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DOES SHEAR VISCOSITY PLAY A KEY ROLE IN THE FLOW ACROSS A NORMAL 
SHOCK WAVE?  

 
by 
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In the past, some of the work of the author of this study was related to fluid flow, such as 
instability of incompressible flow [13], and laminar diffusion flame [14].  It can be said that the 
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Once there is a velocity gradient in a viscous fluid flow, such as that across a 
shock wave, a viscous force and viscous energy loss exist inside the flow 
according to the Navier-Stokes equation (NSE), which may confuse the 
relative contribution of compressibility and viscosity. In this paper, a viscous 
shear vector is defined as the component of gradient vector of local velocity 
magnitude perpendicular to the velocity vector. Then, a local viscous energy 
flux vector is defined from the viscous shear vector after being multiplied by 
the viscosity and the velocity magnitude. The divergence of the viscous 
energy flux vector results in new expressions for viscous force and loss of 
viscous energy, in which all the square terms of derivative of velocity 
components correspond to irreversible energy loss. The rest part can be 
taken as a kind of mechanical energy transfer done by the viscous force, 
from which the viscous force components can be got based on the 
assumption that the viscous force vector is parallel to the velocity vector. The 
new equations are different from and more complex than those in the 
traditional NSE. By the new theory, it is shown that there is no shear viscous 
force and shear viscous energy loss in the flow across a normal shock wave 
without velocity gradient perpendicular to the flow direction.  
Key words: viscous shear vector, viscous energy flux vector, shock wave, 
compressible flow, energy dissipation 

 
Introduction 

The role of turbulence can be seen in many different fields [1-4]. At present, turbulence can 
not be described by any direct method, and the statistical and structural characteristics of turbulence 
can also not be predicted by the Navier-Stokes equations (NSE) [5]. Long-range and short-range 
forces are the two types of force that affect fluid flow used in fluid mechanics [6]. The Euler equation 
for invisicd fluid has achieved great success [7]. The two types of forces are the basis to set up the 
famous NSE, and then the thermodynamic energy equation [6, 8-12].  
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author's research experience on the Radiation Transfer Equation (RTE) [15-16] provides an 
opportunity to think about the possible lack of rigor in NSE. In the previous study [17], the concept of 
a local viscous energy in a fluid was defined using the product of the local viscous force and the 
velocity, where the viscous force is got from the velocity gradient multiplied by the viscosity. For the 
flow across a shock wave, a viscous stress was given by the velocity difference divided by the 
thickness, also being a velocity gradient, of shock wave and multiplied by the viscosity, from which 
the thickness of shock wave was estimated [18]. The author of [18] also noted that, usually, viscosity 
plays a role when there is a velocity gradient perpendicular to the flow direction. What is the effect of 
viscosity when away from the boundary?  

The purpose of this article is to explore the possibility that there may not be viscous stress in 
the direction across a normal shock wave, despite the presence of velocity gradient. At first, a concept 
of viscous shear vector is newly defined to clarify the relations between spatial velocity gradient and 
the effect of viscosity. Then, a local viscous energy flux vector in the fluid, which is extended from the 
local viscous energy proposed in [17], is defined from the viscous shear vector, and the divergence of 
the viscous energy flux results in new viscous force and loss of viscous energy, which are different 
from those in the traditional NSE.  
Theoretical Derivation 
Concept derivation in 2-D, steady, unidirectional, laminar flows 

In order to quantitatively describe the dissipation process of mechanical energy in fluid 
motion by viscosity, we consider two cases in 2-D, steady, unidirectional, laminar flows as shown in 
Fig. 1(a) and (b). The velocity fields for the two flows are given as below:  

 
Figure 1.  Steady, unidirectional, laminar flow of viscous fluid between two plates.  (a) Case I, (b) Case II 
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where yx uu ,  and zu  are the velocity components. Obviously, the flow in Case II in Fig. 1(b) must 
be compressible. Assume that the viscosity is constant in the flows for simplicity. According to the 
NSE [12], the viscous force in x-direction, xvf , , in the two cases reads 22 / yf ∂∂µ and 
( ) 22 /3/4 xg ∂∂µ , where µ  is the viscosity. The viscous force component in x-direction for Case I 
is correct. But we can find that the viscous force component in x-direction for Case II is not zero, even 
the velocity does not have gradient in y-direction.  

