
Serrano, C., et al.: Innovative Simulation of Al2O3 Nanofluid Heat Transfer ... 
THERMAL SCIENCE: Year 2024, Vol. 28, No. 1B, pp. 731-741	 731

INNOVATIVE  SIMULATION  OF  Al2O3  NANOFLUID  HEAT   
TRANSFER  USING  ADVANCED  MACHINE  LEARNING  METHODS

by

Carlos SERRANO *, Edwin JACOME , Edwin POZO , Santiago CHOTO , 
Patricio ABARCA, and Jorge BUNAY 

Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH),  
Riobamba, Ecuador
Original scientific paper 

https://doi.org/10.2298/TSCI230310006S

In both turbulent and laminar pipe flows, we were able to accurately forecast the 
beginning range of the convective thermal transferring coefficients of Al2O3 mag-
netized nanofluids using machine learning approaches. The simulations utilized 
two machine learning techniques: radial basis function-backpropagation (RB) and 
multiple linear regression analysis. First, we used multiple linear regression anal-
ysis to fit the polynomial equation. Afterwards, grid search cross-validation was 
employed to determine the optimal RB model with six hidden layer neurons. To 
evaluate the RB model, we compared numerical patterns of the parameters used to 
measure accuracy. The regression coefficient and mean square error were the most 
commonly utilized parameters in Reynolds number mass percentage simulations, 
R2. In the case of a laminar flow, these numbers were found to be 0.99994 and 0.34, 
respectively. Additionally, the results for laminar flow conditions using Reynolds 
number-magnetic field strength simplification were ideal, with an mean square er-
ror of 3.85 and an R2 value of 0.99993. By comparing the predicted values with the 
experimental results visually using 3-D smoothed surface plots, we were able to 
further prove that the model was valid and accurate. These revolutionary findings 
could spark new developments and encourage substantial improvements in nan-
otechnology and machine intelligence. These findings are an important asset for 
driving future research and development, which in turn makes significant contribu-
tions to the ever-expanding frontiers of these innovative fields. 
Key words: Al2O3, nanofluids, heat transfer, mean square error, Reynolds number, 

multiple linear regression

Introduction 

The suspension of nanoparticles in a base fluid produces nanofluids, a hybrid type of 
fluid [1, 2]. The nanoparticles can be in the form of metals and carbides to ceramics and others. 
Nanofluids have far better thermal characteristics and far less agglomeration than traditional 
heat transfer fluids like water or glycol, according to the research [3, 4]. Nanoparticles’ larger 
surface areas allow them to interact with the fluid around them more strongly, which improves 
the nanofluid medium’s dispersion and stability. In addition, the nanofluid’s thermal charac-
teristics are enhanced since the increased surface area allows for more efficient heat transmis-
sion processes. Significant implications for a range of scientific and technical applications are 
presented by these discoveries, which highlight the critical role of nanoparticle surface area in 
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affecting nanofluid behavior and performance [5, 6]. Nanofluids have numerous applications 
due to their exceptional thermophysical features, which include heat exchange devices, energy 
systems, and solar heating. 

One kind of nanofluid that stands out from the many is magnetic nanofluids (MNF) 
[7]. A base liquid can be used to disperse superparamagnetic nanoparticles, resulting in the 
formation of these unique nanofluids [8]. Materials containing such nanoparticles include 
magnetite (Al2O3) and oxides of metals (cobalt, iron, nickel, and nickel, to name a few) [9]. 
In addition, a magnetic field can alter the internal particle distribution’s structural proper-
ties in a MNF. The diffusion coefficient, thermal conductivity, viscosity, and strength of 
the applied magnetic field are all thermal performance factors of the MNF that are affected 
by this. This transition turns the MNF into an extraordinary heat transfer medium that can 
be controlled, opening up exciting possibilities for thermal management and better heat 
transfer. So, several studies have examined MNF to assess their nanofluid-flow and heat 
transfer properties. In an experiment conducted by authors [7, 10], the convective heat 
transfer (CHT) coefficient was found to increase by approximately 40.79% and 58.19%, 
respectively, when an external magnetic field was applied to Al2O3 nanofluids. Four mag-
nets placed outside the device generated the magnetic field. Additionally, the conditional 
nanofluids were evaluated in the absence of a magnetic field, while the base fluid was left 
unattended. The authors found that when Al2O3-water nanofluids were exposed to a 415 
Gauss uniform gradient magnetic field, their CHT coefficient increased by 9.16%. Lam-
inar CHT coefficients in ferro magnetized fluids with concentrations between 1.25% and 
2.5% were measured under both persistent and irregular magnetic field conditions, and the 
authors discovered a difference of at least 19.8%. 

