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Abstract 

In both turbulent and laminar pipe flows, we were able to accurately forecast 

the beginning range of the convective thermal transferring coefficients of 

Al2O3 magnetized nanofluids using machine learning approaches. The 

simulations utilized two machine learning techniques: Radial Basis Function-

Backpropagation (RB) and Multiple Linear Regression Analysis (MLR). First, 

we used MLR to fit the polynomial equation. Afterwards, grid search cross-

validation was employed to determine the optimal RB model with six hidden 

layer neurons. To evaluate the RB model, we compared numerical patterns of 

the parameters used to measure accuracy. The regression coefficient and 

mean square error (MSE) were the most commonly utilized parameters in 

Reynolds number (RN)-mass percentage simulations (R2). In the case of a 

laminar flow, these numbers were found to be 0.99994 and 0.34, respectively. 

Additionally, the results for laminar flow conditions using Reynolds number-

magnetic field strength simplification were ideal, with an MSE of 3.85 and an 

R2 value of 0.99993. By comparing the predicted values with the experimental 

results visually using Three-Dimensional smoothed surface plots, we were 

able to further prove that the model was valid and accurate. These 

revolutionary findings could spark new developments and encourage 

substantial improvements in nanotechnology and machine intelligence. These 

findings are an important asset for driving future Research and Development, 

which in turn makes significant contributions to the ever-expanding frontiers 

of these innovative fields.  

Key words: Al2O3, nanofluids, heat transfer, mean square error, Reynolds 

number, Multiple Linear Regression. 

1. Introduction  

The suspension of nanoparticles in a base fluid produces nanofluids, a hybrid type of fluid [1], 

[2]. The nanoparticles can be in the form of metals and carbides to ceramics and others. Nanofluids have 

far better thermal characteristics and far less agglomeration than traditional heat transfer fluids like water 

or glycol, according to the research [3], [4]. Nanoparticles' larger surface areas allow them to interact 

with the fluid around them more strongly, which improves the nanofluid medium's dispersion and 

stability. In addition, the nanofluid's thermal characteristics are enhanced since the increased surface 
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area allows for more efficient heat transmission processes. Significant implications for a range of 

scientific and technical applications are presented by these discoveries, which highlight the critical role 

of nanoparticle surface area in affecting nanofluid behavior and performance [5], [6]. Nanofluids have 

numerous applications due to their exceptional thermophysical features, which include heat exchange 

devices, energy systems, and solar heating.  

One kind of nanofluid that stands out from the many is magnetic nanofluids (MNF) [10]. A base 

liquid can be used to disperse superparamagnetic nanoparticles, resulting in the formation of these 

unique nanofluids [7]. Materials containing such nanoparticles include magnetite (aluminum oxide) and 

oxides of metals (cobalt, iron, nickel, and nickel, to name a few) [8]. In addition, a magnetic field can 

alter the internal particle distribution's structural properties in a magnetic nanofluid. The diffusion 

coefficient, thermal conductivity, viscosity, and strength of the applied magnetic field are all thermal 

performance factors of the MNF that are affected by this. This transition turns the MNF into an 

extraordinary heat transfer medium that can be "controlled," opening up exciting possibilities for thermal 

management and better heat transfer. So, several studies have examined MNFs to assess their nanofluid 

flow and heat transfer properties. In an experiment conducted by authors [9], [10], the convective heat 

transfer coefficient was found to increase by approximately 40.79 % and 58.19 %, respectively, when 

an external magnetic field was applied to Al2O3 nanofluids. Four magnets placed outside the device 

generated the magnetic field. Additionally, the conditional nanofluids were evaluated in the absence of 

a magnetic field, while the base fluid was left unattended. The authors found that when Al2O3/water 

nanofluids were exposed to a 415 Gauss uniform gradient magnetic field, their CHT coefficient 

increased by 9.16%. Laminar CHT coefficients in ferro magnetized fluids with concentrations between 

1.25 and 2.5 % were measured under both persistent and irregular magnetic field conditions, and the 

authors discovered a difference of at least 19.8 %.  

