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In this article, we investigate the execution of a meshless method of line (MMOL) 
to solve general seventh-order Korteweg-de Vries (KdV7) equations numerically. 
The suggested meshless technique uses radial basis functions (RBF) for spatial 
derivatives and the Runge-Kutta (RK) method for time derivatives to solve the 
governing equation. To produce an efficient numerical solution, three different 
types of RBF are used. The method’s output is successfully compared to the exact 
solution.
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Introduction

Mathematical models are important tools for understanding the behavior of numerous 
applications in various areas such as fluid dynamics, engineering or physics. Most mathemati-
cal models are integrated into practical applications as non-linear differential equations. There-
fore, efforts have been undertaken to develop more reliable and practical methods for finding 
exact and approximate solutions to non-linear PDE. The phenomenon of the travelling wave 
occurs in many areas, for example in non-linear optics, fluid dynamics, plasma physics, optical 
chemical dynamics, etc. [1]. In the field of fluid dynamics, the authors in [2, 3] discovered the 
important interaction properties of a solitary wave solution of KdV, and the non-linear PDE as 
a travelling wave in shallow water model is entitled as the KdV equation. In [3], the Cauchy 
problem for the KdV equation is considered by the invention of the inverse spectral transforma-
tion is the most profound breakthrough in the development of modern non-linear mathematical 
sciences. Then the KdV equation was expanded to a higher order, and the seventh degree KdV 
equation [4] appeared for the first time in the work to investigate the stability of KdV under the 
singular perturbation.

The general KdV7 equation [5-7]:
3 3 2

5 72 3 4 +  +  +  +  +  +  +  +  = 0t y y y yy yyy y y yy y yu au u bu cuu u du u eu u fu u guu u (1)
with the corresponding initial and boundary conditions. 
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Meshless methods are a class of numerical methods that are used to simulate in essen-
tially every field of science, mathematics, and computational biology. It has been one of the hot-
test topics in computational mathematics in recent years, with an increasing number of scholars 
dedicating themselves to the study of meshfree methods, which have been suggested to solve 
various types of ODE and PDE. To solve PDE utilizing meshless methods with freely distributed 
collocations in the computational domain, and these collocation points participate to the approx-
imation via assumed global or local basis functions. As contrary to most mesh-based methods, 
the spatial domain is represented by a set of nodes in meshless methods. As a result, there is no 
need for predetermined connectivity between the nodes. These methods solve the challenges of 
dimensionality. Meshless methods are efficient and produced better accuracy and can compute 
the solution in both regular and irregular computational domains. Meshless techniques based 
on radial basis functions have some limitations, the most significant of which is choosing the 
optimal shape-parameter value and dense ill-conditioned matrices. To avoid these weaknesses, 
researchers have introduced several techniques which makes these methods more efficient and 
accurate. These approaches have recently been tested in a variety of applications [8-19]. 

In this paper, generalized KdV7 equation is solved by meshless method of lines using 
radial basis functions. The numerical results are compared with the exact solutions.

Methodology for the general KdV7 equation 

 A radial basis function is a function that has an independent variable, e.g.:
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According to the suggested methodology, we approximate the function u(y, t), which 
is denoted by uN(y):
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It follows from eqs. (2) and (3) that:
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Now consider the governing equation:
3 3 2

5 72 3 2 3 4 +  +  +  +  +  +  +  +  = 0t y y y y y yy y y y yu au u bu cuu u du u eu u fu u guu u (5)
	 The y ∈ [α, β] with initial condition: 

( ) ( )0
0,u y t u y= (6)

and boundary conditions:

( ) ( ) ( ) ( )1 2, , ,u t t u t tα β= Β = Β (7)

First, according to the MMOL, we discretize the space derivatives utilizing the RBF 
interpolation by choosing
 	 1 2 1... N Ny y y yα β−= < < < < =

we have:
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Now utilizing eqs. (5)-(8), we get the following on collocation node yi:
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where for simplicity ui(t) is denoted by ui. 
Applying the collection the general KdV7 eq. (1) will take the form:
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the symbol * denote component-wise multiplication of two vectors. We write eq. (10) as:
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The given initial and boundary conditions:

( ) ( ) ( ) ( ) ( )0 0 0 0
0 1 2 1, , , ,

T

N Nt u y u y u y u y− =  U (12)

( ) ( ) ( ) ( )1 1 2, Nu t t u t t= Β = Β (13)

So far, the first step of the MMOL has been completed. Next, we will utilize the clas-
sical four-order Runge-Kutta scheme (RK4) to solve eqs. (11)-(13).