The viscous energy loss Φ for the two cases can be got as ( )2/ yf ∂∂µ , and  
( )( )2/3/4 xg ∂∂µ , respectively, which indicates a fact that in the Case II, the viscous force exists, 
and causes a non-zero irreversible energy loss. One example of this flow is that across a shock wave 
[18].   

Here we can figure out the velocity vector x yu u= +V i j
 

and the gradient vector of 
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velocity magnitude V∇ , where 22
yx uuV += , as also shown in Fig. 1. The problem comes from the 

directional relationship between these two vectors. As shown in Fig. 1(a), these two vectors are 
perpendicular to each other, and the viscous force obtained from NSE is correct. But in Fig. 1(b), these 
two vectors are parallel to each other, and the viscous force obtained from NSE maybe not correct. In 
essence, the Newtonian friction law stands for the gradient vector of velocity magnitude perpendicular 
to the velocity vector in such as a boundary layer.     

For Case I shown in Fig. 1(a), the flow is driven by the upper plate, and the mechanical 
energy is input by the external force 0F  in the fluid. The work done by the force 0F acting on a 
body with velocity V will be VF ⋅0 . It will be transferred into the fluid, and then partially or totally 
dissipated into heat. Thus, viscous energy flux was introduced as [17]:   

, ,
x

v y v x x x
duE F u u
dy

µ= =                           (2) 

where xvF ,  is a Newtonian internal friction stress, and represents the viscous force in the x-direction 
caused by the gradient of velocity in the x-direction. Obviously, the dimension of yvE , is [N / m2 · (m / 
s)] = [J / m2 /s] = [W / m2], and it is a kind of energy flux, and also a vector. Similarly, concept of 
mechanical energy in fluid motion was adopted in literature (for the example, see [19]).  

If we take the derivative of eq. (2), we get [17] 
2 2

,
, 2

v y x x x
v y x x

dE du du d ude u u
dy dy dy dy dy

µ µ µ
   

= = = +   
   

                  (3) 

with the assumption of constant viscosity for simplicity, which represents the change of viscous energy 
flux in the fluid along the vertical direction, as the change of an internal energy. Under the plate 
laminar flow condition as shown in Fig. 1(a), the dissipation rate of viscous energy per unit volume of 
fluid caused by the viscous effect is exactly equal to ( )2/ dyduxµ [17]. As analyzing a steady, straight 
flow in a horizontal pipe in literature (e.g., see p181 of ref.[6]), the energy dissipation rate of viscous 
fluid per unit mass in a horizontal pipe is obtained as ( )( )2// drduρµ=Φ .  

Under unsteady flow conditions, the second term on the right-hand side of eq. (3), 
( )22 / dyudu xxµ , may appear, which can be positive or negative, representing the mutual transformation 

with mechanical energy in the process. From eq. (3), ( )22 / dyud xµ , the remaining part of 
( )22 / dyudu xxµ  after removal of the speed term ux, is just a viscous, body force, fv,x, which would 

occur in the momentum equation as an acting force and cause acceleration of fluid [17].  
Therefore, eq. (3) satisfies the first law of thermodynamics: the left-hand side of the 

equation represents the change in internal energy, the first term on the right-hand side is irreversible 
viscous heat loss, which indicates the effect of the second law of thermodynamics, and the second 
term is the conversion part of mechanical energy. 

For Case II shown in Fig. 1(b), the velocity vector V ,
 
and the gradient vector of velocity 

magnitude V∇ , are parallel to each other, and the viscous force obtained from NSE maybe not correct. 
In essence, the Newtonian friction law stands for the gradient vector of velocity magnitude 
perpendicular to the velocity vector in such as a boundary layer. So, we need to define a viscous shear 
vector at first, and then to introduce a viscous energy flux vector, in order to obtain general equations 
for the viscous fluid flow.  
Introduction of a viscous shear vector 

For the velocity components ),,( zyx uuu  of a point in a flow field, the gradient of fluid 
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velocity magnitude is [17] 
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which is a kind of vector, where the partial 
derivatives of the velocity magnitude in the x-, y- 
and z-directions are given by [17]: 
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   (5) 

As shown in Fig. 2, V∇ , the local velocity 
magnitude gradient vector, may not be always perpendicular to the velocity vector, V . We define a 
viscous shear vector, vS , that should be always perpendicular to the velocity vector, V , on the same 
plane with V∇  and V , as follows 

  2v
VV
V

∇ ⋅
= ∇ −

VS V ,                             (6) 

where ( )[ ]VV 2/VV ⋅∇  is just the component of the gradient vector of velocity magnitude, V∇ , 
parallel to the velocity vector, V , as shown in Fig. 2.  

