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In this paper, the space-time fractional Eckhaus equation is considered and solved 
using the a direct method (Khater method) to obtain exact solutions. This meth-
od produces more solutions when compared to other known methods. The real 
solutions of this equation are classified as travelling wave, kink, periodic and sol-
itary wave solutions. These solutions are searched with the help of the fractional 
conformable derivative sense. Some graphs and tables are drawn to interpret the 
solutions and method. With the interpretation of the results, it is explained that the 
method used is a reliable, effective, powerful and easily applicable technique for 
obtaining the solutions of fractional differential equations classes in many fields.
Key words: conformable derivative, the space-time fractional Eckhaus equation, 

Khater method

Introduction 

Recently, many scientists have been interested in fractional calculations to better 
model and analyze physical phenomena. Due to the advantage of fractional calculus in mod-
elling, many mathematical events in many different sciences have been reformulated using 
fractional calculus [1-5]. There are many PDE that have been reformulated using the fractional 
derivatives concept, such as the time-fractional Cahn-Allen equation [6], space-time fractional 
Cahn-Hilliard equation [7], Diffusive predator-prey model [8], Space-time fractional Eckhaus 
equation [9].

The space-time fractional Eckhaus equation [9-11] is expressed:

	
2 42D D 2 D = 0i θ θ θ

τ κ κΨ + Ψ + Ψ Ψ + Ψ Ψ 	 (1)
where

 	
2= ( , ), :κ τΨ Ψ Ψ →  	

This equation, put forward by Wiktor Eckhaus, describes how waves propagate in 
some medium [10]. Many properties of this equation are laid out in reference [11].

Where the fractional derivative Dθ
τ is of conformable-type and defined [12]:
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Some properties of the conformable derivative can be expressed in [12-14].
While studying fractional differential equations, solutions are often obtained with the 

help of this derivative operator [13-16].
 In recent years, fractional differential equations have been studied more than inte-

ger order differential equations due to their many advantages in practice in many fields. Some 
of these fields are biomechanics, engineering, fluid-flow, signal processing, acoustic waves, 
optical fibers, systems identification and control theory, etc. In addition, many researchers 
have used fractional differential operators when searching for exact solutions of fractional 
differential equations in space and time. While finding solutions of fractional differential 
equations in the literature, many methods such as the functional variable method, the Ku-
dryashov method, the trial solution method, the Jacobi elliptic function expansion method, 
the sine-cosine method, the exp-function method, G′/G-expansion method and others [17-20] 
have been used.

 In this study, the exact solutions of the space-time fractional Eckhaus equation are 
investigated using the Khater method [6, 17] and with the help of derivative operators. This 
method is very powerful, effective, reliable and applicable method to get exact and solitary 
wave solution of non-linear differential models. In addition, this method has many advantages 
over other known methods [6].

Exact solution of the space-time fractional Eckhaus equation  
by using conformable derivative

The aim of this section is to investigate exact solutions for the space-time fractional 
Eckhaus equation with the aid of Khater method.

Suppose that traveling wave transformation:

( ) ( ) ( )e =, ,i qu pκ τ
θ θκ τφ
θ θ

κ τ φ− −Ψ = (2)

Putting eq. (2) into eq. (1), we get real and imaginary part of eq. (1):
4( ) 4 ( ) ( ) ( ) ( ) ( ) ( )( 1) = 0, 2 ( ) ( ) = 0u u u u u u u q iu ipuφ φ φ φ φ φ φ φ φ′′ ′ ′ ′+ + + − − (3)

where p = 2 is obtained by solving the second equation. Applying ( ) = ( )u rφ φ
transform to the first equation gives:

2 2 4 22 ( ) ( ) ( ) 8 ( ) ( ) 4 ( ) 4( 1) ( ) = 0r r r r r r q rφ φ φ φ φ φ φ′′ ′ ′− + + + − (4)

if we apply the balancing operation highest order of linear and non-linear derivative, we get  
N = 1. Then, the solution will be in the shape:

( )
0 1( ) =r A A A ϕφ Ψ+ (5)

where A0 and A1 are constants and will be obtained later. Also Ψ(ϕ) provides the equation:

( )( ) ( )1( ) =
ln

A A
A

φ φφ α β σ−Ψ Ψ′Ψ + + (6)
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When β2 – ασ < 0 and σ ≠ 0:
2 2

( ) ( ) ( )
= tan 2A

θ θ
φ β α β αβ κ τ

σ σ σ θ θ
Ψ

   − − − −−   + −       

2 2
( ) ( ) ( )

= cot 2A
θ θ

φ β α β αβ κ τ
σ σ σ θ θ

Ψ
   − − − −−   + −       

(7)