Due to the large number of tests and the complications in structure the experiment layout, an 

accurate depiction of the magnetic field's activity has not been achieved. However, machine learning 

(ML) approaches provide a strong alternative, and MNF can be controlled, so it has a significant impact 

on the thermal conductivity of the base fluid. Machine learning-based stability and thermophysical 

property prediction for nanofluids is similarly in its infancy. The most fundamental metrics such as 

nanocomposite mass, average particle size, concentration, and nanofluid temperature could only be 

captured by machine learning models prior to the development of magnetic fields. Due to this, the 

present study used a novel machine learning strategy to simulate the convective heat transfer of Al2O3 

nanofluids in a magnetic field. In order to generate enough experimental data for modelling and 

prediction, three ML methods—RB, MLR, and LSTM—were employed. High accuracy and wide 

application are anticipated outcomes of this study's thorough comparison of machine learning prediction 

results. Potentially, it might serve as a benchmark for handling smaller data models in the future.  

2. Experimental methodology 

2.1. Fabrication  

The Al2O3/H2O nanofluids were produced using a widely used two-step technique. It all starts 

with getting your hands on some nanoparticles. The next thing to do is to mix the nanoparticles with the 

base liquid. Last but not least, dispersants were added to the nanofluids to maintain a stable suspension. 

For the studies, the generated nanofluid samples were tailored with nanoparticle mass percentages of 

0.6 wt%, 1.2 wt%, 1.8 wt%, and 2.4 wt%, respectively. To improve nanoparticle dispersion and 

drastically decrease nanoparticle deposition, the dispersant TMAH (tetramethylammonium hydroxide) 

was included [11]. After weighing the Al2O3 nanoparticles and adding them to the same quantity of 

deionized water, the next step in preparation was to add the dispersion TMAH, which had the same 

weight as the nanoparticles. After dispersing the nanofluids, each sample underwent 90 minutes of 



ultrasonic stirring and 30 minutes of magnetic swirling to increase stability. The state diagrams for 10 

minutes, 2 days, 5 days, 7 days, and 14 days show that the nanofluids were able to stay in a stable state 

throughout the experiment.  

2.2.  Experimentation on Heat transfer 

Figure 1 shows that the experiment stage's storing container was filled uniformly with the created 

nanofluids. The whole set of experimental tools included a data collecting end, circulating pipeline 

spherical regulating valve, storage tank, floating tubular flow metre for liquids, and water pump. By 

setting up a data collection area, a heat dissipation section, and an experimental test section on the 

experimental stage, we made sure the flow circulation system would work smoothly. The experimental 

portion was a 14 mm diameter, 500 mm long, and 2 mm thick copper tube with a 150 W aluminium foil 

heating sheet wrapped evenly around its perimeter. By manipulating the temperature of the aluminium 

frustrate sheet and allowing the alumina nanofluids moving through the tube to convectively exchange 

heat with it, the heating power may be adjusted to meet the experimental need.  

 

 Fig. 1. The Al2O3/H2O nanofluids experimental process.  

 

To reduce heat loss, the outside of the heating tube was covered with a uniform coating of 

insulating cotton. The water intake rate of the Al2O3/MNF can reach 15,000 L/h due to a valve-controlled 

pump. Data collectors in the test area were linked to 7T-type thermocouples so that data could be 

captured in real-time. For the intake and exit measurements, separate K-type thermocouples were 

utilised. Using Nd2Fe14B permanent magnets attached to the T2/T4/T6 thermocouples at each of the 

six places outside the tube, a GM-2A Gauss metre was employed to ascertain the intensity of the vertical 

magnetic field. Flow metres, recording manometers, and other data collecting equipment were used to 

acquire experimental data, and the flow rate was controlled in the testing by adjusting the valves. Further 

assurance of the results' accuracy came from collecting experimental data three times using the same 

test parameters in order to take an average.  

