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Abstract 

It is well-known that nanofluids differ significantly from traditional heat 

transfer fluids in terms of their thermal and transfer characteristics. Two of 

carbon dioxide's transfer characteristics, its thermal conductivity and its 

viscosity, are crucial to improved oil retrieval methods and industries 

refrigeration. By combining molecular modelling with various machine 

learning algorithms, this study predicts the conduction characteristics of iron 
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oxide carbon dioxide nanofluids. It is possible to evaluate the accuracy of 

these transfer parameter estimates by applying machine learning methods 

such as Decision Tree, K-Nearest Neighbors, and Linear Regression. 

Predicting these transfer qualities requires knowing the size, fraction of 

nanoparticle volume, and temperature. To determine the characteristics, 

molecular dynamics simulations are run using the Large-scale Atom Vastly 

Equivalent Simulant. An inter- and intra-variable Pearson correlation was 

established to confirm that the input variables were reliant on m and thermal 

conductivity. The results were finally confirmed by using statistical 

coefficients of determination. For a variety of temperature ranges, volume 

fractions, and nanoparticle sizes, the study found that the decision tree model 

was the best at predicting the transport parameters of nanofluids. It has a 99% 

success rate.  
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1. Introduction 

"Dispersed solid nanoparticles or nanofibers, usually measuring 1-200 nm, characterise new 

classes of fluids called "nanofluids." [1]. There have been significant advancements in the transfer 

properties of nanofluids, such as thermal conductivity(k), compared to conventional heat transfer fluids. 

[2]. Improving carbon dioxide's (CO2) thermophysical characteristics for use as a refrigerant and oil 

recovery agent is the primary goal of this investigation. Using its nanofluid in conjunction with iron 

oxide nanoparticles (np)is one example. A study conducted by the authors found that the thermal 

efficiency of a solar collector could be enhanced by 16% and 21%, respectively, by adding nanoparticles 

of copper oxide (CuO) and iron oxide (Fe2O3) to water (H2O) [3]. Water treated with nanostructures of 

multi-walled carbon nanotubes (MWCNTs) improved the performance of photovoltaic/thermal systems, 

according to another study. Research using nanofluid in parabolic trough collectors found that increasing 

the thermal efficiency of the system by 0.76 % was possible by adding CuO nanoparticles to the utilised 

motor oil [4]. Even in contexts unrelated to renewable energy, nanofluids show promise for a variety of 

uses. The authors state that nanofluids can decrease the temperature of solar systems and make heat 

pipes and exchangers more efficient [5]. Nanofluids outperform pure fluids in terms of efficiency 

enhancement in thermal devices [6]. Their investigation into the effects of ferrofluid on heat pipes 

revealed that, in comparison to pure water, which reduced thermal resistance very little, ferrofluid 

reduced thermal resistance by up to 75.8%. A large body of literature supports the idea that nanofluids 

can improve heat transmission [7].  

Thermophysical properties like as viscosity (μ) should also be determined. Since nanofluid is a 

combination of solids and liquids, its molecular weight is expected to be greater than that of a typical 

fluid. Recent studies have indicated that intrinsic features of nanofluids, like temperature, and size, 

percentage volume of particle (φ), and particle shape impact on m, even though the majority of research 

indicates that dispersing nanoparticles improves m. Researchers looked into the Fe2O3 - water µ and 

discovered that it gets better as the temperature of the system and the concentration of Fe2O3 rise. An 

increase of 86% in m was demonstrated by authors [8] for an n-Fe2O3 size of 28 nm. As the diameter of 

the n-Fe2O3 increased, authors [9] demonstrated that µ improved. As the np size increases, they found 

that μ for Fe2O3 nanofluids decreases. As authors [10] points out, it is challenging to regulate the shape 

and size of np during experiments, thus simulations are used to evaluate the transfer properties under 



certain assumptions. Additional insights can be gleaned from these simulations by acquiring a more 

comprehensive and useful view of molecule structure properties.  

