on the right-hand side is irreversible
viscous heat loss, which indicates the effect of the second law of thermodynamics, and the second
term is the conversion part of mechanical energy.

For Case Il shown in Fig. 1(b), the velocity vector V, and the gradient vector of velocity
magnitude VvV, are parallel to each other, and the viscous force obtained from NSE maybe not correct.
In essence, the Newtonian friction law stands for the gradient vector of velocity magnitude
perpendicular to the velocity vector in such as a boundary layer. So, we need to define a viscous shear
vector at first, and then to introduce a viscous energy flux vector, in order to obtain general equations
for the viscous fluid flow.

Introduction of a viscous shear vector
For the velocity components (u,,u,,u,) of a point in a flow field, the gradient of fluid
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velocity magnitude is [17]
VV:a—Vi+a—Vj+a—Vk, 4)
OX oy oz
which is a kind of vector, where the partial
derivatives of the velocity magnitude in the x-, y-

and z-directions are given by [17]:

ov 1 ! ou, T ou, T au,
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8_V _ i u aUX Tu auy +u auz Figure 2. The gradient vector of velocity magnitude, V /',
oz - V X o7 y oz z oz the local viscous shear vector, Sv , and the velocity vector,

V', on the same plane.

As shown in Fig. 2, vV, the local velocity
magnitude gradient vector, may not be always perpendicular to the velocity vector, V. We define a
viscous shear vector, S, , that should be always perpendicular to the velocity vector, V, on the same

plane with VvV and V, as follows
VV.V

V2

Vv, (6)

S, =VV -

where [(VV-V)/VZ]V is just the component of the gradient vector of velocity magnitude, VvV,
parallel to the velocity vector, V, as shown in Fig. 2.
In fact, eq.(6) is expressed as follows
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We can verify that the following equation holds
S,-V=0, 8)

that means that the viscous shear vector is perpendicular to the velocity vector.
For 2-D flows, the viscous shear vector, S,, becomes



2 ou u,u ou
szl 1_u_X2 uxaux+u —2 |- uX6UX+u —L1|i
Vv Vv x Yox ) V oy Yoy

1] uu,(  au, au, u§ au, au, )| .
+\7 BRVE u, x +uy§ + 1—\7 u, o +uyE J

From eq. (9), it is obvious that there exists a viscous shear in y-direction in Case | in Fig.
1@a), Syx =0, s,, =0u, /0y =0of /Oy . But there does not exist a viscous shear in Case Il in
Fig. 1(b), since U, =0, s,, =0 ,and s,, =0.
Definition of viscous energy flux vector in 2-D flows and its divergence

Based on the viscous shear vector, s_, a local viscous energy flux vector, E,, is defined as

©)

below:
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Then the divergence of the viscous energy flux can be calculated as

ev:v-EV:v-(yvvv)—v-(yw(/'vvj (11)

In 2-D flows, it becomes
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It is stated that the divergence of the viscous energy flux can be divided into two parts. The first part
includes all the square terms of derivative of velocity components,
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They are always non-negative as an irreversible loss, corresponds to the energy dissipated by the
viscosity of the fluid and is converted into thermal energy in the fluid (i.e., raising the fluid
temperature) [17].

For Case | in Fig. 1(a), the viscous energy loss is suggested as @, = u(6f /8y)*. For Case Il
in Fig. 1(b), the viscous energy loss is given as @, = u[l+1-(2-3)[ég/ax)* = 0. So, in this case, there is
no viscous energy loss.

The rest part on the right-hand side of eq. (12) contains at least one velocity component, and
as a kind of energy transfer, they are related to the mechanical energy done by the viscous force, being
equal to the product of the velocity component and the viscous force component. Then we have the
divergence of the viscous energy flux in the following form for 2-D flows

(12)

(13)




e, =V-E, = fv,x'Ux+ fvyy~uy+CI)v (14)

As we can see in the Fig. 1(a) that the viscous force is parallel to the velocity vector, it is
suggested that in 3-D flows, the viscous force is always parallel to the fluid velocity vector inside the
flows. The suggestion is based on the principle that the viscous forces hinder the movement of fluid,
thus opposing the direction of flow. Then, for the viscous force components, r «v -o, that means

f,.-u,—f,,-u=0. For a term ¢ on right-hand side of eq. (12), from eq. (14) we have

f,.-uc+f,,-u, =c. Then we have

u, u
V,X =V_207 fv,y =V_yZC. (15)
The numbers of terms are 20 in 2-D flows, and the viscous force components in two directions for 2-D

flows can be given as

f

(16)

and all the terms P, and their coefficients C, are given in Table 1.

