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In this article, the non-linear (2+1)-dimensional conformable time-fractional 
Schrödinger equation of order α where 0 < α ≤ 1, has been studied within intro-
ducing an appropriate fractional traveling wave transformation. The reliable and 
powerful method, namely the Improved Bernoulli sub equation function method, is 
applied to investigate some solitary wave, traveling wave and periodic solutions 
to the aforementioned model which is crucial significance because the model is in 
the fields of quantum mechanics and energy spectrum. The obtained solutions are 
new and significant in revealing the pertinent features of the physical phenomenon. 
Moreover, gotten solutions have been plotted in several kinds, such as in 3-D or 
2-D. The impacts of the time evolution are offered in 2-D graphs for visual obser-
vation of the properties of the solutions.
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Introduction

In applied mathematics, it’s conspicuous that fractional differential equations are the 
generalizations of classical differential equations with integer orders. In recent years, fractional 
non-linear differential equations have played a consequential role in different research areas, 
such as wave models, which have gained much attention in several other areas like signal 
processing, medical processes, mechanics, engineering, fluid, control theory, biology systems, 
and many others [1-3]. The search for different type solutions of the time-fractional non-lin-
ear Schrödinger’s model has been represented by numerous scientists and researchers [4-7]. 
Comparison by the different fractional non-linear wave models, the time-fractional Schrödinger 
differential equation that proposed by Laskin [3], is one of crucial significance because of the 
model is in the scope of quantum mechanics and its provides the most general framework for 
understanding the relationship between the statistical properties of the quantum mechanical 
path and the structure of the fundamental equations of quantum mechanics. Various powerful 
and reliable methods have been proposed to obtain the exact analytic and solitary wave solu-
tions of the mathematical models and fractional differential equations such as the Adomian 
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decomposition method [8], experimenting of the tanh-coth method in solving some cases of 
space-time fractional derivative [9], the fractional Adams-Bashforth-Moulton method [10], the 
Fourier transform method [11], the fractional mapping expansion method [12], the reproducing 
kernel algorithm [13], the Darboux transform method [14, 15], the reproducing kernel Hilbert 
space method [16], these methods that contains G′/G-expansion method [17-19], the expo-
nential function method [20-23], the Laplace transformation method in the sense of Caputo 
fractional derivative [24], the tanh-function and the extended tanh-function methods [25, 26], 
the improved sub-equation method [27], new generalized exponential rational function method 
[28], the Bernoulli sub-equation function method [29, 30], the Improved Bernoulli sub-equa-
tion function method [31], and so on.

The complex non-linear (2+1)-D conformable time-fractional Schrödinger equation:
2 = 0, where 0 < 1, = 1t xx yyiD u Au Bu Cu u iα α+ − + ≤ − (1)

for the parameters suppose A = β1, B = β2, and C = β3 then eq. (1) become:
2

1 2 3 = 0t xx yyiD u u u u uα β β β+ − + (2)

where D αt (⋅) is the conformable fractional derivative of order α.
The main goal of this paper is to study the eq. (1) via using an analytic method, name-

ly the Improved Bernoulli sub equation function method.

Preliminaries of the conformablef fractional derivative

In spite of the fact that the preceding definitions of fractional derivatives are linear 
and possess some classical properties, but some inconsistencies are proposed to this definitions 
of fractional derivatives since they do not share all the properties similar to the first classical 
derivative. Recently, a new fractional derivative has been developed whose properties coincide 
with the classical derivative [32], this local fractional derivative is well-behaved and meets all 
the properties of the first classical derivative this derivative is the conformable fractional deriv-
ative. This new operation has been used to study Newtonian mechanics [33], electrical circuits 
described [34], quantum mechanics [35], and so on. The implementation of the conformable 
fractional derivatives is easier and quite productive. The conformable fractional derivatives of 
order α is defined in [32, 36-39] 

Definition 1. Given function F:[0, ∞) → R. Then the conformable fractional deriva-
tive of F of order α is defined by 

( )1

0

( )
( )( ) = lim

t t t
t

α

α
ε

ε

ε

−

→

+ −F F
D F (3)

for all t > 0, α ∈ (0, 1). It can be said the function F is α-conformable differentiable at a point t 
> 0, when the limit in the eq. (3) exists. 

