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In this article, we extended operational matrices using orthonormal Boubaker 
polynomials of Riemann-Liouville fractional integration and Caputo derivative 
to find numerical solution of multi-term fractional-order differential equations 
(FDE). The proposed method is utilized to convert FDE into a system of algebraic 
equations. The convergence of the method is proved. Examples are given to explain 
the simplicity, computational time and accuracy of the method. 
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Introduction

In the recent era, fractional calculus (FC) has a vital role in applied mathematics 
due to its non-local property. Fractional order models have many applications in the areas like 
biomedical engineering, hydrology, viscoelasticity, electromagnetic, material science, biology, 
physics, acoustics, electromagnetic, finance, etc., to describe the real-world phenomenon [1, 2].  
The non-local property is the essential advantage of these equations showing the state of a 
complex system does not depend only on its current state but also depends upon its all pre-
vious conditions. Therefore, fractional derivative (FD) is significant to present long-memory 
processes and materials, anomalous diffusion, long-range interactions, long-term behaviors, 
power laws, etc. The FD has non-local property, due to which it is hard to find the solution of 
fractional differential equations (FDE). In today's era, researchers are working on a solution of 
FDE by developing new analytical and numerical approaches. Widespread applications of FDE 
motivate the advancement of analytical and numerical techniques to find its solution. 

In this paper, we have worked upon finding the numerical solution of multi-order FDE 
using orthonormal Boubaker polynomials. Multi-order FDE is defined [3]:
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where n – 1 < µ ≤ n, the coefficients ai (i = 1, 2, ... r + 1) are constants, 0 < β1 < β2 < ... < βr < µ 
and h is known function and Dt

µu(t) is the Caputo fractional derivative of order µ. 
Polynomial approximation is the best approximation method to find the numerical 

solution of the FDE. An operational matrix is one of the numerical techniques to solve the FDE. 
Using different polynomials like Legendre [4, 5], Chebyshev [6], Jacobi [7, 8] and Bernstein 
polynomials [9], Fermat polynomials [10], Cubic B-spline polynomial [11], etc., operational 
matrices for fractional derivative and fractional integration constructed by many researchers. 
Nowadays, researchers are focusing on shifted polynomials like Legendre [12], ψ-shifted [13] 
to construct the operational matrix for the solution of fractional differential equations of vari-
able order. The Boubaker polynomials were firstly introduced by Boubaker in 2007 to find the 
solution of the 1-D heat transfer equation [11, 14]. Boubaker polynomials and their applications 
were discussed by Kobra et al. [15]. Using Boubaker polynomials Bolandtalat et al. [3] solved 
multi-term fractional differential equations, Abdelkrim et al. solved the Emden-Fowler problem 
[16]. Spectral method was developed using Boubaker polynomials in [17].The main objective 
of the proposed method is to convert the multi-term FDE into a set of algebraic equations by 
expanding the unspecified function within orthonormal Boubaker polynomials using operation-
al matrices of the fractional operators. 

Basic definitions and properties

In this section, we recall some of important preliminaries of fractional calculus.
Let µ ∈ R+ and n = [µ], where [.] is the greatest integer function. The Riemann-Liou-

ville fractional integral It
µf (t) of order µ is defined [18]:
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The Caputo fractional derivative of order α is denoted by Dt
µ and is defined [18]:
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where, µ ∈ (n – 1, n). If µ = n,
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Recursive formula for Boubaker polynomials is given:
1 2

0 1
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For Gram-Schmidt process(G-S process) let ϕ(t) ∈ L1(0, 1) be a polynomial and:

{ }1= ( ) | ( ) is a polynomialand ( ) (0,1)W t t t Lφ φ φ ∈ (7)

be the inner product vector space with the innner product and norm is defined:
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Gram Schmidt orthogonality process is defined to covert any arbitrary basis of the 

inner product space into orthogonal basis. Now, let us consider {v0, v1, v2,...vn} be an arbitrary 
basis of V then, orthogonal basis of W is given by the vectors {w0, w1, w2,...wn}:
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For Orthonormal Boubaker polynomials we now apply the process of G-S on (5) to 
derive orthonormal Boubaker polynomials [19]. Then, we have:

	
2 2 3
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Analytical form of orthonormal Boubaker polynomial is given:
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Properties of fractional operators:
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where β ∈ (n – 1, n).

Function approximation

The function ϕ(t) ∈ L1(0, 1) is approximated using orthonormal Boubaker polynomi-
als: 
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are orthonormal Boubaker polynomials and BT = [b0  b1... bN] are unknown orthonormal Bou-
baker coefficients and N is chosen as any positive integer. The bi can be derived:
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Let us express, orthonormal Boubaker polynomials into Taylors basis is given:
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Operational matrices for fractional operators

Orthonormality plays an important role in the solution of FDE using operational ma-
trix method. In this section, we extend the operational matrices of fractional integration and 
Caputo derivative using orthonormal Boubaker polynomials. 