2.3. Verification of experimental system  

In this part, we confirmed the stability and dependability of the test bench after successfully 

preparing the nanofluids and verifying the stabilisation. Initial experiments using deionized water's heat 

transfer characteristics in both laminar and turbulent flows determined that 2300 was the dividing line 

between the two. To compare the measured Nusselt number with authors [12], the Sieder and Dnielinski 

model was employed, which can be found in Equations, whereas η denotes the viscosity of fluid and Pr 



indicates Prandtl number. Both models have been fitted to experimental data extensively and are 

applicable to many heat transport situations. They make it easier to gauge the efficacy of CHT by 

providing an estimate of the Nusselt number.  
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Fig. 2. The flow chart for deionized water on the convective heat transfer process for verification 

purposes.  

 

The results, as shown in Figure 2, provide important and informative insights that enhance our 

comprehension of the study. The impressive convective heat transfer (CHT) behaviour of MNF under 

laminar flow conditions can be predicted with high confidence by using the Sieder model, as shown by 

the excellent agreement between the model and the empirical observations (Fig. 2). In the turbulent flow 

condition, the data strongly agree with the Dnielinski model (Fig. 2), demonstrating that the model 

correctly depicts the CHT properties of magnetic nanofluids in this regime. This study's convective heat 

transfer test system was proven to be both suitable and effective by the robustness of these findings. The 

ability to reliably produce precise data shows that it could be a useful tool for studying convective heat 

transport in MNF, particularly when a magnetic field (B) is introduced.  

3. ML techniques 

3.1. Search grid cross-validation  

One of the most important factors in a machine learning model's performance is its 

hyperparameters [13]. Key hyperparameters of an artificial neural network (ANN) are the amount of 

hidden layers and the density of neurons per layer. To achieve the best possible model performance, it 

is crucial to choose these hyperparameters correctly. in the event that the hyper-parameters are not 

chosen appropriately, the model may end up being under- or overfitted [14]. To find the optimal 

combination of hyperparameters, one can use empirical fine-tuning, or one can systematically evaluate 

different parameter sizes. The latter method relies on human debugging, which can be laborious and 



lead to less-than-ideal selection of hyperparameters. Using grid search for cross-validation is the best 

way to fix this. Grid search iteratively trains the model and changes hyperparameters to discover the 

best combination that maximises accuracy by methodically exploring a predetermined parameter space.  

Using assessment metrics derived from both the training and test sets, this work employs grid 

analyze with cross-validation (Grid Search CV) to determine the optimal parameters and neuronal 

density. All models are subjected to 20 iterations to guarantee robustness, and we showcase solely the 

model with the highest quality result. The effect of unpredictability on the developed models' 

performance is reduced by this method.  

3.2. Multiple linear regression technique  

Multiple linear regression analysis, in contrast to univariate linear regression, is applicable to a 

far wider variety of contexts as a model for assessing the relationship among variables. This is due, in 

large part, to the fact that, in contrast to real-world application scenarios, multivariate linear regression 

typically involves more than one independent variable [15]. That is, multiple linear regression analysis 

encompasses a wider range of scenarios and data points than a single independent variable analysis 

would. To express multiple linear regression (Y) mathematically, one can use the following statement 

[16].  

𝒀 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑚𝑋𝑚    (3) 

To find the CHT coefficient, we use the following Python-coded and demonstrated procedures: 

analysis, regression, linearity, and using the RN, mass percentage, and MNF intensity of the Al2O3 in 

the pipe as independent variables.  

3.3. Radial Basis Function-Backpropagation technique 

The primary and most significant obstacle is the development of an artificial neural network 

capable of performing functions typically handled by the human central nervous system. [17]. Pattern 

recognition, data processing, process analysis, and artificial neural networks (ANNs)—a nonlinear 

mathematical technique with learning capability—find extensive use. With their simple and easily 

implementable learning principles, neural networks are able to map arbitrary complex nonlinear 

relationships, and their high nonlinear fitting ability makes them ideal for computer implementations 

[18].  