When β2 + ασ < 0 and σ ≠ 0:
2 2

( ) = tanh 2
2

A
θ θ

φ β ασ β ασβ κ τ
σ σ θ θ

Ψ
   − −−   + −       

2 2
( ) = coth 2

2
A

θ θ
φ β ασ β ασβ κ τ

σ σ θ θ
Ψ

   − −−   − −       

(8)

When β2 + ασ > 0 and σ ≠ 0, and σ ≠ –α:
2 2 2 2

( ) = tanh 2
2

A
θ θ

φ β α β αβ κ τ
σ σ θ θ

Ψ
   + +  + −       

2 2 2 2
( ) = coth 2

2
A

θ θ
φ β α β αβ κ τ

σ σ θ θ
Ψ

   + +  + −       

(9)

When β2 + ασ < 0 and σ ≠ 0, and σ ≠ –α:
2 2 2 2

( ) ( ) ( )
= tan 2

2
A

θ θ
φ β α β αβ κ τ

σ σ θ θ
Ψ

   − + − +  + −       

2 2 2 2
( ) ( ) ( )

= cot 2
2

A
θ θ

φ β α β αβ κ τ
σ σ θ θ

Ψ
   − + − +  + −       

(10)

When β2 – α < 0 and and σ ≠ –α:
2 2 2 2

( ) ( ) ( )
= tan 2

2
A

θ θ
φ β α β αβ κ τ

σ σ θ θ
Ψ

   − − − −−   + −       

2 2 2 2
( ) ( ) ( )

= cot 2
2

A
θ θ

φ β α β αβ κ τ
σ σ θ θ

Ψ
   − − − −  + −       

(11)

When β2 – α2 > 0 and and σ ≠ –α:
2 2 2 2

( ) ( ) ( )
= tanh 2

2
A

θ θ
φ β α β αβ κ τ

σ σ θ θ
Ψ

   − −−   + −       

2 2 2 2
( ) ( ) ( )

= coth 2
2

A
θ θ

φ β α β αβ κ τ
σ σ θ θ

Ψ
   − −−   + −       

(12)
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When ασ < 0, σ ≠ 0, and = 0:

( ) ( )= tanh 2 , = coth 2
2 2

A A
θ θ θ θ

φ φα ασ κ τ α ασ κ τ
σ θ θ σ θ θ

Ψ Ψ        − − − −
− −                        

(13)

When β = 0 and α ≠ –σ:

2 2 2 2

( )

2 2

1 e 2 1 e

=

e 1

A

θ θ θ θκ τ κ τα α
θ θ θ θ

φ
θ θκ τα
θ θ

   
   − −
   
   

Ψ
 
 −
 
 

   
   

− + ± +   
      
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−
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=

2e 2e

A

θ θ θ θθ θ κ τ κ τκ τ α αα
θ θ θ θθ θ

φ
θ θ θ θκ τ κ τα α
θ θ θ θ

    
     − −−          

Ψ
   
   − −
   
   

    
    

+ +− +     
               ±

(14)

When β2 = ασ:

( )

2

2 2

=
2

A

θ θ

φ
θ θ

κ τα β
θ θ

κ τβ
θ θ

Ψ

  
− − +      

 
−  

 

(15)

When β = k, α = 2k, and σ = 0:

( ) = e 2 1A
θ θ

φ κ τ
θ θ

Ψ  
− −  

 
(16)

When β = k, σ = 2k, and α = 0:

( )

2

e 2
=

1 e

A

θ θ

φ
θ θκ τ
θ θ

κ τ
θ θΨ
 
 −
 
 

 
−  

 

−

(17)

When 2β = α + σ:

1/2( ) 2 1/2( ) 2

( ) ( )

1/2( ) 2 1/2( ) 2

1 e 1 e= , =

1 e 1 e

A A

θ θ θ θκ τ κ τα σ α σ
θ θ θ θ

φ φ
θ θ θ θκ τ κ τα σ α σ
θ θ θ θ

α α

σ σ

   
   − − − −
   
   

Ψ Ψ
   
   − − − −
   
   

+ +

+ − −

(18)
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When –2β = α + σ:

1/2( ) 2

( )

1/2( ) 2

e=

e

A

θ θκ τα σ
θ θ

φ
θ θκ τα σ
θ θ

α α

σ σ

 
 − −
 
 

Ψ
 
 − −
 
 

+

+

(19)

When α = 0:

2

( )

2

e=

1 e
2

A

θ θκ τβ
θ θ

φ
θ θκ τβ
θ θ

β

σ

 
 −
 
 