Presently, efforts are being made to enhance CO2's transfer properties, making it a more effective 

refrigerant and helping to improve oil recovery. Using molecular dynamics simulations, we have 

calculated the impact of particle size, φ, and temperature on the Fe2O3-CO2 nanofluid using LAMMPS, 

an open-source-code large-scale atomic/molecular massively parallel simulator [11]. From 350 to 700 

K, there is a variance in nanoparticle size, φ, and temperature ranging from 0.9 to 2.9%. Afterwards, the 

k and ν of the Fe2O3-CO2 nanofluid are modelled using machine learning (ML) techniques. This is done 

by determining the relevance of the input variables to k and ν and then building a correlation between 

the dependent and independent variables. In order to anticipate the parameters of the transport of Fe2O3-

CO2 nanofluids, the outcomes of the molecular dynamics (MD) simulations were compared using 

several machine learning algorithms. As the np diameter grows, a denser area surrounding the np were 

seen also called the nanolayer, which may be contributing to the improved transport characteristics of 

the nanofluid as it is right now. In this study, the Pearson correlation were used that is obtained by ML 

to find the k and µ of the Fe2O3- CO2 nanofluid for varied input values with fewer simulations.  

2. Methodology and simulation system 

As a method for simulating fluid-solid interactions and for testing the systems' thermal and 

transfer characteristics, MD simulations have been increasingly used in recent years [12]. In order to 

find the atomic interaction potential, an appropriate potential energy function was used to assess the 

interatomic forces.  

Every contact is a part of the potential energy function. The potential's stored energy is located in 

bond-flexibility and angle bending, whereas nonbonded attraction and repulsion are mediated by Van 

der Waals forces. One way to assess the Coulombic interactions is by the use of the PPPM method [13]. 

Here, LAMMPS was used to simulate an Fe2O3 np suspension in gaseous and supercritical CO2. In 

previous research, the characteristics of bulk CO2 was identified using the TraPPE flexible CO2 model. 

Lennard-Jones 12-6 potential (Equations (1)-(3)) and long-range electrostatic (Coulombic) potential (U) 

are examples of interatomic interactions [14].  

𝑈𝑖𝑗
𝑛𝑏 = 𝑈𝑖𝑗

𝐿𝐼 + 𝑈𝑖𝑗
Coulombic     (1) 
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𝑈𝑖𝑗
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(𝑟𝑖𝑗) = {
𝑈𝑖𝑗(𝑟𝑖𝑗) − 𝑈𝑖𝑗(𝑟𝑐) 𝑟𝑖𝑗<𝑟𝑐

0 𝑟𝑖𝑗 > 𝑟𝑐
} (3) 

where 

 𝑟ij  interatomic distance 

 𝜎𝑖𝑗 and 𝜀𝑖𝑗 Lennard Jones parameters 

 𝑟𝑐 cutoff radius.  

Since the thermophysical properties are considered to be virtually independent thereafter, the 

cutoff radius is set to 4𝜎𝑂−𝑂.  

To find the interatomic forces between various atomic types, one employs the Lorentz-Berthelot 

(LB) rule, which is based on equations (4) and (5) [15].  

𝜎𝑖𝑗 =
𝜎𝑖𝑖+𝜎𝑗𝑗

2
     (4) 



𝜀𝑖𝑗 = √𝜀𝑖𝑖 ∗ 𝜀𝑗𝑗     (5) 

The forces between molecules of Fe2O3 and CO2 can be estimated using the LB rule, as 

demonstrated in our previous work [16].  

In terms of electrostatic attraction and repulsion, Equation (6) states:  

𝑈𝑖𝑗
Coulombic =

1

4𝜋𝜀0

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
    (6) 

where  

𝜀0  dielectric constant for vacuum 

𝑞𝑖 and 𝑞j    charges on variant atoms. 

To include the bond stretching and angle bending in the completely flexible CO2 model, an extra 

potential function is utilised (Equations (7) and (8)).  

𝑈𝑀(𝑟𝑖𝑗) = 𝑘Morse [1 − 𝑒
−𝛾(𝑟𝑖𝑗−𝑟0)]2   (7) 

𝑈𝐻(𝜃𝑖𝑗𝑘) =
1

2
𝑘Harmonic [𝜃𝑖𝑗𝑘 − 𝜃0]

2
   (8) 

where the bond and angular stretching are described by UM and UH, respectively, using Morse 

and Harmonic potentials with force constants kMorse and kHarmonic, respectively. The interatomic 

distance is denoted by rij, while the equilibrium bond distance is represented by r0. Similarly, the 

equilibrium angle between atoms is represented by θ0, and θijk is the angle between atoms. CO2 and other 

potential constants can be found in Table 1, which also contains the necessary details for LAMMPS 

modelling.  