Typically, the ANN model in this analysis is depend on the backpropagating algorithm, which 

was first proposed in 1986 by a group of academics led by Rumelhart and Hinton [19]. Because of their 

superior multidimensional function mapping skills and their capacity to identify patterns of arbitrary 

complexity, BP neural networks can tackle a wide variety of tasks, even many that simple perceptrons 

cannot. The number of training sessions can be reduced while improving prediction accuracy by 

intentionally combining the benefits of RBF (Radial Basis Function) and BP (Backpropagation) neural 

networksWhile BP neural networks offer superior sample prediction, RBF neural networks can 

nonlinearly approximatively handle any data collection. In fact, RB's neural network architecture 

consists of two hidden layers. Both the RBF and BP neural networks accomplish the same goal—the 

implementation of a hidden layer [20]. The three-layer architecture of the RB neural network utilised in 

the publication is illustrated in Figure 3. A stack consists of an input layer, a hidden layer, and an output 

layer. The data was divided into a training set with 70% of the total and a prediction set with 30% using 

Python for neural network code creation and analysis. After that, six hidden layers were built from the 

data using the following properties as inputs: Reynolds number, mass percentage of Al2O3 MNF in the 

pipe, and magnetic field intensity. The convective heat transfer coefficient was the output parameter 

used for this prediction.  



 

 

Fig. 3. Network architecture of the RB layer.  

 

4. Results and discussion  

4.1. Investigation of the factors impacting coefficient of CHT  

The interfacial layer effect is a well-known explanation for the better enhancement of heat 

conductivity in nanofluids with a higher mass concentration of particles. The MNF test bench was 

utilised to examine the correlation between MNF concentration and its convective heat transfer 

coefficient in this case. Figure 4 displays the correlation between the RN and the CHT coefficient for 

magnetic nanofluids with variant particle masses, beginning at 40◦C and using a magnetic field of B= 

850 G. Figure 4(a) demonstrates that, under laminar flow circumstances, the convective heat transfer 

coefficient increases exponentially with particle number for lower Reynolds numbers; nonetheless, the 

values of the coefficient are nearly identical for particle concentrations of 2.4% and 1.8%. Particle mass 

concentrations of 0.6 %, 1.2 %, 1.8 %, and 2.4 % all resulted in convective heat transfer coefficient 

improvements of 0.88%, 1.56%, 2.14%, and 2.61%, respectively, at Reynolds number 1200. The 

convective heat transfer coefficients showed the most significant gains at Reynolds number 2000, with 

increases of 3.98%, 7.95%, 8.29%, and 8.74%, respectively, for the same mass concentrations. The 

results demonstrate that the convective heat transfer coefficient is greatly enhanced as the concentrations 

of nanofluids increase.  
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Fig. 4. The relation among the CHT of Al2O3-H2O nanofluids and their mass percentage.  

 

Figure 4(b) shows that there is a clear positive link between the RN and the CHT coefficient. The 

five curves also demonstrate that there is a flattening out of the curves until the Reynolds number reaches 

5500, and then there is an insignificant rise beyond that. When the mass concentration hits 0.6% at a 



Reynolds number of 5500, the CHT coefficient of magnetic nanofluid increases by 2.12% related to 

deionized water. It would appear, though, that convective heat transmission in the tube does not have an 

immediately apparent enhancing impact. Specifically, the CHT coefficient goes up from 2.15 to 3.55%, 

3.55%, and 5.55% when the mass concentration goes from 0.6% to 1.2% to 2.4%. The CHT coefficients 

of magnetic nanofluid with concentrations increases from 0.6% to 2.4% in deionized water were 

determined at 40◦C, with B= 850 G and a RN of 7500. The coefficients for these variables are 8260 

