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The numerical solution of the 2-D time-fractional Sobolev equations is approxi-
mated using an efficient local differential quadrature method, in this paper. The 
time-fractional part of the model equations uses the Liouville-Caputo fractional 
derivative technique, however, the recommended meshless method is employed for 
the space derivatives. Test problems are used to undertake numerical experiments. 
In order to evaluate the effectiveness and accuracy of the suggested meshless meth-
od, we compared our outcomes with the exact solution and numerical methods 
presented in more recent literature. This comparison showed that the proposed 
method is more efficient computationally and yields excellent performance. 
Key words: meshless differential quadrature method, Caputo derivative,  

radial basis function, Sobolev equations, irregular domain 

Introduction

Recently, fractional partial differential equations (FPDE) got significant consider-
ation. It emerged to become a cutting-edge tool for the more accurate description of many phys-
ical and technical processes. The FPDE contains the unknown multivariable function and its 
fractional partial derivatives. The FPDE are used to model problems with functions of several 
variables, to find solution of many physical models. Essential information about the fractional 
calculus can be found in [1]. We consider a class of 2-D Sobolev equations which are defined:
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1( , ) = ( , ),W t g t ∈∂Ωr r r (3)

where ∇2 and ∇ represent the Laplacian gradient operators, respectively, and β, γ, δ are known 
constants. Moreover, ∂α/∂tα represent the Caputo derivative for 0 < α ≤ 1, for W (r ̄ , t)which is 
defined [2]:
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where Γ(.) is the gamma function.
Meshless techniques have recently been shown to be effective tools for solving var-

ious PDE models in almost all disciplines of mathematics and physics. Meshless techniques 
based on the radial basis function (RBF) are the most common of these techniques. These 
techniques are particularly popular among researchers due to their meshless properties. These 
methods have the norm to circumvent the complication of dimensionality by utilizing conven-
tional numerical techniques. Meshless techniques can be used to solve a variety of physical 
problems [3-6].

Meshless techniques have some limitations, the most significant of which is choosing 
the optimal shape-parameter value and dense ill-conditioned matrices. Researchers have devel-
oped the local meshless technique, which is effective and stable in solving a range of integer 
and fractional PDE models, to overcome these drawbacks [7, 8]. In comparison the global 
meshless version, these techniques are less sensitive to shape parameter selection and generate 
well-conditioned sparse matrices. Furthermore, the local meshless technique is less computa-
tionally expensive than its global version, making it more effective. These approaches have 
recently been tested in a variety of applications [9, 10].

The local differential quadrature method (LDQM) is included in this study to nu-
merically simulate the time-fractional Model 1. In addition, numerical examinations take into 
account both regular and irregular domains.

Local differential quadrature scheme

In the proposed methodology, the derivatives of W(r ̄ h, t) are approximated at the cen-
ters r ̄ h by the neighborhood o r ̄ h, 

	 1 2 3 1 2{ , , ,..., } { , , , }, , where 1,2...,n n
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In case of 1-D and 2-D case r ̄  = x and r ̄  = (x, y), respectively.
Procedure for 1-D case:
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Substituting RBF ψ(||x – xp||) in eq. (4):
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where for inverse multiquadric (IMQ) RBF, we have 
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Matrix form of eq. (5):
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where

	 1 2( ) = ( ), = , , , ,p k k p hx x x p h h hnψ ψ −  

for each k = h1, h2,...hnh. Equation (6) can be written:
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nn nhh h
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From eq. (7), we obtain:
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eqs. (4) and (8) imply
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The derivatives of W(x, y, t) w.r.t. x and y can be found:
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Similar procedure can be adopted for 3-D case.
Figure 1 depicts the construction of local stencils around each center r̄h in 2-D do-

mains, whereas fig. 2 depicts the sparsity pattern of the LDQM for five and seven stencils. 
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Figure 1. Schematics view in 2-D for local stencil five

 
Figure 2. Sparsity pattern of the LDQM in (a) 2-D and  
(b) 3-D for local stencil five and seven, respectively