One can easily show that Dα satisfies all the properties in the following theorem.
Theorem 2. Let α ∈ (0, 1] and F, H be α-differentiable at a point t > 0. Then: 
1. ( ) = ( ) ( ), , .a b a b a bα α α+ + ∈D F H D F D H R
2. ( ) = for all .q qt qt qα

α
− ∈D R

3. ( ) = 0α κD  for all constant function F(t) = κ.
4. ( ) = ( ) ( ).α α α+D FH FD H HD F  

5. 2
( ) ( )

= .α α
α

− 
 
 

FD H HD FF
D

H H
 Where H is different from zero. 
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6. If, in addition, F is differentiable, then
 1( )( ) = dt t t

dt
α

α
− F

D F

Proof. The prove was omitted, for the detail one can see [32] 
 Theorem 3. Let F and H be two differentiable function, such that H is differentiable at 

any t, and F is differentiable at any H(t), and then the conformable derivative obeys the Chain 
rule, meaning:

1 1
= ( )(( )( )) = ( ) '( ) ( ( )) |t xx x x x tα α

α α
− −

 HD F H H H D F (4)
Proof. The prove was omitted, for the detail one can see [36]. 
Aforementioned theorems have a main role in transforming conformable (2+1)-D 

time-fractional Schrödinger equation given in eq. (1) into a non-linear ODE.

Improved Bernoulli sub-equation function method (IBSEFM)

Improved Bernoulli sub-equation function method (IBSEFM) is outlined in four suc-
ceeding steps.

Step 1. Consider the following non-linear fractional differential equation (NLPDE) 
with u = u(x, y, t) and Dα

t is a conformable fractional derivative:

( ), , , , , , , = 0t x t y yy xxD u u u u u u uαφ  (5)

by setting the fractional wave transformation:
3

1 2( , , ) = ( ), =u x y t U x y tα
δ

ξ ξ δ δ
α

+ + (6)

where δ1, δ2, δ3 are arbitrary non-zero constants and δ3/α represent a wave number. By installing 
eq. (6) into eq. (5) the following complex non-linear ordinary differential equation (NLODE) 
is obtained:

( )2, , , , = 0U iU U UΦ ′ ′′
 (7)

where

  

2

2
d d= ( ), = , = ,
d d
U UU U U Uξ
ξ ξ

′ ′′


where ( ′ ) is the classical derivative of U with respect to ξ.
Step 2. Assuming that trail solutions of eq. (7) are in the form:

2
=0 0 1 2

2
0 1 2

=0

( ) = =

n
i

i n
i n
m m

mj
j

j

a F
a a F a F a F

U
b b F b F b F

b F
ξ

+ + + +

+ + + +

∑

∑




(8)

where

= , 0, 0, {0,1,2}MF bF dF b d M′ + ≠ ≠ ∈ −R (9)

where F(ξ) is the well known Bernoulli differential equation, also b, d, and ai, bi with an, bm ≠ 0, 
should be determining later. Subbing eq. (8), with eq. (9), into eq. (7), one immediately gets:



Mahmud, A. A., et al.: Structure of the Analytic Solutions for the Complex ... 
S214 THERMAL SCIENCE: Year 2023, Vol. 27, Special Issue 1, pp. S211-S225

1 0( ( )) = ( ) ( ) = 0s
sF F Fϕ ξ µ ξ µ ξ µ+ + + (10)

Applying balancing principles, one start getting a formula for n, m and M by compar-
ing the highest order derivatives with the higher degree in the non-linear term.

Step 3. Let the coefficients of φ(F(ξ)) equal to zero, then one gets the algebraic system 
of equations:

= 0, = 0, ,i i sµ  (11)
By solving system (11), one gets the values of a0..., an, b0,..., bm, and hence solutions 

of eq. (7) are found.
Step 4. Manually solving eq. (9), gives these two forms of solutions:

1
1

( 1)( ) = ,
e

M
b M

dF b d
b ξ

δξ
−

−
 − + ≠  

(12)

and

 

( ) ( )

( )

1
1(1 )1 1 tanh

2( ) = , = ,
1

1 tanh
2

Mb M

F b d
b M

ξδ δ
ξ δ

ξ

− −  − + +     ∈ 
−  −     

R

combining founded parameters in the previous step commonly with eq. (12), solutions of  
eq. (1) are obtaining.