W/(m2K), 8320 W/(m2K), 8540 W/(m2K), and 8760 W/(m2K), in that order. The production of 

nanoparticles with longer and more chain-like structures is induced by an increase in the concentration 

of MNF. This, in turn, enhances the heat transfer performance, which further improves the convective 

heat transfer coefficient. Moreover, as mentioned earlier, studies have demonstrated that thermal 

conductivity is improved by encasing nanoparticles in nanolayers [21]. This improvement is especially 

notable when considering the transitional thermal resistance between the solid and liquid phases. For 

MNF values between 0.6% and 2.4%, the CHT coefficient increases as concentration increases, 

following the increased thermal conductivity law.  
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Fig. 5. The relation among the CHT of Al2O3/H2O nanofluids and the magnetic field.  

 

Following this investigation, researchers continued to look into the crucial element of the applied 

magnetic field. At a tube temperature of 40 ◦C and a vertical magnetic field of B= 0, 250, 350, 650, 850, 

and 1050 G, With a particle mass percentage of 1.2%, MNF provides tendency plots in Figure 5. RN 

and CHT coefficient are positively correlated in both graphs. Similar to Figure 5(a), the CHT coefficient 

increases at magnetic field= 0 G and 250 G, and the plots overlap at 650, 850, and 1050 G. It may be 

inferred from this that, regardless of the strength of the magnetic field, there exists a critical value beyond 

which the field has no further effect on the rates of heat transfer coefficient increase. Under the same 

conditions as MNF, nanofluids without an imposed magnetic field had CHT coefficients of 0.86 %, 

11.16 %, 19.74 %, 22.75 %, and 28.33 %, respectively. The magnetic field strengths (B) ranged from 

250 to 1050 G and the Reynolds number was 2000. For both low and high magnetic fields, the curves 

show an upward trend in Figure 5(b) and Figure 5(a), and the rates of rise are identical. . The statistical 

analysis in the follow-up multiple linear regression model benefits from this strong linear connection 

suggestion (MLR).  A maximal RN of 7500 and B = 250, 450, 650, 850, and 1050 G result in convective 

heat transfer coefficients that are 0.99%, 8.47%, 17.24%, 23.10%, and 25.79% better, respectively, than 

nanofluids that do not contain a magnetic field.  



When subjected to B, the nanoparticles in MNF are drawn to the pipe surface due to the effect of 

the field strength. They then migrate quickly to the copper pipe's surface, increasing the concentration 

of particles there and causing heat to condense on them. Ultimately, this causes a notable rise in the 

thermal conductivity of the area. However, when particles gather close to the pipe's surface, it increases 

friction there, which disrupts the flow pattern and the thermal boundary layer, leading to even more 

localised convective heat transfer [22]. Because magnetic forces, not thermal ones, strongly affect 

magnetic nanoparticles, they clump together to create chains that are directed parallel to the applied 

field, further increasing the overall thermal conductivity. Pairs, triplets, or small chains of particles 

aligned with the external magnetic field demonstrate this [23].  

4.2. Modeling with MLR  
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Fig. 6. As independent variables, the RN and mass percentage are represented on the correlation 

graph.  
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Fig. 7. The correlation between the independent variables RN and magnetic field.  

 

Figures 6 and 7 show the connection between MLR and the Al2O3 MNF in the pipe. According 

to the results, there is a straight line connecting the variables that affect the CHT coefficient. The 

multiple linear regression model can thus reliably forecast the convective heat transfer coefficient of the 

pipe. For both turbulent and laminar flows, 42 data sets are available, and the function is a CHT 

coefficient. There are a total of 84 sets of input variables involving magnetic field strength and Reynolds 

number, 35 sets of values for the CHT coefficient, and 70 sets of values for mass percentage and 

Reynolds number in the data model.  



Multiple linear regression is used to fit the model for the CHT coefficient of the Al2O3 magnetic 

nanofluids in the pipe. The particle mass percentage, C, Re, h, and the CHT coefficient are the variables 

in this case with Re and mass percentage serving as the independent variables.  