Table 1. Terms and coefficients in new viscous force in 2-D flows.
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For Case | in Fig. 1(a), the viscous force is given as f,, = uo*f /oy?, f,, =0.For Case Il
inFig. 1(b), f,, =u@-1o°g/ox* =0, f,, =0, and the fluid is not affected by the viscous force.
Viscous energy flux and its transfer in 3-D flows

The divergence of the viscous energy flux in 3-D flows

ev:V-Ev:fvyx~ux+fvyy-uy+fvyz-uZ+CD (17)
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detailed derivation is not given here, and in the result,
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For the viscous force in 3-D flows, r «v -0 leadsto
f.-u—-f,u=0f u-f, u=0f u-f, u=0 (19)
Foraterm c¢,we have
foou+f, u+f, .u=c. (20)
Together with eq. (19), we have
f,, —Vu—xzc, fy =\L;—yzc, f,, —\L/j—zzc. (21)
The viscous force components in three directions can be given as
u, 8t y 8 , 8
fv,x :V_gi;lcipif fv,y :V_ZECiPi’ fv,z :_2§C|P| , (22)

and the total number of terms is 81 in 3-D flows. The details in the derivation are not given here. All
the terms P, and their coefficients c; are given in Table 2.

As shown in Fig. 3, according to the derivation in the literature such as [20,21], the energy
balance equation in a volume element dxdydz is
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where E is the internal energy, Q is the heat
generation, and the last nine terms on the right side
of eq. (23) represent the work done by the viscous
force. In this paper, the rate of change of viscous
energy flux, where E E,, and E,, represent
its components, is used to replace the work done by the viscous force in the traditional equation. Eq.
(23) can directly give the reversible conversion of viscous energy, which contains the viscous force
term that can be used in the momentum equation.

The pressure related term on the left side of eq. (23), dealing with transfer of the pressure

potential energy, is derived as follows [17]:

Figure 3. A micro parallelepiped element used to analyze
transfer of pressure potential energy and viscous energy
flux in viscous fluid movement.
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It can be seen from the above equation that the divergence of velocity,

0
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is included in transfer of the pressure potential energy, and should not be related directly to the
viscosity.
After derivation, eq. (23) leads to [17]:
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where a,,a,,a, are the acceleration components, and the irreversible heat loss term @, is given in
eg. (18). In eq. (25), the first, second and third terms in square brackets on the left-hand side are just
momentum equations, which are balanced and the principle of conservation of mechanical energy is

met. Then, the motion equation of viscous fluid can be obtained as follows [17]:
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where the viscous forces are given in eq. (22) and all the terms P, and their coefficients C, are
given in Table 2.
Here, eq. (25) becomes:
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For unit mass fluid, the expressions of irreversible loss, viscous force and viscous energy flux change
rate can be obtained after being divided by density. The change of local fluid temperature comes
mainly from: (1) the contribution of external mechanical work input through viscous energy
dissipation; (2) the contribution of external heat input [11].

Discussion
The viscous force terms in the NSE are [12,20,21]:
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Many differences for the viscous force exist between our new equations

(Eg. 22) and the



NSE (egs. (28-30)). Among them, the term V-V, determined by compressibility and multiplied by
the viscosity coefficient, is included in the momentum equation in NSE. So, the viscosity and
compressibility are mixed in the NSE, which may be questionable. The term of divergence of velocity
does not appear in the new momentum equation, indicating a decoupling between the compressibility
and the viscosity. The result is different from the theory of Yang’s scaling-law [22] and fractal
power-law [23] flows. Much more work needs to verify the theory derived in this paper for
compressible fluid flows in the future.
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Nomenclature

a,,a,,a,- acceleration components, [m-s?4] u,,u,,u, -velocity components, [m-s]

E -internal energy of fluid, [W] V -velocity magnitude, [m-s'l]

E, -viscous energy flux, [W- m'z] L -viscosity, [N .5-m?

e, -derivative of viscous energy flux, [W-m'3] @, -viscous energy dissipation,
[W-m=-s7]

F, -external force, [N-m'z] p -density of fluid, [kg-m'3]

F, -viscous force, [N-m'z]

F, -viscous force vector, [N- m] Subscripts

f, -volume viscous force, [N- m'3] 0 -initial or external

p -pressure of fluid, [J-kg'l] V -Viscous

s, -Vviscous shear vector, [S'l] X, ¥, Z -coordinate components

T -fluid temperature, [K]
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