Applications of the described method and results

Applying fractional wave transformation:

 
3

1 2= ( , , ) = ( ) where =u u x y t U x y tα
δ

ξ ξ δ δ
α

+ +

inserting uxx, uyy, and Dα
t u into eq. (2) we obtain:

22 2
3 1 1 2 2 3 = 0i U U U U Uξ ξξ ξξδ β δ β δ β+ − + (13)

suppose solution of the eq. (13) take the form

  ( ) = e ( )ikU Vξξ ξ

where V(ξ) is the real function and k – the constant, then one obtain:

( ) ( )( )2 2 2 3
3 1 1 2 2 32 = 0i ikV V V ikV k V Vξ ξξ ξδ β δ β δ β+ + − + − + (14)

After resetting eq. (14) it can be transformed through dissevering the real and complex 
parts into the two equations: 

( )2 2
3 1 1 2 22 = 0i V i kVξ ξδ β δ β δ+ − (15)

and 

( ) ( )2 2 2 2 2 3
1 1 2 2 2 2 1 1 3 3 = 0V k k V Vξξβ δ β δ β δ β δ δ β − + − − +  (16)
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from eq. (15) one gets:

( )
3

2 2
2 2 1 1

=
2

k
δ

β δ β δ− (17)

inserting eq. (17) into eq. (16) after simplifications, we’ll obtain a non-linear ODE:

( ) ( )22 2 2 2 2 3
1 1 2 2 3 3 1 1 2 24 4 = 0V V Vξξβ δ β δ δ β β δ β δ− + + − (18)

take the balance principle between the highest order and a higher degree of the non-linear term 
in eq. (18) get a vital relation between n, m, and M:

= 1n M m+ − (19)
For the proposal of the values of positive integers in eq. (19) we have the following 

cases.
Case 1. If m = 1 and M = 3 then n = 3 so eqs. (8) and (9) becomes:

3

2 3
=0 0 1 2 3
1

0 1

=0

( ) = =

i
i

i

j
j

j

a F
a a F a F a F

V
b b F

b F
ξ

+ + +
+

∑

∑
(20)

and
3= , 0, 0F bF dF b d′ + ≠ ≠ (21)

( ) ( )
( )

2 32 1 0 1 2 33 1 2 3
2

0 1 0 1

2 3 ( )= =
( )

b a a F a F a Fa a F a F FV bF dF
b b F Fb b F

 + + ++ + Ψ ′ + −
 + Ω+ 

(22)

notice that there should be at least a3 ≠ 0, b1 ≠ 0, one can find:

2
( ) ( ) ( ) ( )=

[ ( )]
F F F FV

F
′ ′Ω Ψ −Ψ Ω′′
Ω

(23)

By installing eqs. (20)-(23) into eq. (18) we obtain an algebraic system of equations 
to eq. (18), via applying some computer software programs, one able to gets the following sub 
cases.

Case 1.1 For b ≠ d, the following coefficients are obtained:

( ) ( )
2 2 2 2
1 2 2 1 1 2 23 0 3 3 0

3 0 1 2 3 2 2 1 12
1 13

8
= , = , = , = , = 2 2

2 2

b d a bb a b a b
a a a b

b d d ba

β δ β δ
β δ β δ β δ

−
− − (24)

with the mentioned values of parameters in eq. (24) the solution are gained:

( )
( )

( ) ( )2 22
1 1 2 2 1 23

1,1 2
1

4 2e
( , , ) = exp

2 e

b

b

ib b t x ya b d b
u x y t

b d b d

αξ

ξ

β δ β δ α δ δδ

αδ

  − + ++   − 
−   

(25)

where 

 

( )2 2
1 1 2 2

1 2

2 2
=

b
x y tα

β δ β δ
ξ δ δ

α

−
+ +
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Case 1.2 If b ≠ d, then following coefficients are obtained:

( )
( )

( ) ( )

