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In this paper, we would like to briefly introduce some applications of fractional
derivatives in the fields of heat and fluid-flows. However, our main focus is on
study an inverse source problem for the Rayleigh-Stokes problem. The problem
is severely ill-posed. We verify the ill-posedness of Problem 1, applying the mod-
ified Lavrentiev to construct a regularization from the exact data. After that, we
established the convergent rate between the exact solution and its approximation.
Furthermore, we have the estimate in L9 space.
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Introduction

In the last few decades, the study of fractional models has received a lot of attention,
in which the inverse problems and the problem of determining the error source function play
an important role in engineering applications, mathematical finance, physics, image processing
mechanisms, and continuous media, [1-13]. Duan et a/. [14] and Trasov [15], they had plan to
structure the fractal heat transfer equations in fractal media at low and high excess tempera-
tures. In this reference, their main aim is to propose the linear and non-linear heat transfer equa-
tions from the local fractional calculus point of view and to present the linear and non-linear
oscillator equations arising in fractal heat transfer. Khan et a/. [16], authors studied dealt with
an exact solution for the MHD flow of a generalized Oldroyd-B fluid in a circular pipe. For the
description of such a fluid, the fractional calculus approach has been used throughout the analy-
sis Based on modified Darcy's law for generalized Oldroyd-B fluid. The model Rayleigh-Stokes
problem plays an important role in describing the behavior of some non-Newtonian fluids [17].
In this work, we consider the Rayleigh-Stokes problem:

Ou(x,t)— (14 k07 Au(x,t) = f(X)D(2), (x,t) € QAx(0,T)

u(x,t)=0, xe0Q, u(x,0)=uy(x), xeQ
T (1

J‘u(x, tHdr=g(x), xeQ
0
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where
QcRY (N=1,2,3), and T>0

Here x> 0 is a constant, u, € L*(Q), the notations 0, = 6/0t, and 0, is the Riemann-Li-
ouville fractional derivative of order a € (0, 1) defined by [18]:

ta—l

')

00 =< [, =), &)=

In this paper, we used the non-local condition:
T

J.u(x, t)dt = g(x), instead of u(x,T)= g(x)
0

see in [19]. The couple functions (g, @) is approximated by (g, @,) such that
le - "LZ(Q) +|o- o, ||L°° o <€

Until now, very few papers have discussed the problem of investigating the source
function for the Rayler-Stokes problem with integral terminal conditions. Therefore, it is a hot
topic in the field of inverse problems to deal with ill-posed problems. There are many methods
to regularize, typically as: the Tikhonov regularization method, [20, 22], quasi-reversibility
method, [23, 24], and quasi boundary value method, [25, 26], the modified quasi boundary
value method, [27], the truncation method, [28]. The modified Tikhonov regularization method
[29], the fractional Tikhonov regularization method [30, 31], and the simplified Tikhonov reg-
ularization method [32]. The contribution of this paper could be summarized as: we verify that
Problem 1 is ill-posed. Next, we construct a regularizing solution using the posterior method of
modified iterated Lavrentiev regularization, the ideas of this method for interested readers can
be found in digital document [33]. Afterthat, we show the convergent rate between the sought
solution and its approximation.

Preliminary

Definition 1. Assume {/,, ¢,} be the eigenvalues and corresponding eigenvectors of
the Laplacian operator —A in Q. The family of eigenvalues:

{/Ip}jzl satisfy 0 < 4, £ 4, g...ggp < ... where ﬂ’p S oas p—>oo
Ap,(x)=-2,0,(x), xeQ
$,(x)=0, xeoQ
Definition 2. For o > 0, defining:

HC (Q) := {v e I2(Q), iﬁ; Kv 4, >‘2 < +oo} )

p=l1
equipped with the norm

B N
”V"H"(Q) - [Zp_flg KV’ b >‘ )
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The solution of problem of eq. (1) is obtained:
u(x,1) = Z/c (e.0) (1.4, +Z J'/c (.t -)(s)ds (£.4,) |4, 3)
r=10
where
Fy ()= ®(s)( /.4, )
Here /C,(a, ?) satisfies the equation:
d «
@0+, (1+Ka, )/Cp(a,t)=0, te(0,7), and K,(a,0)=1 (4)
From the condition:
T
Iu(x,t)dt = g(x)
0
we get
T
2(x) = [u(x,)de = J'z 1.4, U/c (a1 - s)d)(s)ds]dtqﬁ (x) )
0 0p=1
A simple calculation gives:
2.9
f(x)= Zf $,(x) = Z (4)) 4,(x) ©
el j [ J?c (a,t - S)(D(s)dsJ
0
whereby K, is defined as in Lemma 2.1 of [34].
Lemma 1. Assume that:
ae Glj vt e[0,T], K,(a.t)= 4,'Clx,a,2)
This implies that:
T T ~
T
jlcp(a,T—s) 2_[ wah) 4o ICka4) (7)
A
0 0 P
and there exist M satisfies:
M2 T2
£|/c (a0 de <25 5 )

Proof. See in [20].
Lemma 2. Let @, @, are positive constants such that

D, <|D(1)| <D, Vi e[0,T]
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Let choose

@ ®
ce [O,T‘)], we obtain 4~ @, <|D|C(Dy,D,), where C(D), D) = D, +TO

Proof. The readers can be seen in document [35]. &
Lemma 3. [35]. The following inclusions hold true:

N 2N N 2N
Q) > H (Q),if —— <5 <0, ¢g> , HO(Q) > 11(Q),if0<o<—, g<
Q) () 2 v () () PRI vy

(€))

The ill-posedness of inverse source problem of eq. (1)

Theorem 1. The inverse source problem of eq. (1) is non-well-posed.
Proof. A linear operator

P} (Q) > [*(Q)
is defined:

T

Pf(x)= ZD[J‘K (a,i - s)@(s)ds}dt}<f¢ 4,(x)= J'q(x o) f(@)do (10)
r=l{ o\ 0

where

T
g(x, @) = Z[ J' ( J'/c (a,i - s)cb(s)ds]dz}ﬁ (), (@)
r=l| 0

Due to g(x, w) = g(w, x), we know P is self-adnoint operator. The Py is the finite rand
operators:

N|T(t
%f(x)-Z[j [j/cp«x,t—s)@(s)dsjdr]<f,¢p>¢p<x> (11)
=

=lLo\o
From egs. (10) and (11), we have:

Cz CIMZTZIZJrl
Pvf-P here ¢} = 1—————
1Pyf - f||L2(Q) ﬂwn;qu 9, >‘ where C; o1

Therefore, we have || Py — P |]*12q — 0 in the sense of operator norm:
L(L2 ), I* (Q)) as N — oo

Also, IC is a compact operator. Next, the SVD of P:
T(t
E, _IUKP (a,f—s)q)(s)ds}dt, with the final data ¢* =
o\o

N/
NN

By eq. (6), the source term corresponding to ¢*:

o |T T(t -l
fk(x)=ZI[IK (a,t— s)cD(s)dstt <¢—k,¢p>=[\/ZJ.(J.ICP(a,t—s)(D(S)dstt} &
p=1|0 \/Z o\ 0

-1
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With ¢ = 0 then f= 0. An error in L*>-norm between ¢* and /:

= lim | —— |=
‘f”f@‘kﬂ‘?w[@] ’ (12)

-2

1
——— lim |[*

k _
HZ _f“Lz(Q) N \/Z k—>+o0
The estimate error between f* and

2

T(t
ka _f” =% I[IKp(a,t—S)Q(s)dstt
0\ 0

2o

Due to:

T 2
G

2
J' (J.Kp(a,t—s)(l)(s)ds]dt <2
0 k

For any a > 1/2, we obtain:

y) JA
) Z—g this leads to [im =+ (13)
2@ kst Cy

Combining egs. (12) and (13), the inverse source problem of eq. (1) is ill-posed.

Conditional stability of source term

Theorem 2. Let:
[ eH%(Q) such that [ f].0 o <E

for £ > 0, then it gives
1 o o o !
7120 < D@ DIE gL where D(e.T)=| €177 (.. ) (14)

Proof. See in [20].