 

Table 1. Parameters determined by Lennard Jones for the TraPPe flexible CO2 model using the 

force constants and atomic interactions between carbon and oxygen.  

MODEL σO-O(Å) σC-C(Å) εC-C(K) εO-O(K) 

TraPPe_flexible 3.07  2.84  28.3  80.4  

γ = 2.45 and kHarmonic =1,246 kJ/mol rad2, kMorse = 2,023 kJ/molÅ2.  

The atomic interactions of Fe2O3 are described using potential interaction functions, charge-

induced dipoles, steric-size effects, electrostatic and van der Waals contacts, and two-and three-body 

possibilities. At the outset, MD simulations are conducted using a conventional ensemble NVT, where 

T, N, and V are constants representing the volume of the simulation box; VMD is then used for 

configuration visualization [17]. A 1 fs (femtosecond) time-step for the simulation was used to run the 

post-processing because it was found that this was sufficient for energy conservation. To ensure the 

accuracy of the simulation, the gaseous and supercritical CO2 base fluids' thermophysical characteristics 

were computed between 350 and 750 K, maintaining a constant density of 150 kg/m3. Green-Kubo 

provides the formalism for estimating these transport parameters, and our experimental results have 

been validated with error rates of 0.52% for k and 0.76% for v. We have completed ten independent 

runs in order to get the mean values of thermal conductivity (k) and Viscosity (μ). The Nose-Hoover 

thermostat [18] was used to maintain a consistent temperature during the simulations.  

A three-dimensional simulation domain was constructed for the bulk nanofluid by applying 

periodic boundary conditions to the base fluid and np. In both the gaseous and supercritical phases, the 

base fluid density remains at 150 kg/m3 when the pressure is changed up to 250 bar within the 

temperature limits of 350-750 K. For each simulation domain, the volume percent was adjusted between 

0.9% and 2.6%. The next step is to minimize in order to remove the near interactions that cause collisions 



with high potential energy and spread them apart. Maintaining a constant np allowed for sufficient time 

steps to bring each CO2 molecule to its own equilibrium state. The Langevin thermostat and the NVE 

microcanonical ensemble are used for this purpose. By maintaining molecular immobility, the 

equilibrium state of np was reached by repeating the same technique. After reaching equilibrium, the 

entire simulation domain is run through the canonical ensemble test to find out the nanofluid's 

thermophysical characteristics. For each nanofluid system in the NVE ensemble, the Green-Kubo 

relations evaluate k and m by analysing the variation of autocorrelations. A numerical method for 

determining the locations and particle velocity in molecular dynamics (MD), the velocity Verlet 

algorithm, can track the changing atomic positions and velocities throughout the simulation by 

incorporating Newton's equation of motion. Loup Verlet developed this algorithm in the 1960s. The 

Green-Kubo formalism in molecular dynamics equilibrium finds the k at times 0 and t using the heat 

flow autocorrelation function, as shown in Equation (9) [19]:  

𝑘 =
𝑉

3𝑘𝐵𝑇2 ∫  ⟨𝐽(0). 𝐽(𝑡)⟩𝑑𝑡     (9) 

Heat flux vector𝐽 =
1

𝑉
[[∑  𝑁

𝑗=1   𝑒𝑗𝑣𝑗 − ∑  2
𝛼=1  ℎ𝛼 ∑  

𝑁𝛼
𝑗=1  𝑣𝛼𝑗] +

1

2
[∑  𝑁

𝑖=1  ∑  𝑁
𝑗=1,𝑗≠1   𝑟𝑖𝑗(𝑣𝑗 ⋅ 𝐹𝑖𝑗)]]

           (10) 

𝐹𝑖𝑗  the attractive force between two atoms as a result of their paired interaction.  