2 2 2
0 1 2 2 1 13 3

0
2 2 2 1 31 2 2 1 1

2 2 2
1 2 2 1 1 2 23 0

1 2 3 1 1 2 2
13

2
= , =

2 2

2
= , = ; = 2 2

bb ba
d a

bb

b b a b
a a b

b

β δ β δβ

ββ δ β δ

β δ β δ
δ β δ β δ

β

−

−

−
−

(26)

with the referenced values in eq. (26):

( )

( )2 2 2
1 2 2 1 12 3

1,2
1 3 3 32

2 2 2
1 2 2 1 1

21( , , ) = e
e

2 2

i b

b

b ba
u x y t

b a

b b

ξ

ξ

β δ β δ

β β

β δ β δ

−

−

 
 
 −
 +
 
δ − 
 −
 

(27)

where

 

( )2 2
1 1 2 2

1 2

2 2b
x y

β δ β δ
ξ δ δ

α

−
= + +

profile of the obtained solution in eq. (27) where

 
1 2 1 2 3 1 3

4 2 3 2 1 2 2 3 5 3 1= , = , = , = , = , = , = , = , = , = and
3 3 4 3 3 5 5 7 2 2 2

b b a yδ δ δ β β β α− =

are graphed:

Figure 1. The 3-D figures for eq. (27) where the values –100 ≤ x ≤ 100, –100 ≤ t ≤ 100
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For the following 2-D graphs values of t are given in the legend:

 
Figure 2. The 2-D figures for eq. (27) where the values –100 ≤ x ≤ 100

Case 1.3 If b ≠ d, then we’ll get the coefficients:
2 2 2 2 2
0 3 0 1 1 0 3 0 3 3 02

2 1 3 12 2 2 2
2 0 20 2 0

2 2
= , = , = , = , =

22
a b b a a a a ba ba d b

a a ab b bb
β β δ β

β δ
δ

+
− (28)

the considered parameters in eq. (28) are generate the solution:

( )
2 3 22 21 2 0 3

0 2 0 1 22
0

1,3
2 32 21 2

0 0 2

2e 2 exp 2

( , , ) =

2 e

t
b x b y

t
b x b y

ia ta a a i b x y
b

u x y t

b a a

αδ αδ δ
α

αδ
δ δ

α

β
δ δ δ

α

δ

+ +

+ +

 
  + − +      

 
 
 − 
 
 

(29)

Case 2. If m = 1 and M = 4 then n = 4 so eqs. (8) and (9) are:
4

2 3 4
=0 0 1 2 3 4
1

0 1

=0

( ) = =

i
i

i

j
j

j

a F
a a F a F a F a F

V
b b F

b F
ξ

+ + + +
+

∑

∑
(30)

and
4= , 0, 0F bF dF b d′ + ≠ ≠ (31)

( ) ( )
( )

2 3 42 3 1 0 1 2 3 44 1 2 3 4
2

0 1 0 1

2 3 4
=

( )=
( )

b a a F a F a F a Fa a F a F a F
V bF dF

b b F b b F

F
F

 + + + ++ + + ′ + − =
 + + 

Ψ
Ω

(32)

there should be a4 ≠ 0, b1 ≠ 0, one can find:

2
( ) ( ) ( ) ( )=

[ ( )]
F F F FV

F
′ ′Ω Ψ −Ψ Ω′′
Ω

(33)
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 By restoring eqs. (30)-(33) into eq. (18) we obtain an algebraic system of equations 
including coefficients from eq. (18), through the use of some computer software programs, one 
will get the following sub-cases.