Operational matrix of the R-L fractional integration

Consider R-L fractional integration of Boubaker vector B
~
(t):

( ) = ( )tI B t L B tµ µ
  (12)

where Lµ is the operational matrix of R-L fractional integration using orthonormal Boubaker 
polynomials of order (N + 1) × (N + 1). Computation of Lµ:
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where

 	
1 2 3( ) =

TNX t t t t t tµ µ µ µ µ+ + + + 
 

	

0! 0 0 0 0 0
( 1)

1!0 0 0 0 0
( 2)

2!0 0 0 0 0
( 3)

D =
3!0 0 0 0 0

( 4)

!0 0
( 1 )

N
N

µ

µ

µ

µ

µ

 
 Γ + 
 
 Γ + 
 
 Γ + 
 
 Γ + 
 
 
 
 
 

Γ + +  











      

Now, we express the X(t) in terms of orthonormal Boubaker ploynomials:
	 ( ) = ( )X t HB t

Let us express, t µ+r by N + 1 terms of the orthonormal Boubaker basis:
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The matrix Lµ = Z

~
D
~
 H is the required operational matrix of R-L fractional integration 

operator.

Operational matrix of the Caputo fractional derivative

Consider, Caputo fractional derivative of Boubaker vector B
~
(t):	

D ( ) = D ( )B t B tµ
µ

  (15)

where Dµ is (N + 1) × (N + 1) operational matrix for Caputo fractional of derivative using or-
thonormal Boubaker polynomials. Computation of Dµ is given:
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where
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Approximate tr–µ by N + 1 terms of the orthonormal Boubaker basis:
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The matrix
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is the required operational matrix of Caputo fractional order derivative operator. 

Multi-term fractional order differential  
equation using operational matrix 

To solve the multi-term fractional order differential equation, we first operate I µt on the 
both sides of eq. (1). Therefore, we get:
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Here we assume the polynomial approximation u and w by using given polynomial:
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Therefore, eq. (19) converted into:
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Solving the system of algebraic eq. (22), we find the value of CT and hence the re-
quired solution.

Here, we discuss convergence of the solution obtained by the proposed scheme in 
section 5 to the analytical solution of problema (1) and (2).

Theorem 1. Let uN(t) be the approximate solution of problems (1) and (2) obtained by 
the proposed scheme in section Examples, u(t) is its analytical solution and RN(t) is the residual 
error for the approximate solution. Then, RN(t) tends to zero when N → ∞. 

Proof 1. To convert, the given eq. (1) into fractional integral equation we apply I µt on 
both sides of equation. Therefore, we get:
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so uN (t) satisfies

	

11
( ) ( )

1
=0 =1 =0

( ) = (0) ( ) (0) ( ) ( )
! ( 1)

m jn rs i i
s ji

N i t N r t N t
is i j

t tu t u a I u t u a I y t I h t
s j

µ β
µ β µ µ

µ β

− − +−
−

+

 
 + − + +
 Γ − + +
 

∑ ∑ ∑

where the residual function RN(t) is given
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Now, we need to find a bounded for |u(t) – uN(t)|. To do that, let ∈ is the interpolating 
polynomials to u(t) at points t𝓁 (t𝓁 be the roots of the shifted Chebyshev polynomials of degree 
N + 1):
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Using the estimates for Chebyshev interpolation nodes:
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where 

	
( 1) ( )Nu t θ+ ≤

In the finite subspace, the best approximation of any given function u ∈ L2(0, 1) is 
unique. Therefore, we have:
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Substituting eq. (25) into eq. (23), we have:
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Therefore, it is clear that RN(t) tends to zero when N → ∞.

Table 1. A comparison between our methods  
and method in [3] for Example 1 

 t  Exact  [3]  Proposed  
method for N = 3 

 Proposed  
method for N = 4 

0  0.1252  0.1253  0.1092 

0.1  0.3162  0.2993  0.2992  0.3034 

0.2  0.4472  0.4396 0.4395  0.4461 

0.3  0.5477  0.5517  0.5517 0.5531 

0.4  0.6325  0.6414  0.6413  0.6371 

0.5  0.7071 0.7140 0.7140 0.7077 

0.6  0.7746 0.7753  0.7753  0.7719 

0.7  0.8367  0.8309 0.8309  0.8336 

0.8  0.8944  0.8864 0.8863  0.8939 

0.9 0.9487  0.9472  0.9471  0.9507 

1 1  1.0192  1.0190 0.9993 

Examples

This section contains, solution of few examples using proposed numerical method.
Example 1:
Consider the FDE

1/2D ( ) ( ) = , 0 < < 1, with initial condition (0) = 0
2

u t u t t t uπ
+ + (25)

the exact solution in this case: u(t) = (t)1/2
. 

Solution of eq. (25) using orthonormal Boubaker polynomials discussed for N = 3,4.
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(a) The exact solution and approximate solution of Example 1 for N = 3 and N = 4 and 
(b) exact solution and approximate solution of Example 2

Example 2. Multi-order Bagley-Torvik equation FDE:
2 3/2D ( ) D ( ) ( ) = 1 , 0 < < 1u t u t u t t t+ + + (26)

(0) = 1, (0) = 1u u′ (27)

The exact solution of eq. (26):

( ) = 1u t t+ (28)
Solution of eq. (26) using orthonormal Boubaker polynomials discussed for N = 3,4 

 
(a) The absolute error for N = 3 and (b) the absolute error for N = 4

Conclusion

In this article, we have extended the proposed numerical scheme using orthonormal 
Boubaker polynomials. By using this method, we derived operational matrix of R-L fractional 
integration and Caputo derivative. This technique is applied for the solution of multi-term FDE. 
The convergence analysis is provided. This numerical scheme is applied on few examples to 
illustrate the accuracy and simplicity of the proposed method. In future, this method can be 
applied for system of multi-term FDE and variable order FDE. All computational results are 
obtained by using MATLAB software.
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