Ψ
 
 −
 
 +

(20)

When α = β = σ ≠ 0:

( )

2 2

=
2

A

θ θ

φ
θ θ

κ τα
θ θ

κ τα
θ θ

Ψ

  
− − +      

 
−  

 

(21)

When α = σ, β = 0:

( )
2

= tan
2

c
A

θ θ

φ

κ τα
θ θΨ

  
− +     

 
 
 
 

(22)

When σ = 0:

2
( ) = e

2
A

θ θκ τβ
θ θφ α

β

 
 −
 Ψ   − (23)

First, we substitute eq. (6) and its derivatives in the eq. (4) and then equalize the co-
efficients of the different powers of AΨ(ϕ) to zero to obtain algebraic equations. Finally, if these 
equations are solved with the help of the MATHEMATICA program, four solution sets are 
obtained:

( )2 2
0 1

1 1Set 1. = (4 4 ), = 4 , =
4 4 2

q A A σβ ασ β β ασ− + − + − −

( )2 2
0 1

1 1Set 2. = (4 4 ), = 4 , =
4 4 2

q A A σβ ασ β β ασ− + − − − −

( ) ( )2
0 1

1 1Set 3. = 4 2 2 2 , = 2 , = 0
4 2

q i A i Aβ β ασ ασ β ασ− + + − +

( ) ( )2
0 1

1 1Set 4. = 4 2 2 2 , = 2 , = 0
4 2

q i A i Aβ β ασ ασ β ασ− − + − −

2
0 1

1 3Set 5. = (16 9 ), = , = 0
16 4

q A Aββ− −

(24)
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Now by substituting the values in Set 1 into eq. (5) the exact traveling wave solution 
of SFCHE for the Set 1 is obtained:

( )2 ( )1( ) = 4
4 2

r A φσφ β β ασ Ψ− + − − (25)

If this expression is substituted in eq. (2) after the necessary transformations are made:

( )
2

2 ( )1( , ) = 4 e
4 2

i

A

θ θκ τ
θ θφσκ τ β β ασ

 
 −
 Ψ  Ψ − + − − (26)

is obtained. There are many different solutions of Ψ(κ, τ) as AΨ(ϕ) takes different values from (7) 
to (23). We can express some of these solutions:

	
( )

22 2
2

1
( ) ( )1

( , ) = 4 tan 2 e
4 2

i
θ θκ τ

θ θ
θ θβ α β ασ β κ τ

κ τ β β ασ
σ σ σ θ θ

−
 
 
 
 − − − −−

Ψ − + − − + − ⋅
   
        

	
( )

22 2
2

2
( ) ( )1

( , ) = 4 cot 2 e
4 2

i
θ θκ τ

θ θ
θ θβ α β ασ β κ τ

κ τ β β ασ
σ σ σ θ θ

−
 
 
 
 − − − −−

Ψ − + − − + − ⋅
   
        

	
( )

22 2
2

3
1

( , ) = 4 tanh 2 e
4 2 2

i
θ θκ τ

θ θ
θ θβ ασ β ασσ β κ τ

κ τ β β ασ
σ σ θ θ

−
 
 
 
 − −−

Ψ − + − − + − ⋅
   
        

	
( )

22 2 2 2
2

4
1

( , ) = 4 tanh 2 e
4 2 2

i
θ θκ τ

θ θ
θ θβ α β ασ β κ τ

κ τ β β ασ
σ σ θ θ

−
 
 
 
 + +

Ψ − + − − + − ⋅
   
         	

	
( )

22 2 2 2
2

5
1

( , ) = 4 coth 2 e
4 2 2

i
θ θκ τ

θ θ
θ θβ α β ασ β κ τ

κ τ β β ασ
σ σ θ θ

−
 
 
 
 + +

Ψ − + − − + −
   
        
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22 2 2 2

2
6

( ) ( )1
( , ) = 4 tan 2 e

4 2 2
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θ θκ τ

θ θ
θ θβ α β ασ β κ τ

κ τ β β ασ
σ σ θ θ

−
 
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 − − − −−

Ψ − + − − + − ⋅
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( , ) = 4 cot 2 e

4 2 2
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θ θ
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κ τ
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σ σ θ θ
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−  
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 
 − −
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   
       
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2 2
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1
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Physical reviews

We prepared some pictures and tables to investigate the physical reviews of the ob-
tained solutions of the space-time fractional Eckhaus equation. In addition, we show the effi-
ciency and accuracy of the Khater method in 3-D and 2-D graphics. 