Case 2.1 For b ≠ d, then we’ll get the coefficients:
2 2 2

1 1 3 1 3 4 0 4 04
2 3 0 1 2 32 2

1 12 4

6 2 3 2
= , = , = , = , = 0, =

2 26
b b d a bb a ba ba a a a

b d d bb a b
β δ δ δ

β β
δ
+

(34)

the declared values of parameters in eq. (34) are gives the solution:

( )3 333 1 2 1 2
2

4

2,1
33 1 2

1

e e

( , , ) =

2 e

tib t x y b x y

t
b x y

a b d b

u x y t

b d b d

αα δδ αδ αδ δ δ
α

α

αδ
δ δ

α

δ

δ

 
+ +  + +  

 

 
 + +  
 

 
 
 +
 
 
 

 
 
 −
 
 
 

(35)

Case 2.2. If b ≠ d, then we’ll obtain the coefficients:

( )
2 2 2 2

0 1 1 2 2 1 1 1 2 2 2 2
0 1 3 1 1 2 2

3 3

2 2 2 2
0 1 1 2 2 1 1 1 2 2

3 4 2
3 3

3 3
= , = , = 3 2

2 2

3 2 3 2
= , = , = 0

ibb ibb
a a b

i b d i b d
a a a

β δ β δ β δ β δ
δ β δ β δ

β β

β δ β δ β δ β δ

β β

− −
− − − −

− −
− −

(36)

with the specified values in eq. (36) one gets the solution:

33 1 2
2 2 2 2

1 1 2 2 1 1 2 22
2,2

3 33 1 2

3

3 3 2
( , , ) = e

2

e

t
ib x y

t
b x y

ib i d
u x y t

d
b

αδ
δ δ

α

αδ
δ δ

α

β δ β δ β δ β δ

β

β

 
 + +  
 

 
 − + +  
 

 
 
 
 
 − − − − 

  
  
 δ − 
  
    

(37)

Case 2.3. If b ≠ d, then we’ll gets the coefficients:
2

4 32 2 3
1 22 4

1 1 3

1 3 0 34 0
1 3 03/4 3/4

13 3

6 2
= , = , = 0

6 2 3

3 3
= , = , =

2 2

ia bb
d a

b b

i bb i bba b
a a a

b

ββ δ δ
β

δ δ

δ δ

β β

+
−

(38)
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with the known parameters mentioned in eq. (38) we will obtain the solution:

( )

2,3

33 1 23 1 2 4
4 3 3 1 3

33 1 2
3/4

3 1 3 4 3

( , , ) =

3
exp 3 e 3 2 3

2

6 2 3

t
b x y

t
b x y

u x y t

ib t x y
a b i bb

bb i a e

αδ
δ δα

α

αδ
δ δ

α

δ αδ αδ
β δ δδ

α

β δ δ β

 
 + +  
 

 
 + +  
 

 
   + +
   − +
   
   

 =
 
 
 +
 
 
 

(39)

profiles of the obtained solution in eq. (39) where

 
1 1 2 3 3 4

1 3 3 3 2 5 1 2 1 1= , = , = , = , = , = , = , = , = and
2 5 10 4 3 4 2 3 4 4

b b a yδ δ δ δ β α− − =

are outlined:

 
Figure 3. The 3-D figures for eq. (39) where the values –10 ≤ x ≤ 10, –10 ≤ t ≤ 10

Figure 4. Contour surfaces for eq. (39) where the values –10 ≤ x ≤ 10, –10 ≤ t ≤ 10
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In the following 2-D graphs values of t are given in the legend:

 
Figure 5. The 2-D figures for eq. (39) where the values –20 ≤ x ≤ 20

Case 3. If m = 2 and M = 3 then n = 4 so eq. (8) and eq. (9) are:
4

2 3 4
=0 0 1 2 3 4
2 2

0 1 2

=0

( ) = =

i
i

i

j
j

j

a F
a a F a F a F a F

V
b b F b F

b F
ξ

+ + + +

+ +

∑

∑
(40)

and
3= , 0, 0F bF dF b d′ + ≠ ≠ (41)

( )( )

( )
( )4 3 2 3 2

4 3 2 1 0 2 1 4 3 2 1
2 22 2 1 02 1 0

2 4 3 2

( )=
( )

a F a F a F a F a b F b F a F a F a F a F
V

b F b F bb F b F b

F
F

′ ′+ + + + + + + +
′ = − + =

+ ++ +

Ψ
Ω

(42)

there should be a4 ≠ 0, b2 ≠ 0, one can find:

2
( ) ( ) ( ) ( )=

[ ( )]
F F F FV

F
′ ′Ω Ψ −Ψ Ω′′
Ω

(43)

By restoring eqs. (40)-(43) into eq. (18) we obtain an algebraic system of equations 
to eq. (18), applying some computer software programs, one will gets the following sub cases.