Due to the large number of tests and the complications in structure the experiment 
lay-out, an accurate depiction of the magnetic field’s activity has not been achieved. However, 
machine learning (ML) approaches provide a strong alternative, and MNF can be controlled, so 
it has a significant impact on the thermal conductivity of the base fluid. The ML-based stability 
and thermophysical property prediction for nanofluids is similarly in its infancy. The most fun-
damental metrics such as nanocomposite mass, average particle size, concentration, and nano-
fluid temperature could only be captured by ML models prior to the development of magnetic 
fields. Due to this, the present study used a novel ML strategy to simulate the CHT of Al2O3 
nanofluids in a magnetic field. In order to generate enough experimental data for modelling and 
prediction, three ML methods – backpropagation (RB), multiple linear regession (MLR) analy-
sis, and LSTM – were employed. High accuracy and wide application are anticipated outcomes 
of this study’s thorough comparison of ML prediction results. Potentially, it might serve as a 
benchmark for handling smaller data models in the future. 

Experimental methodology

Fabrication 

The Al2O3-water nanofluids were produced using a widely used two-step technique. 
It all starts with getting your hands on some nanoparticles. The next thing to do is to mix the 
nanoparticles with the base liquid. Last but not least, dispersants were added to the nanofluids 
to maintain a stable suspension. For the studies, the generated nanofluid samples were tailored 
with nanoparticle mass percentages of 0.6 wt.%, 1.2 wt.%, 1.8 wt.%, and 2.4 wt.%, respective-
ly. To improve nanoparticle dispersion and drastically decrease nanoparticle deposition, the 
dispersant tetramethylammonium hydroxide (TMAH) was included [11]. After weighing the 
Al2O3 nanoparticles and adding them to the same quantity of deionized water, the next step in 
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preparation was to add the dispersion TMAH, which had the same weight as the nanoparticles. 
After dispersing the nanofluids, each sample underwent 90 minutes of ultrasonic stirring and 
30 minutes of magnetic swirling to increase stability. The state diagrams for 10 minutes, 2 days,  
5 days, 7 days, and 14 days show that the nanofluids were able to stay in a stable state through-
out the experiment. 

Experimentation on heat transfer

Figure 1 shows that the experiment stage’s storing container was filled uniformly 
with the created nanofluids. The whole set of experimental tools included a data collecting end, 
circulating pipe-line spherical regulating valve, storage tank, floating tubular flow metre for 
liquids, and water pump. By setting up a data collection area, a heat dissipation section, and an 
experimental test section on the experimental stage, we made sure the flow circulation system 
would work smoothly. The experimental portion was a 14 mm diameter, 500 mm long, and  
2 mm thick copper tube with a 150 W aluminum foil heating sheet wrapped evenly around its 
perimeter. By manipulating the temperature of the aluminum frustrate sheet and allowing the 
alumina nanofluids moving through the tube to convectively exchange heat with it, the heating 
power may be adjusted to meet the experimental need. 