Conclusion

In this study, we applied the introduction of the Khater method, which is more 
advantageous than many other known methods, for the solution of the space-time fraction-
al Eckhaus equation, and we obtained many solutions for this equation. These solutions 
are expressed in section 2 Exact solution of the space-time fractional Eckhaus equation  
by using conformable derivative. These solutions can be classified as traveling wave, kink, pe-
riodic and solitary wave solutions. The results obtained are given in figs. 1-5 and tabs. 1 and 2 
according to the various orders and the different values.

This method is an effective method in terms of providing strong, accurate and reliable 
solutions in addition the variety of solutions. We examined and interpreted these results in the 
physical reviews section of our article and showed the effectiveness of the method. It is there-
fore, applicable to many different differential equations.

Figure 1. The 3-D graphics of the space-time fractional Eckhaus equation (θ = 0.5); (a) the Ψ1(κ, τ) 
exact solution (α = 2, β = 1, σ = 1) and (b) the Ψ2(κ, τ) exact solution (α = 2, β = 1, σ = 1) 
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Figure 2. The 3-D graphics of the space-time fractional Eckhaus equation (θ = 0.5); (a) the Ψ8(κ, τ) 
exact solution (α = 2, β = 0, σ = –1) and (b) the Ψ10(κ, τ) exact solution (α = 2, β = 0, σ = –2)

Figure 3. The 3-D graphics of the space-time fractional Eckhaus equation (θ = 0.5); (a) the Ψ16(κ, τ) 
exact solution (α = 0, β = 2, σ = 3) and (b) the Ψ17(κ, τ) exact solution (α = 3, β = 0, σ = 3) 

Figure 4. The 2-D graphic of the Ψ1(κ, τ) exact solution for the space-time  
fractional Eckhaus equation with distinct θ and τ (α = 2, β = 1, σ = 1, κ = 0.4)
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Table 1. The some Khater solutions of the space-time fractional Eckhaus  
equation for different values of τ (θ = 0.5, κ = 0.4)

τ Ψ1(κ,τ) Ψ4(κ,τ) Ψ7(κ,τ) Ψ10(κ,τ) Ψ15(κ,τ) Ψ17(κ,τ)
0.01 1.43019 0.78941 0.926265 0.207307 1.08855 1.27238
0.02 0.776796 0.266642 0.820317 0.288744 0.860211 1.16545
0.03 0.44447 0.162466 0.70805 0.350386 0.650095 0.30129
0.04 0.209987 0.0867 0.592936 0.398274 0.456245 0.813587
0.05 0.026405 0.78069 0.476272 0.4334796 0.2774 1.9628
0.06 0.124147 0.986279 0.358568 0.461277 0.112564 3.22947
0.07 0.250555 1.13282 0.239878 0.478629 0.0391154 7.27559
0.08 0.357995 1.22711 0.119913 0.487587 0.178397 2.92955
0.09 0.44982 1.27559 0.00193581 0.488812 0.305973 2.60436
0.1 0.528374 1.28431 0.126649 0.482932 0.422484 2.30889

In the previous tab. 1, α = 2, β = 1, σ = 1 for Ψ1(κ,τ), α = 2, β = 1, σ = 2 for Ψ4(κ,τ), 
α = 2, β = 1, σ = 1 for Ψ7(κ,τ), α = 2, β = 0, σ = –1 for Ψ10(κ,τ), α = 1, β = 2, σ = 3 for Ψ15(κ,τ), 
and α = 3, β = 0, σ = 3 for Ψ17(κ,τ), are used.

Table 2. The Ψ1(κ,τ) Khater solution of the space-time fractional Eckhaus 
equation for different values of τ and θ (κ = 0.8, α = 2, β = 1, σ = 1)

τ /θ 0.1 0.3 0.5 0.7 0.9

0.1 0.825091 0.868836 0.813991 0.821221 0.819255
0.2 1.08382 1.10335 0.840896 0.817678 0.814282
0.3 2.20861 3.46163 0.898417 0.841748 0.826528
0.4 0.896632 1.10113 0.984116 0.877759 0.848119
0.5 0.814545 0.85528 1.133331 0.92664 0.877673
0.6 0.82361 0.814423 1.490024 0.99659 0.917073
0.7 0.851672 0.819076 6.21962 1.10844 0.971696
0.8 0.889782 0.838413 1.45352 1.3245 1.05371
0.9 0.938667 0.86545 1.0286 1.9714 1.19398
1 1.00398 0.899465 0.885487 2.7453 1.49933

Figure 5. The 2-D graphic of the  
Ψ1(κ, τ) exact solution for the 
space-time fractional Eckhaus 
equation with distinct θ and τ 
(κ = 0.8, α = 2, β = 1, σ = 1) 
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