Case 3.1 If b ≠ d, then we’ll get the coefficients:

( )

( )

2 2 2 2
2 2 2 1 1 4 1 4

3 1 22
24

2 24 1
3 0 3 2 2 1 1 0

2

8
= , = , =

2 2

= , = 0, = 2 2 , = 0

b d a bb a ba a
b d da

a ba b b a
b

β δ β δ
β

δ β δ β δ

−

−

(44)
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the declared values of parameters in eq. (44) are gives the solution:

( ) ( )

3,1

2 2
1 2 1 1 2 2

4
3

1 2

2

( , , ) =

2 4 2exp
exp 2

2

u x y t

ib x y b t da b
t db x y

b

b d

α

α

α δ δ β δ β δ

α δδ δ δ
α

 
   + − −     +      − + + −          =

(45)

profile of the obtained solution in eq. (45) where

  
1 2 1 2 4 2

4 1 3 2 1 3 2 2 5 1 9= , = , = , = , = , = , = , = , = , = , =
3 2 4 3 2 2 3 5 2 2 10

y b d a bδ δ δ β β α− −

are figured in the following.

Figure 6. The 3-D figures for eq. (45) where the values –10 ≤ x ≤ 10, –10 ≤ t ≤ 10

Figure 7. Contour surfaces for eq. (45) where the values –10 ≤ x ≤ 10, –10 ≤ t ≤ 10
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For the following 2-D graphs values of t mentioned in the legend.

 
Figure 8. The 2-D figures for eq. (45) where the values –20 ≤ x ≤ 20

Case 3.2 If b ≠ d, then we’ll get the coefficients:
( )2

3 0 21 31 1 3
2 1 22 4 4

2 3 3
3/4 3/4

0 3 1 3 2 3
0 3 44

3 3 3

24 2
= , = , =

4 2 2

2 2
= , = , =

2

i b d bbi bbb
a a

b b

i bb i b d i b d
a a a

b b

δδβ δ δ
β

δ β β

δ δ δ

β β β

+−
− −

− − −

(46)

the declared values of parameters in eq. (46) give the solution:

( ) 32 23 1 2 1 2

3

3,2
32 1 2

4
3

e e

( , , ) =

2 e

ti b t x y b x y

t
b x y

i b d b

u x y t

d b

αδαδ αδ αδ δ δ
α

α

αδ
δ δ

α

δ δ

β δ

 
 + + + + −  
 

 
 + +  
 

 
 
 +
 
 
 

 
 
 −
 
 
 

(47)

profile of the obtained solution in eq. (45) where

 
1 2 3 3
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b d yδ δ δ δ α β −

are figured in the following.

 
Figure 9. The 3-D figures for eq. (47) where the values –20 ≤ x ≤ 20, –20 ≤ t ≤ 20
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Where the values of t are given in the legend we have:

 
Figure 10. The 2-D figures for eq. (47) where the values –20 ≤ x ≤ 20
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the declared values of parameters in eq. (48) gives the solution:
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where 
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1 1 2 2

1 2

2 2
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b
x y tα

β δ β δ
ξ δ δ

α

−
+ +

Conclusion

In this paper, through the use of the fractional traveling wave transformation, we have 
smoothly applied an analytic method, namely the improved Bernoulli sub equation function 
method, to the complex non-linear (2+1)-D conformable time-fractional Schrödinger differen-
tial equation of order α. As a result, many types of periodic, second order periodic, oscillating 
travailing waves, and exponential function solutions for this model have been prosperously 
found. The applied method was efficaciously used to achieve the goal set for this scientific 
work. It can be optically canvassed that the mentioned method is efficacious, valuable, and vi-
tal in determining the exact solutions of fractional differential equations appearing in different 
branches of the mathematical physics, and engineering sciences. the effects of the time evolu-
tion have been presented through the 2-D graphs which will be observed optically. All of the 
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obtained solutions have been verified by substituting them back into their corresponding equa-
tion with the aid of symbolic computation software. For the best understanding of the gotten 
solutions peculiarities, they have been graphed in various types.
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