Surplus energy (𝑒𝑗) = ∑  𝑗
1

2
𝑚𝑗𝑣𝑗

2 + ∑  𝑗
1

2
𝑈𝑖𝑗    (11) 

𝑣𝑗  velocity for the atom j 

Mean partial enthalpy (ℎ𝛼) =
1

𝑁𝛼
∑  

𝑁𝛼
𝑗=1 (𝑒𝑗 + 𝑒𝑗 ⋅ 𝐹𝑗)    (12) 

The hα component is significant for calculating the k of a nanofluid system. Since average 

velocity does not exist for a system made up completely of fluid, ha= 0. On average, nanofluids have a 

non-zero partial enthalpy. By shifting our attention from the mean partial enthalpy in the conventional 

Green-Kubo method to the energy flux for the conduction, we were able to accurately determine the 

nanofluid's k value. Equation (13) of the Green-Kubo formalism for equilibrium molecular dynamics 

computes the μ by integrating the autocorrelation function.  

𝜇 =
𝑉

𝑘𝐵𝑇
∫0

∞
 𝑃𝛼𝛽(0)𝑃𝛼𝛽(𝑡)𝑑𝑡, 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧   (13) 

Pressure tensor 𝑃𝛼𝛽
𝑥𝑦
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𝛽
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𝑁𝛼  𝑚𝑖

𝛼𝑣𝑥𝑖
𝛼 𝑣𝑦𝑖

𝛽

 +∑𝑘=𝛼
𝛽

 ∑𝑖=𝛼
𝛽

 ∑𝑖=1
𝑁𝑘  ∑𝑗≥𝑖
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𝑘𝑙 ⋅ 𝑒𝑥) ⋅ (

∂𝑈(𝑟𝑖𝑗
𝑘𝑙)

∂𝑟𝑖𝑗
𝑘𝑙 ⋅ 𝑒𝑦)]

  

         (14) 

where  

 𝑟𝑖𝑗
𝑘𝑙  the distance among two variant atoms I and j of type k and l 

𝑚𝑖
𝛼.   mass  

𝑁𝑘.   no of atoms of 𝑘 type 

𝑣𝑥𝑖
𝛼 .   velocity  

𝑈 (𝑟𝑖𝑗
𝑘𝑙)  energy interaction among the atoms  



All planes, i.e., 𝑃𝑥𝑦, 𝑃𝑥𝑧 and 𝑃𝑦𝑧., are viewed as autocorrelation functions in order to carry out the 

𝜇 computation of the nanofluid.  
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Fig 1. The experimental data were used to compare the 𝒌 and 𝝁 of (a) bulk CO2 and (b) 

nanofluids with 1.5 and 2.5 nm diameters to 𝝋 at 550 K in the supercritical phase.  

 

Table 2 shows the first setup, which was created by making similar combinations for varying 

volume percentages while keeping the CO2 density constant. Visualization and radial distribution 

function analysis were used in our earlier work to verify that CO2 existed in both gaseous and 

supercritical phases. In Fig 1(a), the experimental data and the estimated thermophysical characteristics 

of the base fluid (gaseous CO2 and supercritical CO2) are shown against each other.   

 

Table 2. Using a constant 𝝆 = 𝟏𝟓𝟎 𝐤𝐠/𝐦𝟑of the base fluid, the nanofluid compositions of 𝐀𝐥𝟐𝐎𝟑 −

𝐂𝐎𝟐, 𝝋 = 𝟎. 𝟗% are summarised. The same logic applied to the other volume fractions as well.  

Nanoparticles 

diameter (nm) 

No of CO2 atoms Box dimensions 

(Å) 

No of iron oxide atoms 

1.5 376 38 70 

2.5 2,998 79 520 

3.5 9,628 117 1,760 

4.5 22,834 156 3,990 

5.5 44,674 195 7,750 

6.5 77,320 234 13,330 

2. Results and discussions 

2.1.  Impact of temperature on ' 𝒌 ' and ' 𝝁 ' 
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Fig 2. Observing the temperature effect involves altering nanoparticles diameters in the gas and 

supercritical stage, which cause variations in k and μ at different percentage volume between 

0.9% and 2.6%.  