Figure 1. The Al2O3-water nanofluids experimental process

To reduce heat loss, the outside of the heating tube was covered with a uniform coat-
ing of insulating cotton. The water intake rate of the Al2O3-MNF can reach 15000 Lph due to a 
valve-controlled pump. Data collectors in the test area were linked to 7T-type thermocouples so 
that data could be captured in real-time. For the intake and exit measurements, separate K-type 
thermocouples were utilised. Using Nd2Fe14B permanent magnets attached to the T2/T4/T6 
thermocouples at each of the six places outside the tube, a GM-2A Gauss metre was employed 
to ascertain the intensity of the vertical magnetic field. Flow metres, recording manometers, 
and other data collecting equipment were used to acquire experimental data, and the flow rate 
was controlled in the testing by adjusting the valves. Further assurance of the results’ accuracy 
came from collecting experimental data three times using the same test parameters in order to 
take an average. 
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Verification of experimental system 

In this part, we confirmed the stability and dependability of the test bench after suc-
cessfully preparing the nanofluids and verifying the stabilisation. Initial experiments using de-
ionized water’s heat transfer characteristics in both laminar and turbulent flows determined that 
2300 was the dividing line between the two. To compare the measured Nusselt number with 
authors [12], the Sieder and Dnielinski model was employed, which can be found in equations, 
whereas η is the viscosity of fluid and Pr indicates Prandtl number. Both models have been fit-
ted to experimental data extensively and are applicable to many heat transport situations. They 
make it easier to gauge the efficacy of CHT by providing an estimate of the Nusselt number:
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Figure 2. The flow chart for deionized water on the CHT  
process for verification purposes

The results, as shown in fig. 2, provide important and informative insights that en-
hance our comprehension of the study. The impressive CHT behaviour of MNF under laminar 
flow conditions can be predicted with high confidence by using the Sieder model, as shown by 
the excellent agreement between the model and the empirical observations, fig. 2. In the tur-
bulent flow condition, the data strongly agree with the Dnielinski model, fig. 2, demonstrating 
that the model correctly depicts the CHT properties of MNF in this regime. This study’s CHT 
test system was proven to be both suitable and effective by the robustness of these findings. The 
ability to reliably produce precise data shows that it could be a useful tool for studying convec-
tive heat transport in MNF, particularly when a magnetic field, B, is introduced. 

The machine learning techniques

Search grid cross-validation 

One of the most important factors in a ML model’s performance is its hyperparame-
ters [13]. Key hyperparameters of an ANN are the amount of hidden layers and the density of 
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neurons per layer. To achieve the best possible model performance, it is crucial to choose these 
hyperparameters correctly. in the event that the hyper-parameters are not chosen appropriately, 
the model may end up being under- or overfitted [14]. To find the optimal combination of hy-
perparameters, one can use empirical fine-tuning, or one can systematically evaluate different 
parameter sizes. The latter method relies on human debugging, which can be laborious and lead 
to less-than-ideal selection of hyperparameters. Using grid search for cross-validation is the 
best way to fix this. Grid search iteratively trains the model and changes hyperparameters to 
discover the best combination that maximises accuracy by methodically exploring a predeter-
mined parameter space. 

Using assessment metrics derived from both the training and test sets, this work em-
ploys grid analyze with cross-validation (grid search CV) to determine the optimal parameters 
and neuronal density. All models are subjected to 20 iterations to guarantee robustness, and we 
showcase solely the model with the highest quality result. The effect of unpredictability on the 
developed models’ performance is reduced by this method. 

Multiple linear regression technique 

Multiple linear regression analysis, in contrast to univariate linear regression, is ap-
plicable to a far wider variety of contexts as a model for assessing the relationship among vari-
ables. This is due, in large part, to the fact that, in contrast to real-world application scenarios, 
multivariate linear regression typically involves more than one independent variable [15]. That 
is, multiple linear regression analysis encompasses a wider range of scenarios and data points 
than a single independent variable analysis would. To express multiple linear regression, Y, 
mathematically, one can use the statement [16]:

0 1 1 2 2 m mY X X Xβ β β β= + + + + (3)
To find the CHT coefficient, we use the following PYTHON-CODED and demon-

strated procedures: analysis, regression, linearity, and using the Reynolds number, mass per-
centage, and MNF intensity of the Al2O3 in the pipe as independent variables. 

