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In this work, we mainly investigate the Drinfeld-Sokolov system by 
employing the functional variable method. Some new solitary wave 
and periodic solutions are successfully derived. The dynamic 
characteristics of these obtained solitary wave solutions are 
elaborated by plotting some 3D and 2D figure. 
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In recent years, nonlinear evolution equations have been widely used to explain 
complex natural phenomena stemmed from engineering and science [1-6]. For instance, the 
Drinfeld-Sokolov system, proposed by Drinfeld and Sokolov, was first adopted to describe 
the long waves of small amplitude on the surface of inviscid fluid. The Drinfeld-Sokolov 
system is given by the following two equations [7] 
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where a , b , c are constant. 
  The Drinfeld-Sokolov system has been studied by many famous scholars by using a variety 
of effective analytical methods. For example, in [7], Wazwaz studied the Drinfeld-Sokolov 
system by using sine-cosine method and tanh function method, and obtained some solition 
and periodic solutions, which can describe natural phenomena. In [8], Garrido and Bruzon 
used Lie group method to derive the exact solutions of Drinfeld-Sokolov system, which are 
called travelling wave solutions. In [9], Yao et al employed the ansatz technique to study the 
Drinfeld-Sokolov system and obtain some new solitary wave solutions, which can formulate 
the properties of this system. More results related with Drinfeld-Sokolov system can be found 
in cited References. 

The main objective of this manuscript is to study the Drinfeld-Sokolov system 
by employing the functional variable method, which is very simple and direct analytical 
scheme. We successfully derive some novel solitary wave and periodic solutions. These 
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obtained solutions are completely new and have not yet appeared in other literature. Finally, 
some 3D and 2D graphs are presented with suitable parameters. 

 
Functional variable method 

Consider the following nonlinear evolution equation 
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Use the travelling wave transformation 

)(),( ξΦ=txw  ,                                                     (4) 

tx βλξ += .                                                        (5) 

Substitute eq. (4) and eq. (5) into eq.(3) and have 
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Assume that unknown function Φ is  
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Hence, we obtain 
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 So , eq. (3) can be converted into the following form 
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By solving eq. (11), the Φ can be derived. 
 
Solitary wave solution of Drinfeld-Sokolov system 
 

Consider the Drinfeld-Sokolov system as follows 
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We apply the following transformation 

)(),( ξΦ=txw  ,    ( )ξUtxu =),(                                  (14) 

tx βλξ += .                                                   (15) 

Putting eq.(14) and eq.(15) into eq.(12) and eq.(13), we obtain 
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where ξddΦ=Φ′ . 

Integrate eq.(16) and neglect the constant, and have 
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Substitute eq.(18) into eq.(17) and integrate once, and obtain the following 
equation 
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Put eq.(18) into eq.(19), and get 
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Then, a functional variable is defined as 
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Therefore, the following equation is derived 
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         Eq.(24) is calculated as 
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By solving eq.(25), we obtain 
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Case.2. When 03 >−
λ
β

a
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, the new periodic solutions are derived as follows 
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In figure.1(a), we plot the 3D graph of ( )txu ,2,1  with parameters 1=a , 2−=b ,

1=c , 5=λ 3=β . In figure.1(b), we plot the 2D graph of ( )txu ,2,1  with parameters 2=a ,

3−=b , 2=c , 4=λ 2=β  at different time 1=t and 5=t . 

In figure.2(a), we sketch the 3D graph of ( )txw ,1  with parameters 3=a ,

6−=b , 2=c , 3=λ 5=β . In figure.2(b), we present the 2D graph of ( )txw ,1  with 

parameters 4=a , 5−=b , 1=c , 2=λ 7=β  at different time 2=t and 7=t . 

Conclusion 
In the present work, the functional variable method is successfully adopted to 

study the Drinfeld-Sokolov system, and some new solitary wave and periodic solutions are 
derived. These solutions are very helpful for understanding the corresponding physical 
phenomena. In the future work, the functional variable method will be used to solve fractional 
differential equations. 
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Nomenclature 
t -time co-ordinate,[s]                           x -space co-ordinate, [m] 
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              Figure.1. The corresponding 3D and 2D graph of 2,1u  

 

 
(a)                                  (b) 

Figure.2. The corresponding 3D and 2D graph of 1w  
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