Time discretization

The Caputo derivative [2] is utilized for time-fractional derivative:
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We can obtain the derivative term as follows, where tq = qτ, q = 0, 1, 2..., Q, and time 
step size Δτ in [0, t]:
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Numerical discussion

The proposed LDQM is evaluated for its ability to accurately and efficiently approx-
imate the solution of model equation (1). Two test problems are considered with uniform and 
scatted nodes with non-rectangular and rectangular domains. Throughout the paper, we have 
used IMQ RBF with shape parameter value c = 15 ⋅ 105. The local stencil five in the spatial 
domain [0, 4] are utilized unless mentioned explicitly. For accuracy measurement, we used the 
error norms:
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where W is the approximate solution and W^  – the exact solution.
Test Problem 1. The exact solution of Model 1 with β = 1, γ = δ = 0:

( , ) = e sin( )sin( ), = ( , )tW t x y x y− π π ∈Ωr r (11)
where

(1 )
1,2( , ) = sin( )sin( )F t t t x yα

α
−
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where M1,2– α is Mittag-Leffler function of two parameters as defined in [11].

The proposed LDQM is utilized to approximate the numerical results for Test Problem 1 
and listed in tab. 1-3. In tab. 1, different values of α, nodal points N, time step size τ = 0.0005 and 
final time t = 1 are used to computed the results. In viewed the tabulated results, very good agree-
ment with the exact solution can be seen. Furthermore, the LDQM delivers better results than the 
method mentioned in [11]. Also, we note that the LDQM produced ideal well-conditioned coef-
ficient matrices. In tab. 2, results are computed in form of RMS by taking N = 102 and different 
values of fractional order α, τ, and t. We observed that the accuracy increases with decrease time 
step size τ to some extend. In tab. 3, comparison is made between the present LDQM with the 
methods given in [12-14] for α = 1, t = 1, τ = 0.01 and spatial domain [0, 1] in term of max(ε). 
One can found that the present method produced better results than the methods given in [12-14]. 

Table 1. Test Problem 1, results of the LDQM
 α = 0.2  α = 0.5  α = 0.8

 N Method max(ε) RMS max(ε) RMS max(ε) RMS Condition 
No.

102 LDQM 7.432 ⋅ 10–9 3.448 ⋅ 10–9 7.432 ⋅ 10–9 3.448 ⋅ 10–9 7.432 ⋅ 10–9  3.448 ⋅ 10–9 1.0000
[11] 7.664 ⋅ 10–7 3.484 ⋅ 10–7 7.664 ⋅ 10–7 3.484 ⋅ 10–7 7.664 ⋅ 10–7 3.484 ⋅ 10–7

202 LDQM 7.611 ⋅ 10–9  3.640 ⋅ 10–9 7.611 ⋅ 10–9 3.640 ⋅ 10–9 7.611 ⋅ 10–9 3.640 ⋅ 10–9 1.0000
[11] 7.664 ⋅ 10–7 3.650 ⋅ 10–7 7.664 ⋅ 10–7 3.650 ⋅ 10–7 7.664 ⋅ 10–7 3.650 ⋅ 10–7

252 LDQM 7.633 ⋅ 10–9 3.684 ⋅ 10–9 7.633 ⋅ 10–9 3.684 ⋅ 10–9 7.633 ⋅ 10–9 3.684 ⋅ 10–9 1.0000
[11] 7.634 ⋅ 10–7 3.685 ⋅ 10–9 7.634 ⋅ 10–7 3.685 ⋅ 10–7 7.634 ⋅ 10–7 3.685 ⋅ 10–7

Table 2. Test Problem 1, results of the LDQM using N = 102 
 RMS

 t = 5 t = 10
 τ α = 0.1 α = 0.5 α = 0.9 α = 0.1 α = 0.5 α = 0.9

0.5 3.11 ⋅ 10–4 3.1110 ⋅ 10–4 3.1110 ⋅ 10–4 3.9772 ⋅ 10–6 3.9772 ⋅ 10–6 3.9773 ⋅ 10–6