Radial basis function-backpropagation technique

The primary and most significant obstacle is the development of an ANN capable 
of performing functions typically handled by the human central nervous system. [17]. Pattern 
recognition, data processing, process analysis, and ANN – a non-linear mathematical technique 
with learning capability, find extensive use. With their simple and easily implementable learn-
ing principles, neural networks are able to map arbitrary complex non-linear relationships, and 
their high non-linear fitting ability makes them ideal for computer implementations [18]. 

Typically, the ANN model in this analysis is depend on the backpropagating al-
gorithm, which was first proposed in 1986 by a group of academics led by Rumelhart and 
Hinton [19]. Because of their superior multidimensional function mapping skills and their 
capacity to identify patterns of arbitrary complexity, backpropagating neural networks can 
tackle a wide variety of tasks, even many that simple perceptrons cannot. The number of 
training sessions can be reduced while improving prediction accuracy by intentionally com-
bining the benefits of radial basis function (RBF) and backpropagating neural networks 
while backpropagating neural networks offer superior sample prediction, RBF neural net-
works can non-linearly approximatively handle any data collection. In fact, RB neural net-
work architecture consists of two hidden layers. Both the RBF and backpropagating neu-
ral networks accomplish the same goal – the implementation of a hidden layer [20]. The 
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three-layer architecture of the RB neural network utilised in the publication is illustrated in  
fig. 3. A stack consists of an input layer, a hidden layer, and an output layer. The data was divid-
ed into a training set with 70% of the total and a prediction set with 30% using PYTHON for 
neural network code creation and analysis. After that, six hidden layers were built from the data 
using the following properties as inputs: Reynolds number, mass percentage of Al2O3-MNF in 
the pipe, and magnetic field intensity. The CHT coefficient was the output parameter used for 
this prediction. 

Figure 3. Network architecture of the RB layer

Results and discussion 

Investigation of the factors impacting coefficient of CHT 

The interfacial layer effect is a well-known explanation for the better enhancement 
of heat conductivity in nanofluids with a higher mass concentration of particles. The MNF test 
bench was utilised to examine the correlation between MNF concentration and its CHT coeffi-
cient in this case. Figure 4 displays the correlation between the Reynolds number and the CHT 
coefficient for MNF with variant particle masses, beginning at 40 °C and using a magnetic field of  
B = 850 G. Figure 4(a) demonstrates that, under laminar flow circumstances, the CHT coeffi-
cient increases exponentially with particle number for lower Reynolds numbers. Non-etheless, 
the values of the coefficient are nearly identical for particle concentrations of 2.4% and 1.8%. 
Particle mass concentrations of 0.6 %, 1.2 %, 1.8 %, and 2.4 % all resulted in CHT coefficient 
improvements of 0.88%, 1.56%, 2.14%, and 2.61%, respectively, at Reynolds number 1200. 
The CHT coefficients showed the most significant gains at Reynolds number 2000, with in-
creases of 3.98%, 7.95%, 8.29%, and 8.74%, respectively, for the same mass concentrations. 
The results demonstrate that the CHT coefficient is greatly enhanced as the concentrations of 
nanofluids increase. 