The gas and supercritical Fe2O3-CO2 nanofluids were used with varied volume fractions and 

temperatures ranging from 350 to 700 K in this section to see how temperature affected 𝑘 and 𝜇. Fig 2 

displays the computed MD findings, which demonstrate that the thermophysical properties grow in 

relation to temperature, with a stronger impact at greater 𝜑. The molecules were seen to be migrating 

rapidly toward the solid-fluid boundary and experiencing intense adherence by the nanoparticles as the 

temperature increased. At higher temperatures, the enhanced performance is due to the creation of a 

structural layer surrounding a bigger nanoparticles. The results of this work are consistent with those of 

previous research on various nanofluids. The findings of these research demonstrate that the 

characteristics increase in direct proportion to the system's temperature.  

2.2. Volume fraction of nanoparticles and particle size impact on thermal conductivity and 

viscosity 

The influence of percentage volume of nanoparticles on thermal conductivity and viscosity was 

examined in molecular dynamic simulations of gaseous and supercritical Fe2O3 CO2 nanofluids. The 

simulations were done using a temperature between 350 and 750 K. The experimental results are 

compared with the estimated thermophysical parameters of the base fluid for gas and supercritical 

carbon dioxide in Fig 2(a) [20].  In addition, this section discusses results obtained at 550 K to study the 

impact of percentage volume of nanoparticles. The thermal conductivity and viscosity of the Fe2O3 CO2 

nanofluid at 550 K are shown in Fig 2, with 𝜑 ranging from 0.9% to 2.5%. Thermophysical properties 

of nanofluids are enhanced with increasing np 𝜑 and np diameter, as illustrated in Fig 2.   Amazingly, 

the range forecast by the molecular dynamics models agree with the predictions of the classical models 

(Maxwell and Hamilton & Crosser).  The gaseous phase exhibits a stronger influence of 𝜑 than the 

supercritical phase.  

Fig 3 displays percentage volume of 1.526 and 2.72 % at 550 K as a function of np diameter. Both 

the np diameter and 𝜑 grow monotonically with the thermophysical characteristics of the Fe2O3 CO2 

nanofluid, as shown by the observations. Even though the np diameter stays the same, the current 

nanofluid exhibits bigger 𝑘 and 𝜇 at higher 𝜑 than lower 𝜑. The thermophysical characteristics of the 

gaseous and supercritical Fe2O3 CO2 nanofluid are shown to improve with increasing np diameter, as 

can be seen from the graphs.  
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Fig 3. The fluctuation of 𝒌 and 𝝁 of nanofluids with respect to nanoparticles diameter at various 

percentage volume at supercritical stage.  

Consistent with previous experimental literatures, the MD results demonstrate that the 

thermophysical characteristics of the present nanofluid improve as the np diameter increases [21]. A 

density distribution investigation close to the np was conducted to investigate the improvement's source. 

To determine the highest density ratio at the np, we considered several bin sizes in this scenario. The 

results demonstrate the formation of an ordered layer close to the solid surface, the thickness of which 

grows in relation to the 𝑍𝑝 diameter. For bigger nanoparticles, the dense layer surrounding the 

nanoparticles is more organised, whereas for smaller ones, the density proportion is greater. One 

possible interpretation is that the created nanolayer enhances the effective 𝜑. The thickened nanolayer 

that results from an increase in np diameter is likely responsible for the observed improvement in 

thermophysical characteristics. One needs to know how thick the CO2 layer is around the Fe2O3 

nanoparticles before they can see this impact. According to the range of np sizes (1.5–6.5 nm), the 

resulting layer thickness is between 0.4 and 2 nm. The resultant VMD-formed nanolayer encircling the 

nanoparticles is shown in Fig 4. Equation (15) is utilised to assess the impact of nanolayer density on 

np size:  

𝜌𝑛𝑓 =
𝑁molecules ∗44∗10−3

𝑁𝐴∗ V
( kg/m3)   (15) 

NA   Avogadro number 

 N molecules   number of CO2 molecules 

 V   spherical bin volume.  
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Fig 4. Nanolayer thickness and density ratio as a function of np diameter can vary.  