In fact, eq.(6) is expressed as follows 

  

2

2 2

2

2

2 2

1
1

1
1

y x y yx x xz z
x y z x y z

v
yx z x z

x y z

x y y yx xz
x y z x y

u u u uu u uu uu u u u u u
V x x x V y y y

V uu u u uu u u
V z z z

u u u uu uuu u u u u
V x x x V y

V

 ∂ ∂    ∂ ∂∂ ∂
− + + − + +     ∂ ∂ ∂ ∂ ∂ ∂     =  ∂ ∂ ∂ − + + ∂ ∂ ∂   

 ∂ ∂ ∂ ∂∂
− + + + − +    ∂ ∂ ∂ ∂   +

S i

2

2 2

2

2

1

1

y z
z

yx z x z
x y z

y y z yx z x xz z
x y z x y z

yxz z
x y z

u uu
y y

uu u u uu u u
V z z z

u u u uu u u uu uu u u u u u
V x x x V y y y

V uuu uu u u
V z z z

  ∂
+  ∂ ∂  

 ∂ ∂ ∂ − + +  ∂ ∂ ∂  
 ∂ ∂    ∂ ∂∂ ∂
− + + − + +    ∂ ∂ ∂ ∂ ∂ ∂    +  ∂   ∂ ∂ + − + +   ∂ ∂ ∂    

j



k

    (7) 

We can verify that the following equation holds 

  0v ⋅ =S V ,                                    (8) 

that means that the viscous shear vector is perpendicular to the velocity vector. 
For 2-D flows, the viscous shear vector, vS , becomes 

 
Figure 2. The gradient vector of velocity magnitude, V∇ , 
the local viscous shear vector, vS , and the velocity vector, 

V , on the same plane. 
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From eq. (9), it is obvious that there exists a viscous shear in y-direction in Case I in Fig. 
1(a), 0, =xvs , yfyus xyv ∂∂=∂∂= //, . But there does not exist a viscous shear in Case II in 
Fig. 1(b), since 0=yu , 0, =xvs , and 0, =yvs .  
Definition of viscous energy flux vector in 2-D flows and its divergence 

Based on the viscous shear vector, vS , a local viscous energy flux vector, vE , is defined as 
below: 

  2v v
V VV V V V V
V V
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V VE S V V                (10) 

Then the divergence of the viscous energy flux can be calculated as   
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In 2-D flows, it becomes 
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         (12) 

It is stated that the divergence of the viscous energy flux can be divided into two parts. The first part 
includes all the square terms of derivative of velocity components,  
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               (13) 

They are always non-negative as an irreversible loss, corresponds to the energy dissipated by the 
viscosity of the fluid and is converted into thermal energy in the fluid (i.e., raising the fluid 
temperature) [17]. 

For Case I in Fig. 1(a), the viscous energy loss is suggested as ( )2/ yfv ∂∂=Φ µ . For Case II 
in Fig. 1(b), the viscous energy loss is given as ( )[ ]( ) 0/3-211 2 =∂∂⋅+=Φ xgv µ . So, in this case, there is 
no viscous energy loss. 

The rest part on the right-hand side of eq. (12) contains at least one velocity component, and 
as a kind of energy transfer, they are related to the mechanical energy done by the viscous force, being 
equal to the product of the velocity component and the viscous force component. Then we have the 
divergence of the viscous energy flux in the following form for 2-D flows 
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As we can see in the Fig. 1(a) that the viscous force is parallel to the velocity vector, it is 
suggested that in 3-D flows, the viscous force is always parallel to the fluid velocity vector inside the 
flows. The suggestion is based on the principle that the viscous forces hinder the movement of fluid, 
thus opposing the direction of flow. Then, for the viscous force components, 0=×VFv

, that means 
0,, =⋅−⋅ xyvyxv ufuf . For a term c  on right-hand side of eq. (12), from eq. (14) we have 
cufuf yyvxxv =⋅+⋅ ,, . Then we have 

  c
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V
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x
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The numbers of terms are 20 in 2-D flows, and the viscous force components in two directions for 2-D 
flows can be given as   
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and all the terms iP  and their coefficients iC  are given in Table 1.  

Table 1. Terms and coefficients in new viscous force in 2-D flows. 
i     iP       iC    i     iP       iC     i     iP           iC  
   

 
For Case I in Fig. 1(a), the viscous force is given as 0,/ ,

22
, =∂∂= yvxv fyff µ .