The modified Larentiev regularization method for problem of eq. (1)

In this subsection, the modified Larentiev regularization method is considered and
gives the convergent rate, we denote the noise measurement of (®, g) as (d,, g.). Based on the
[33], form now on, for a shorter, we denote:

T(t
Q,(a,0,)= J.[J.Kp(a,t—s)(bf(s)dstt
o\o0

the modified iterated Lavrentiev is introduced:

[o0(0) =0, (Q,(@,® )+ B) [, (X)= B [ ot (¥) +2.(x) (15)

where a is an iterative step number. From eq. (15), we find that:

_ )] 8 (x)
Jea(®) {ﬁ+Qp(a,<DE)JfE’“l(x)+ﬁ+Qp(a,<De) (16)
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This implies that:

B ‘ ) B k
Jeal®) [/ﬂgp(a,d)gj fe’O(XHﬂ+Qp(a,<Ds)Z(ﬂ+Qp(“"De)J

k=1

. . (17)
_ )] £o()H 1- B 8 (%)
B+Q,(a,®,) B+Q,(a,®,) Q,(a,®,)
By condition (15), we know that:
B | e
=|1=
fea) (ﬁ+@,,<a,<bf)] 0,(@.®,) (1%

Now, here we denote a' satisfies:
1<a' =4’ (e)

is the first iterative step which satisfies the inequality eq. (19) and ¢, is defined later. We consider
the discrepancy principle:

Qp(a’(be)f;’aT _g( (19)

S§€< Q (aaq)e)f — 8
Q) (4 e,aT—l

2 2@
Next, we have the convergent rate for the modified iterated Lavrentiev eq. (18) solu-
tion and the sought solution (6).

Lemma 4. Assume that:

g.,g€*(Q) such that || g, —g ||L2(Q)S e and feH(Q)
then:
2 2
a' <(RE)“+2[({ ~1)e] ov2 (20)
Proof. By eq. (18), we have:
aT—l
P ed 1 2 || f+Q,(e,@,)
@)
The right hand side of eq. (21) can be bounded:
aT—l a‘——l
B p
N, . < € = N, . < (gs - g) 22
[ﬁ+gp<a,q>6> ¢ f+Q,(a,0,) (22)
() @

Let us evaluate /C, ,: step by step.
Estimate of C;:
+

a' -1
- B -
K H(ﬂ+QP(%®e)j (&=l =€
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Estimate of /C,:
o 2240
— ﬂ 2 P g
= Q@@ F <KE
. (ﬂ+9p<a,®e>j 9, (a, )
(@)
aT—l o aT—l P
B B EE
K.=sup| ——L——|  1,20,(a,®)<s 1,2 e, (23)
,}ill{ﬁ+Q (a,® )J (@ ®) plirf[ﬂm '471¢,1C(k, a2, %)J p" GG
Putting: .
v=4"1C,TC(x,a, %)
let us define the function S(4,)
ata .
2 -—-1
J 2,2 (24

2max{f,V}4,

aT -1
aw'L -1 p

i 5 v
S(A)= A2 =1- A2
(%) B ¥ ? BA, +V ?
’7'17
where 4, = x, we have the function
v

aT—l o
Z(x)= [1 ——] 2
2max{f,vix

Taking the derivative of Z(x), then we find
2(aT -y
xo =
(o +2)2max{f,v}

As the point we see, this leads
t_ -5
Z(x) < 2(a" -1)v
2max{f,v}(c+2)
using the fact that
2d -1 =4
we can find that
—1 o
\% 2 -—=2
Z < Ty 2
(xo) {2max{ﬂ,v}(o-+ 2)) (@)
this implies that
_o+2
K, <RE(a") 2
where by R is defined:
v 2
= ( j GG

2max{f,vi(c+2)
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We obtain

o+2

< 6+RE(aT ) 2 (25)

Q)@ ®)f ; -

(@)
Thank to eq. (19), we have:

o+2 o+2

Ce<e+RE(a') 2 this implies that (¢ —1)e<RE(a") 2
It gives:
; o+2
2 <
@ =
The proof of this Lemma is completed.
Theorem 3. For o > 0, assume that /'€ H"(Q) such that ||f

g, 8. eLz(Q) such that || g —g||

z
RE JJ+2 (26)

this leads toa' S(
(¢ —De

o < E. Let:

<
2~ °

and using the estimate a' in the Lemma 4, we get:

S

€,a

o o
< max{e,eot? (@HDE+2) @7

As a consequence, for € tends to 0, we have:

@)

—0
@)

Proof. Defined the function f,:(x) is given by:

e,aT

af
N B <g’¢p>
fp@=2 ! {ﬁ+gp(a,®)J 0, (@) 29

p=1

By the triangle inequality, we can find that:

<

2@

Joat ™t

+H =S
2y P 2@ (29)
first term second term

I

We have an estimate for the second term in eq. (29), we have:
i
a

= [LJ <g’¢p> Sntxntn (30)

Ep (faT _f) 2©) a /J’+Qp(a,d))

@)

where by:

aT aT
| s (»
A (ﬂ+Q,,(a,<D)] (ﬂ+g,,(a,d>€)J (8:4,)

@)
t S G

Zz—(—mp/ja,q)j ez 13—[—%@%%} (26,)

Q) 2(Q)
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Let us evaluate X, i = 1, 2, 3, step by step.
Estimate of X;: By the inequality:

W=y lEely -2l ezl y,», €[0,1]
and the boundary condition /'€ L*(Q2), we obtain that:

t B B
N @w Brg@ay %

¥ BQ,(a,d-D,)
< asup| Ilell,
P B+ 0, (@0 (F+0, @) & P )

<ple || gl

(@)

sup|Q, ()|

p=1

CZ 1171

(@)

-1
<plalellgl o

Thank to eq. (26), we can find that:

2
_ RE |o+2 , _
X2l | o | e 63)

Estimate of X, and Estimate of X; assessed is as simple as follow, by

af
B
p+Q,(a.®)

and in the view of the stopping rule eq. (19), we conclude:
X, <e and X;<e (34)
Combining egs. (29), (33), and (34), we receive:

2z 2
faT -f LZ(Q) = 6["g”L2(Q) (RE)O—” [(4_1)6]7m CZﬂ‘f1 +(¢+ 1)] (35)

Thank to a priori bound condition /'€ H(Q) one has:

;
© o 5 a <g’¢ > H
() < Z/lpz (,B+Qp(a,¢)J Qp(af’q)) SE (36)

p=1
@)

E‘p(f T_f)

€,a

We deduce:

o+l

2
RE }‘”2 il +(¢+1)| D(o.T) 37)

o 1
< o+l go+l ||g||Lz(Q) |:@——1k

I ~]

(@)

On the other hand, estimating the first term of eq. (29), we get:

<§5+85,+8 (38)

f;,aT a jfa"r LZ )
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where
af

S =1l1= B ‘<g€—g,¢p>‘
‘ +Q,(a.®,) ] | Q,(a.®,)

@)

oo| o] lee)_fesd) N

IB+QP (a’cDe) Qp(aﬂq)) Qp (a7q)e)

@)

e Y, f e
Pl B+Q, (@ @) B+Q,(a.®,) ) |Q,(a.®)

Let us evaluate S;,j = 1, 2, , we obtain that:
Estimate of S;, we have:

@)

ot
1_[1_ Q,(a,®,) Q,(a,®,) ]
(40)

_pr el 1= == "<
/J’+Qp(a,<DE)J [ B+Q,(a,®,)
S < —2.4,)<

T T g @) (e~ 2.6, ) <esup 9, (@)

Due to Bernoulli inequality, we have

o
Q@) 7 Q@)
B+Q,(a,@,) B+Q,(a,@,)

This is to show us that:

-

-1 Qp(aaq)e) ‘ a' al . ea’
1= < <—, this I <—
[eeo] ! [1 ,3+Qp(a,¢>€)] SHrg, @, p s S=Ts @D

Estimate of S;, S, can be bounded:

<. 1_[ 5 Jaw“ [Qp(a,QE—CD) Kg,cé,,)\ <i”f”ﬂ(o)
) <

s 42
pr0,@o)) | Q@d) O,@a) G 2
(@)
Estimate of S;, using the same proof eq. (33) and condition /'€ L*(Q), we have:
2
¢ 2
5 < Ve ((RE Yoo (43)
B (¢ —De

Combining egs. (41)-(43), we have:
2

< 2imax 1,”g"L2(Q) + s HLZ(Q) ( RE N jﬁz Czﬂﬂ_l (44)
yij G B (¢-1)o

f oSy

€,a

(@)
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Therefore, by eqgs. (37) and (44), we conclude:
2

el o RE \or2
<2 "ea’ max{l,C;(Q) +€0+2 ||f||L2(Q) B (ﬁj ' A (45)
) _

S o=

€,a

2@
The provision of this Theorem is completed.