The density ratio(𝜌nl/𝜌f)and the nanolayer thickness, as a function of the np diameter, are 

displayed in Table 3 and Fig 4, respectively. According to the MD data, the density ratio drops and the 

nanolayer thickness rises as the np diameter grows larger. The table displays the results of the 



relationship between the thickened nanolayer and diameter, as determined by Equation (15).  In line 

with our previous results [22], this thicker layer is probably responsible for the enhanced thermophysical 

characteristics of the current nanofluid.  

 

Table 3. Different diameters of the atom density of the nanolayer 𝐀𝐥𝟐𝐎𝟑−𝐂𝐎𝟐 .  

Diameter of 

Nanoparticles 

Nanolayer thickness 

(nm) 

Density ratio 

(𝜌n/𝜌f) 

1.5 0.5 8.5 

2.5 0.9 3.6 

3.5 1.4 3.2 

4.5 1.8 1.8 

5.5 1.9 1.45 

6.5 2.1 1.18 

A density ratio greater than 1 is achieved for each bin that is taken into account when determining 

the nanolayer thickness. (Since we have maintained a constant fluid density, the nanolayer thick with 

varying np are comparable for varying volume percentages).  

2.3. ML of ' 𝒌 ' and ' 𝝁 ' of iron oxide carbon dioxide nanofluids 

2.3.1 The information and modelling 

Molecular dynamics simulations were performed to produce the data utilised for the models. 

Different input factors, including temperature, 𝜑, and np size, were used to generate 240 entries in total. 

The two factors of nanofluid, 𝑘 and 𝜇, were found for these input attributes. A detailed report of the data 

was found that was utilised for exhibiting in Table 4.  

 

Table 4. Details of the utilised data.  

Factors Temperature 𝝋 𝐧𝐩 size 𝐤𝐧𝐟 𝝁𝐧𝐟 

Mean 471 1.8 3.6 47.4 39.2 

Count 240 240 240 240 240 

Standard deviation 144 0.7 1.8 10.51 8.9 

0% 300 0.8 1 31.7 25 

25% 320 1.285 2 36.35 28 

50% 475 1.66 4.5 49.39 41.9 

75% 600 2.09 6 55.8 47 

100% 700 2.7 7 66.9 53.8 

 

Table 5. Correlation between the variables. 



 np size 𝜑 knf Temperature 𝜇nf 

𝜑 6.05E – 18 1 0.115008 –1.8E – 17 0.150372 

Temperature 0 –1.8E – 17 0.979746 1 0.964355 

Nanoparticle 

size 
1 6.05E – 19 0.123769 0 0.134057 

knf 0.123769 0.115009 1 0.979746 0.992562 

𝜇nf 0.133056 0.150372 0.992562 0.964355 1 

 

Pearson's correlation was used to determine how well the variables were related to one another. 

Table 5 presents the values of the established correlations. According to the data in the table, the 

strongest positive association between the independent variable temperature and the nanoparticles' 𝑘 and 

𝜇 is obvious. Three widely-used methods were employed for machine learning modelling: decision trees, 

K-nearest neighbours, and linear regression (LR).  When it comes to supervised machine learning, the 

KNN is one of the most effective methods. It works well for both classification and regression tasks. 

Assuming that items that are comparable in proximity are close is the key to its operation [23]. 

Comparable to KNN in terms of classification and regression-based tasks, DT is an additional supervised 

learning technique. When making predictions about categorical outputs, DTs like categorical variable 

decision trees can be useful. Continuous variable outputs were predicted using DT in this investigation. 

Predicting the dependent variable from a set of independent factors is the job of linear regression, the 

most basic type of supervised machine learning method. Single and multiple dependent variable 

predictions are both within its purview (s).  Regression is referred to as multi-output regression when it 

predicts more than one output variable. Fig 5 displays the overall methodology of the models that were 

utilised.  

 

Fig 5. Flowchart of the proposed models. 