ℎ = 0.1469𝑅𝑒 + 26.1428𝐶 + 868.31   (4) 

ℎ = 0.7053𝑅𝑒 + 278.3142𝐶 + 3262.69   (5) 

ℎ = 0.4369𝑅𝑒 + 0.3313𝐵 + 344.26   (6) 

ℎ = 0.6274𝑅𝑒 + 1.6695𝐵 + 3055.71   (7) 

Both the Reynolds number and the strength of the magnetic field are directly related to the 

functions (6, 7). Here, Re is the RN and B is the strength of the magnetic field. In order to evaluate and 

fine-tune particular fitting parameters for different techniques, the MLR findings are a great visual 

analysis tool. Researchers can gain a better grasp of the data and useful recommendations for improving 

machine learning model performance for more complicated datasets with nonlinear interactions using 

this method. Although MLR cannot explicitly predict nonlinear correlations, the aforementioned 

modelling does reveal close-to-linear interactions, which are useful for comparing with the two ML 

methods that follow.  

4.3. Statistics with RB  

The optimal MSE model for Al2O3 MNF was first determined using the Grid Searching Cross 

validating technique with a invisible layer neuron count of 6, as part of the examination of RB models 

in machine learning techniques. The data model remains true to the original Multiple Linear Regression 

for 86 sets and 75 sets, correspondingly, when 75% of the dataset is used for training and 25% for testing. 

All of the models were trained to be independent of the baseline weights and biases after 20 iterations; 

only the best findings from the artificial neural network (ANN) networks were shared. Particular 

comparisons of multi-parameter combinations are provided in the ML comparison section. These 

combinations include R2, RMSE, MSE, AARD and MAE, %.  

The line plots in Figure 8(a) compare the actual values to the best-case scenario MSE simulation 

results following RB training. The CHT coefficient is the result, while the RN and mass percentage are 

the input variables. Comparing the simulation results with the actual data and input values of RN and B 

is revealed in Fig. 8(b). The most accurate simulation results following RB training seem to deviate 

more from the real values than in Fig. 8(a). The consequences of turbulent and laminar flows in a 

simulation, on the other hand, are very similar. The image clearly shows that the amount of sample data 

has less of an effect on the final simulation output and that fitted distortion is reduced. The data 

underfitting is minor in the turbulent flow scenario in particular.  
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Fig. 8. A comparison between the RB model's experimental results and its corresponding 

simulation deviation plot.  



 

The reliability of a model's predictions can be measured using the prediction accuracy diagram. 

Regression diagram for R2 determination target utilising training data of Figure 10. A high degree of 

model accurateness is shown when the projected value is close to the true value and the expected point 

is close to the contour line. The results of the MSE performance are similar, but there is a larger data 

point deviation from the 45◦ line and smaller R2 values for the turbulent and laminar flow phases.  

5. Conclusions  

The convective heat transfer characteristics of Al2O3/water magnetic nanofluids in a pipe were 

thoroughly investigated by a thorough analysis that took both turbulent and laminar flow scenarios into 

account. The use of ML techniques to model the acquired data has never been attempted before. The 

CHT coefficient of Al2O3 MNF and its key affecting parameters were studied using a self-built platform. 

We used grid search cross-validation to fit the results of RB, LS-SVM, and MLR in a sequential fashion. 

Using a battery of accuracy criteria, we pitted the RB and LS-SVM models against one another. In terms 

of overall performance, the LS-SVM model was better than the RB model. We visualised the expected 

and actual CHT coefficients of Al2O3 magnetic nanofluids in pipes using three-dimensional smoothed 

surface plots to validate and evaluate the model's accuracy. The LS-SVM model's validity and accuracy 

were further bolstered by these graphics. Statistical theory-based LS-SVM effectively addressed neural 

network issues and performed exceptionally well when forecasting very small amounts of data, 

according to the integrated research. The findings and recommendations of this work should be 

considered by machine learning researchers interested in magnetic nanofluids' heat transfer performance 

in future studies.  
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