Regularization with the estimate in L? paces

In this subsection, let g, is observation data and satisfied that:
g —g ||Lq(Q) (46)

Theorem 4. Let g. be as in eq. (46) and f belongs to H’(QQ) for any ¢ > 0. We get a
regularized solution:

4, (x) & 4, (x)
f (x)= Z < > , and fpe(x) ZT < > (47)
- J'[I/cp (a,t —s)(l)(s)dsjdt - IU}C (a,t— s)d)(s)dsj
o\ 0
By choosing: 1
F = (1jq_6+l 0<s<l
€
in which:
—%<qﬁmm{ (4 4§)N} 0£0'<% (48)
then we get
a(l=s)
I ff736 —fII ,»  — 0is of order max {es,e,eq_‘”l } (49)
[N=40 ()

Proof. Since the Sobolev embedding
Q) — H? (Q)

then a exists constant C(g,0) such that:

|| g8 ”HO_(Q)S C(q,O') || 88 ”Lq(Q)S C(q,U)E (50)
For o > 0, we have:
F_ R _ /R [
117 = Pl g S =S Doy #1 = F o 51)

We consider the term:

R _ N
Il /e f||Ha(Q) for any 0<o-<?
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Indeed, we get:

A
flee -l = - < >¢p(X)
pel I { K, (cr, = 5)®, (s)dsJ
0\ 0 (52)
_ T -1
+Z j [j/c (.t —5)D, (s)dstt I [ IICp(a,t—s)(D(s)ds]dt (2.6, ),()
0
Next, the estimate error of
f- [
H HC (Q)
we receive:
: fesll
s, ¢ 3 aonr R S (e, <
IHIO'(Q) p:'PEJrl T(t p:peﬂ
J'U/Cp(a,t—s)m(s)dstt 53)
0\ 0
<@ Y 2 <@
p:736+1
From eq. (51), we can know:
2
<2 3 A2 il Kgﬁ “8% >‘ +
H‘T(Q) = T(t 2
j {J’/cp (a,t—S)CDE(s)ds]dt
0\ 0
T
, | { [, (@1=s)@,(5)- @(s)ds]dt 2o )
Z‘ : PR - ‘<g’¢p>‘ 7S
= I( J‘/c (at,t —5)D, (s)dstt J‘U/c (a,t- s)(D(s)dstt (54)
0 0
go—g,¢p>‘ 32"(1) (D”L 0,7) z ;L;U ‘Kg’¢P>‘2

<

2

7)
Z 2g-20+2 p K 0
= | TC(x 0, 4) [P R

B ].[j.le (a,t— s)(D(s)ds] dt

0\0

P
A kol PR3 N »1 ) ‘1’||
<285 724 2o’+2 (Q) L°(0,T) 120
<24 |TC(K « /11)| Z Kf ¢ >‘
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Using the condition in eq. (50), we can know:

2
2C%(q,0)€’ 2g-20+2
< - 5 q—<20+ 2
115 =17 oy e 7 PP 432 | 1 g (55)
Due to Sobolev embedding:
2N

HC (Q) —» LN-47 (Q))
combining eqs 5 1)-(53) we conclude that:

+
H (Q)

<C(N,

N 4[7 HO— (Q)

V2, 4¢

N0 S = F Ny g < m
1

(P)-" 4 4J2C(N, o)[ ]Ilf o o+

N
o, e+edl ||f||Ho(Q) (56)

- s \/ECCI,O'
W)Y W) <€ gy M)
s U 7Y

Conclusion

This study examines the Rayleigh-Stokes equation’s inverse source issue. The regu-
larized solution was developed using the modified Lavrentive regularization approach. After
that, we considered the convergent rate between the exact solution and its approximation.
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