Two data frames, X and y, were used to store the data after it was separated into independent 

(input) and dependent (output) parts (output).  A subset of the data frames (using 15% of the total) was 

subsequently designated for testing, while the remaining 85% were earmarked for training. Out of a total 

of 240 entries, 204 were used for training the model and 36 were used for testing in the work. Before 

being fed into the models, the split data was standard-scaled and made up of two arrays: one for training 

and one for testing. The model was trained using the X train and y train arrays. These arrays stood for 

the independent and dependent variables, respectively, and contained 240 dataset iterations. To test the 

models, we used the X test array, which contained 36 dataset entries, as an independent variable and the 

y test array, which contained 36 dataset entries, as a dependent variable.  



3. Model outcomes and analysis 

Few of the popular determination factors, including R-2, MSE, RMSE, and MAE, were used to 

examine the performance of the models that were built (MAE).  Table 6 displays the determination 

coefficients. While all of the models have done adequately, the table shows that the DT model 

outperforms them all. It has an R-2 value of 0.99 and can predict both 𝑘 and 𝜇. On top of that, graphs 

are created to show how well the models forecast (Fig 6a-f).   

Table 6. Coefficients for determining developed models.  

Model KNN LR DT 

R2 0.99662 0.98168 0.98099 

RMSE 1.07427 1.55822 0.8834 

MSE 1.14267 2.38698 0.77282 

MAE 0.88421 1.21574 0.78667 

 

Fig 6 (a) and (b) demonstrate that the DT model outperforms KNN in predicting both parameters, 

𝑘 and 𝜇, with an accuracy of 0.99. The suitability of the KNN model for forecasting both k and 𝜇 is 

illustrated in Fig 6 (c) and (d). The model achieves a comparable efficiency of 0.98 in making these 

predictions. The Linear Regression model predicts the 𝑘 with a maximum degree of accurateness than 

the 𝜇, as can be indicates in Fig 6 (e) and (f). The accuracy for 𝜇 is 0.956, whereas the model predicts 𝑘 

with a precision of 0.9841. With all of the LR models working together, the prediction efficiency is 

0.971.  
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Fig 6. The observed values of k and μ as predicted by the (a) and (b)DT model, (c) and (d) KNN 

model and (e) and (f) LR model. 
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Fig 7. Residual plots for (a)thermal conductivity model and (b) Viscosity model. 

Fig 7 show the residual graph for 𝑘 and 𝜇, respectively, to illustrate the variation in prediction 

among the various models. Model DT clearly has the lowest overall variance out of the three.  

4. Conclusion 

This research makes use of molecular dynamics simulations in the Green-Kubo formalism to 

examine the thermophysical parameters (k and m) of an Fe2O3-CO2 nanofluid. For the gaseous phases, 

the temperature was adjusted between 300 and 330 K, while for the supercritical phase, it was altered 

between 450 and 700 K, with varying pressures. The effect on the nanofluid's k and µ of variables like 

temperature, u, and np size is investigated. In order to compare the findings from MD simulations with 

those from the present study, the researchers also used a machine learning approach. To summarise, the 

main results of this study are: By analysing the density of the gas, there is a thick layer of CO2 molecules 

close to the np was found. For particle diameter systems of 1.5 nm, 2.5 nm, 3.5 nm, 4.5 nm, 5.5 nm, and 

6.5 nm dimensions, the resulting nanolayer thickness is 0.5 nm, 0.9 nm, 1.4 nm, 1.7 nm, 1.9 nm, and 2 

nm, in that order. An increase in temperature, 𝜑, and np size resulted to an improvement in the 𝑘 and 𝜇 

of the Fe2O3 CO2 nanofluid. When comparing the gaseous and supercritical phases, the improvement is 

smaller in the latter. The LR model's dismal overall accuracy of 0.97 and its inconsistent effectiveness 

in predicting 𝑘 and 𝜇 make it unfit to be included in the list of created models. To forecast the parameters, 

KNN, DT and two more models were used, since they are just as good in 𝑘 and 𝜇 forecasting. When 

predicting the 𝑘 and 𝜇 of Fe2O3 CO2 nanofluids at volume fractions, and nano particle sizes and various 

temperatures, the top-performing Decision tree model can save a lot of time and effort compared to the 

lengthy simulation approach. Enhancements to the thermophysical properties of Fe2O3 CO2. nanofluid 



could result in an improvement in oil recovery and make it a more effective refrigerant compared to 

conventional CO2.   
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