Figure 4(b) shows that there is a clear positive link between the Reynolds number 
and the CHT coefficient. The five curves also demonstrate that there is a flattening out of the 
curves until the Reynolds number reaches 5500, and then there is an insignificant rise beyond 
that. When the mass concentration hits 0.6% at a Reynolds number of 5500, the CHT coef-
ficient of MNF increases by 2.12% related to deionized water. It would appear, though, that 
convective heat transmission in the tube does not have an immediately apparent enhancing 
impact. Specifically, the CHT coefficient goes up from 2.15% to 3.55%, 3.55%, and 5.55% 
when the mass concentration goes from 0.6% to 1.2% to 2.4%. The CHT coefficients of MNF 
with concentrations increases from 0.6% to 2.4% in deionized water were determined at  
40 °C, with B = 850 G and a Reynolds  number of 7500. The coefficients for these variables 
are 8260 W/m2K, 8320 W/m2K, 8540 W/m2K, and 8760 W/m2K, in that order. The production 
of nanoparticles with longer and more chain-like structures is induced by an increase in the 
concentration of MNF. This, in turn, enhances the heat transfer performance, which further 
improves the CHT coefficient. Moreover, as mentioned earlier, studies have demonstrated that 
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thermal conductivity is improved by encasing nanoparticles in nanolayers [21]. This improve-
ment is especially notable when considering the transitional thermal resistance between the sol-
id and liquid phases. For MNF values between 0.6% and 2.4%, the CHT coefficient increases 
as concentration increases, following the increased thermal conductivity law. 

Following this investigation, researchers continued to look into the crucial element 
of the applied magnetic field. At a tube temperature of 40 °C and a vertical magnetic field of  
B = 0 G, 250 G, 350 G, 650 G, 850G, and 1050 G, With a particle mass percentage of 1.2%, 
MNF provides tendency plots in fig. 5. The Reynolds number and CHT coefficient are positive-
ly correlated in both graphs. Similar to fig. 5(a), the CHT coefficient increases at B = 0 G and  
250 G, and the plots overlap at 650 G, 850 G, and 1050 G. It may be inferred from this that, 
regardless of the strength of the magnetic field, there exists a critical value beyond which the 
field has no further effect on the rates of heat transfer coefficient increase. Under the same con-

Figure 4. The relation among the CHT of Al2O3-water 
nanofluids and their mass percentage

Figure 5. The relation among the CHT of Al2O3-water  
nanofluids and the magnetic field
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ditions as MNF, nanofluids without an imposed magnetic field had CHT coefficients of 0.86%,  
11.16%, 19.74%, 22.75%, and 28.33%, respectively. The magnetic field strengths, B, ranged 
from 250 G to 1050 G and the Reynolds number was 2000. For both low and high magnetic 
fields, the curves show an upward trend in figs. 5(b) and 5(a), and the rates of rise are identical. 
The statistical analysis in the follow-up multiple linear regression model benefits from this 
strong linear connection suggestion (MLR). A maximal Reynolds number of 7500 and B = 250 G,  
450 G, 650 G, 850 G, and 1050 G result in CHT coefficients that are 0.99%, 8.47%, 17.24%, 
23.10%, and 25.79% better, respectively, than nanofluids that do not contain a magnetic field. 

When subjected to B, the nanoparticles in MNF are drawn to the pipe surface due to 
the effect of the field strength. They then migrate quickly to the copper pipe’s surface, increas-
ing the concentration of particles there and causing heat to condense on them. Ultimately, this 
causes a notable rise in the thermal conductivity of the area. However, when particles gather 
close to the pipe’s surface, it increases friction there, which disrupts the flow pattern and the 
thermal boundary-layer, leading to even more localised CHT [22]. Because magnetic forces, 
not thermal ones, strongly affect magnetic nanoparticles, they clump together to create chains 
that are directed parallel to the applied field, further increasing the overall thermal conductivity. 
Pairs, triplets, or small chains of particles aligned with the external magnetic field demonstrate 
this [23]. 

Modelling with MLR

Figures 6 and 7 show the connection between MLR and the Al2O3-MNF in the pipe. 
According to the results, there is a straight line connecting the variables that affect the CHT 
coefficient. The multiple linear regression model can thus reliably forecast the CHT coefficient 
of the pipe. For both turbulent and laminar flows, 42 data sets are available, and the function is a 
CHT coefficient. There are a total of 84 sets of input variables involving magnetic field strength 
and Reynolds number, 35 sets of values for the CHT coefficient, and 70 sets of values for mass 
percentage and Reynolds number in the data model.