0.05 3.1579 ⋅ 10–6 3.1580 ⋅ 10–6 3.1580 ⋅ 10–6 4.2523 ⋅ 10–8 4.2529 ⋅ 10–8 4.2531 ⋅ 10–8

0.005 3.1582 ⋅ 10–8 3.1582 ⋅ 10–8 3.1583 ⋅ 10–8 4.1499 ⋅ 10–10 4.2034 ⋅ 10–10 4.2281 ⋅ 10–10

0.0005 3.1339 ⋅ 10–10 3.1421 ⋅ 10–10 3.1466 ⋅ 10–10 6.3729 ⋅ 10–12 1.0264 ⋅ 10–12 1.4410 ⋅ 10–12
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Table 3. Test Problem 1, comparison of the simulation results of the LDQM and [12-14]
 Max(ε)
N LDQM [12] [13] [14] 
42  3.065 ⋅ 10–6 4.2735 ⋅ 10–4 7.4767 ⋅ 10–3 3.067 ⋅ 10–6

82 3.065 ⋅ 10–6 1.4656 ⋅ 10–4 2.1515 ⋅ 10–3 3.067 ⋅ 10–6

162 3.065 ⋅ 10–6 1.2647 ⋅ 10–5 4.9543 ⋅ 10–4 3.067 ⋅ 10–6

To test the proposed method on non-rectangular domains with uniform and non-uni-
form data points are shown in figs. 3-5 for Test Problem 1 with α = 0.5, τ = 0.0005, and t = 1. 
These figures show acceptable accuracy regardless of the computational domains. 

 
Figure 3. Test Problem 1; (a) domain and (b) absolute error with N = 229 

 
Figure 4. Test Problem 1; (a) domain and (b) absolute error with N = 135 

 
Figure 5. Test Problem 1; (a) domain and (b) absolute error with N = 229
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The numerical stability of the proposed LDQM as revealed in [9] is shown in figs. 6-8. 
In spite of the fact that the stability of the meshless method using shape parameter-dependent 
RBF is impacted heavily by the numbers of nodes N and shape parameter c. The values of c 
and N have a huge impact on the accuracy and conditional number of the global meshless ap-
proach, according to the literature, and the system becomes ill-conditioned [11, 14]. The current 
LDQM, on the other hand, is tested for a large range of c (up to 2 ⋅ 106) and N (up to 602) and 
shows steady behaviour as shown in figs. 6-8. Additionally, the condition number of the coeffi-
cient matrices are ideal and is around to one as shown in figs. 7(b) and 8(b). 

 
Figure 6. Test Problem 1, shape parameter c vs. RMS and max(ε) using α = 0.5, N = 102, t = 1

Figure 7. Test Problem 1, (a) shape parameter c vs. maximum eigen value and  
(b) shape parameter c vs. condition number using α = 0.5, N = 102, τ = 0.005, t = 1

 
Figure 8. Test Problem 1, (a) number of nodes N vs. maximum eigen value and  
(b) N vs. condition number using α = 0.5, τ = 0.005, t = 1
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Test Problem 2. The exact solution for the Model 1 with β = 1, γ = 1, δ = π2 is given: 

( , ) = e sin( )sin( ),   = ( , )tW t x y x yπ π ∈Ωr r (13)

Figure 9 shows the good agreement between the exact and numerical solution of the 
LDQM for Test Problem 2 using α = 0.5, N = 202, τ = 0.005 and time t = 0.2. 

 
Figure 9. Test Problem 2, (a) exact solution and (b) numerical solution

Conclusion

In order to explore 2-D time-fractional Sobolev equations, we have employed a re-
alistic numerical technique termed the local differential quadrature algorithm based on radial 
basis functions. The problem is discretized in the time direction using the Crank-Nicolson 
time-integration method first, and then the local differential quadrature method is applied. In 
comparison methods described in recent literature, the current method constructed a sparse 
linear system of equations with an ideal lower condition number and accurately approximat-
ed the solution.
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