 

For Case II 
in Fig. 1(b), 0,0/)11( ,

22
, ==∂∂−= yvxv fxgf µ ,

 

and the fluid is not affected by the viscous force. 
Viscous energy flux and its transfer in 3-D flows 

The divergence of the viscous energy flux in 3-D flows 
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For the viscous force in 3-D flows, 0=×VFv
 leads to 

  , , , , , ,0, 0, 0v x y v y x v x z v z x v y z v z yf u f u f u f u f u f u⋅ − ⋅ = ⋅ − ⋅ = ⋅ − ⋅ = .           (19) 

For a term c ,we have 

  cufufuf zzvyyvxxv =⋅+⋅+⋅ ,,, .                           (20) 

Together with eq. (19), we have 
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The viscous force components in three directions can be given as   
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and the total number of terms is 81 in 3-D flows. The details in the derivation are not given here. All 
the terms iP  and their coefficients iC  are given in Table 2.  

As shown in Fig. 3, according to the derivation in the literature such as [20,21], the energy 
balance equation in a volume element dxdydz  is 
given by [17]: 
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where E is the internal energy, Q is the heat 
generation, and the last nine terms on the right side 
of eq. (23) represent the work done by the viscous 
force. In this paper, the rate of change of viscous 
energy flux, where xvE , , yvE ,  and zvE ,  represent 
its components, is used to replace the work done by the viscous force in the traditional equation. Eq. 
(23) can directly give the reversible conversion of viscous energy, which contains the viscous force 
term that can be used in the momentum equation.  

The pressure related term on the left side of eq. (23), dealing with transfer of the pressure 
potential energy, is derived as follows [17]: 

 
Figure 3.  A micro parallelepiped element used to analyze 

transfer of pressure potential energy and viscous energy 
flux in viscous fluid movement. 
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(24) 

It can be seen from the above equation that the divergence of velocity, 
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is included in transfer of the pressure potential energy, and should not be related directly to the 
viscosity.  

After derivation, eq. (23) leads to [17]: 
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where zyx aaa ,,  are the acceleration components, and the irreversible heat loss term vΦ  is given in 
eq. (18). In eq. (25), the first, second and third terms in square brackets on the left-hand side are just 
momentum equations, which are balanced and the principle of conservation of mechanical energy is 
met. Then, the motion equation of viscous fluid can be obtained as follows [17]: 
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where the viscous forces are given in eq. (22) and all the terms iP  and their coefficients iC  are 
given in Table 2.  

Here, eq. (25) becomes: 
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For unit mass fluid, the expressions of irreversible loss, viscous force and viscous energy flux change 
rate can be obtained after being divided by density. The change of local fluid temperature comes 
mainly from: (1) the contribution of external mechanical work input through viscous energy 
dissipation; (2) the contribution of external heat input [11].  
Discussion 

The viscous force terms in the NSE are [12,20,21]: 
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Table 2. Terms and coefficients in new viscous force expressions 
i   iP      iC   i   iP      iC    i    iP      iC  i   iP        iC  
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NSE (eqs. (28-30)). Among them, the term V⋅∇ , determined by compressibility and multiplied by 
the viscosity coefficient, is included in the momentum equation in NSE. So, the viscosity and 
compressibility are mixed in the NSE, which may be questionable. The term of divergence of velocity 
does not appear in the new momentum equation, indicating a decoupling between the compressibility 
and the viscosity. The result is different from the theory of Yang’s scaling-law [22] and fractal 
power-law [23] flows. Much more work needs to verify the theory derived in this paper for 
compressible fluid flows in the future. 
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zyx aaa ,, - acceleration components, [m·s-2] zyx uuu ,, -velocity components, [m·s-1] 
E -internal energy of fluid, [W] V -velocity magnitude, [m·s-1] 

vE -viscous energy flux, [W·m-2] µ -viscosity, [N·s·m-2] 

ve -derivative of viscous energy flux, [W·m-3]
 vΦ -viscous energy dissipation, 

[W·m-3·s-1] 
0F -external force, [N·m-2] ρ -density of fluid, [kg·m-3] 

vF -viscous force, [N·m-2]  
vF -viscous force vector, [N·m-2] Subscripts 
vf -volume viscous force, [N·m-3] 0 -initial or external 

p -pressure of fluid, [J·kg-1] v -viscous 
vS -viscous shear vector, [s-1] zyx ,, -coordinate components 

T -fluid temperature, [K]  
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