Figure 6. As independent variables, the Reynolds number and mass percentage  
are represented on the correlation graph

Multiple linear regression is used to fit the model for the CHT coefficient of the  
Al2O3-MNF in the pipe. The particle mass percentage, C, Reynolds number, h, and the CHT 
coefficient are the variables in this case with Reynolds number and mass percentage serving as 
the independent variables:

0.1469Re 26.1428 868.31h C= + + (4)
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0.7053Re 278.3142 3262.69h C= + + (5)

0.4369Re 0.3313 344.26h B= + + (6)

0.6274Re 1.6695 3055.71h B= + + (7)

Both the Reynolds number and the strength of the magnetic field are directly related to 
the eqs. (6) and (7). In order to evaluate and fine-tune particular fitting parameters for different 
techniques, the MLR findings are a great visual analysis tool. Researchers can gain a better 
grasp of the data and useful recommendations for improving ML model performance for more 
complicated datasets with non-linear interactions using this method. Although MLR cannot 
explicitly predict non-linear correlations, the aforementioned modelling does reveal close-to-
linear interactions, which are useful for comparing with the two ML methods that follow. 

Figure 7. The correlation between the independent variables Reynolds number and magnetic field

Statistics with RB

The optimal MSE model for Al2O3-MNF was first determined using the grid searching 
cross validating technique with a invisible layer neuron count of 6, as part of the examination 
of RB models in ML techniques. The data model remains true to the original MLR for 86 sets 
and 75 sets, correspondingly, when 75% of the dataset is used for training and 25% for testing. 
All of the models were trained to be independent of the baseline weights and biases after 20 it-
erations, only the best findings from the ANN networks were shared. Particular comparisons of 
multi-parameter combinations are provided in the ML comparison section. These combinations 
include R2, RMSE, MSE, AARD, and MAE [%]. 

The line plots in fig. 8(a) compare the actual values to the best-case scenario MSE 
simulation results following RB training. The CHT coefficient is the result, while the Reynolds 
number and mass percentage are the input variables. Comparing the simulation results with the 
actual data and input values of Reynolds number and B is revealed in fig. 8(b). The most accu-
rate simulation results following RB training seem to deviate more from the real values than in 
fig. 8(a). The consequences of turbulent and laminar flows in a simulation, on the other hand, 
are very similar. The image clearly shows that the amount of sample data has less of an effect 
on the final simulation output and that fitted distortion is reduced. The data underfitting is minor 
in the turbulent flow scenario in particular.

The reliability of a model’s predictions can be measured using the prediction accuracy 
diagram. Regression diagram for R2 determination target utilising training data of fig. 8. A high 
degree of model accurateness is shown when the projected value is close to the true value and 
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the expected point is close to the contour line. The results of the MSE performance are similar, 
but there is a larger data point deviation from the 45° line and smaller R2 values for the turbulent 
and laminar flow phases.

Figure 8. A comparison between the RB model’s experimental results and its  
corresponding simulation deviation plot; (a) laminar flow state and (b) turbulent flow state

Conclusion 

The CHT characteristics of Al2O3-water MNF in a pipe were thoroughly investigated by 
a thorough analysis that took both turbulent and laminar flow scenarios into account. The use of 
ML techniques to model the acquired data has never been attempted before. The CHT coefficient 
of Al2O3-MNF and its key affecting parameters were studied using a self-built platform. We used 
grid search cross-validation fit the results of RB, LS-SVM, and MLR in a sequential fashion. Us-
ing a battery of accuracy criteria, we pitted the RB and LS-SVM models against one another. In 
terms of overall performance, the LS-SVM model was better than the RB model. We visualised 
the expected and actual CHT coefficients of Al2O3-MNF in pipes using 3-D smoothed surface 
plots to validate and evaluate the model’s accuracy. The LS-SVM model’s validity and accuracy 
were further bolstered by these graphics. Statistical theory-based LS-SVM effectively addressed 
neural network issues and performed exceptionally well when forecasting very small amounts of 
data, according to the integrated research. The findings and recommendations of this work should 
be considered by ML researchers interested in MNF heat transfer performance in future studies. 
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