Numerical applications

The accuracy,  efficiency and applicability  of the proposed MMOL are verified 
by approximating the solution of the model eq. (1). Two test problems are considered with 
uniform nodes in the domain [–100, 100]. Throughout the paper, we have used dt = 0.01,  
k = 0.001. For accuracy measurement, we used the maximum error norm.

Tables 1 and 2 exhibit the numerical results for Problems 1 and 2, respectively. Both 
the tables revealed the efficiency and accuracy of the proposed MMOL.

Problem 1. Consider the general KdV7 equation:

	
3 3 2

5 72 3 2 3 4 + 140  + 70  + 280  + 70  + 70  + 42  + 14  +  = 0t y y y y y yy y y y yu u u u uu u u u u u u u uu u

which is known as Seventh-order Lax equation [5-7] with the exact solution:

	
2 2 6( , ) 2 sec ( 64u y t k h k y k t = − 

Table 1. Numerical results for Problem 1 
t  N c RBF Maximum error

0.05

9
 

0.4000 MQ 6.1960 ⋅ 10–18

1 ⋅ 10–4 GA 2.0117 ⋅ 10–19

1 ⋅ 10–68 IMQ 2.1176 ⋅ 10–21

41

0.0310 MQ 6.6940 ⋅ 10–15

1.8000 GA 2.1176 ⋅ 10–21

1 ⋅ 10–69 IMQ 6.3527 ⋅ 10–21

0.5

9

0.4000 MQ 6.1960 ⋅ 10–17

1 ⋅ 10–4 GA 2.0117 ⋅ 10–18

1 ⋅ 10–68 IMQ 2.1176e ⋅ 10–20

41

0.0310 MQ 6.6935 ⋅ 10–14

1.8000 GA 2.1176 ⋅ 10–20

1 ⋅ 10–69 IMQ 6.3527 ⋅ 10–20

1.00

9
 

0.4000 MQ 1.2392 ⋅ 10–16

1 ⋅ 10–4 GA 4.0234 ⋅ 10–18

1 ⋅ 10–68 IMQ 4.2352 ⋅ 10–20

41

0.0310 MQ 1.3386 ⋅ 10–13

1.8000 GA 4.2352 ⋅ 10–20

1 ⋅ 10–69 IMQ  1.2705 ⋅ 10–19
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Problem 2. Consider the general KdV7 equation

	
3 3 2

5 72 3 2 3 4 + 252  + 63  + 378  + 126  + 63  + 42  + 21  +  = 0t y y y y y yy y y y yu u u u uu u u u u u u u uu u

which is known as Seventh-order Sawada-Kotera-Ito equation [5-7], and the exact solution is

	

2 6
24 256( ,0) 2 3tanh

3 3
k ku y k y t

   
= − −        

Table 2. Numerical results for Problem 2
t  N c RBF Maximum error

0.05

9
 

0.71000 MQ 9.7197 ⋅ 10–18

3 ⋅10–5 GA 2.1176 ⋅ 10–21

1 ⋅ 10–68 IMQ 4.2352 ⋅ 10–21

41
0.0400 MQ 1.2867 ⋅ 10–14

1.8000 GA 4.2352 ⋅ 10–21

1 ⋅ 10–69 IMQ 1.0588 ⋅ 10–20

0.5

9
0.7100 MQ 9.7197 ⋅ 10–18

3⋅ 10–5 GA 2.1176 ⋅ 10–21

1 ⋅ 10–68 IMQ 4.2352 ⋅ 10–21

41
0.0400 MQ 1.2866 ⋅ 10–13

1.8000 GA 4.2352 ⋅ 10–20

1 ⋅ 10–69 IMQ 1.0588 ⋅ 10–19

1.00

9
0.7100 MQ 1.0588 ⋅ 10–19

3⋅ 10–5 GA 1.9439 ⋅ 10–16

1 ⋅ 10–68 IMQ 4.2352 ⋅ 10–20

41
0.0400 MQ 8.4703 ⋅ 10–20

1.8000 GA 2.5731 ⋅ 10–13

1 ⋅ 10–69 IMQ 8.4703 ⋅ 10–20

Conclusion 

In this study, we investigated the generalized seventh-order KdV7 equation using the 
meshless method of line based on radial basis functions as a powerful numerical method. The 
numerical results show that the inverse multiquadric RBF has the best accuracy among the three 
RBF in this method for the governing equations. Based on these findings, we propose that the 
proposed technique be used to non-linear partial differential equation models found in optics, 
fluid dynamics, plasma physics, optical fibers, chemical dynamics, and other fields.
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