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The viscous fluid-flow over a stretching (shrinking) and porous sheets of non-uni-
form thickness is investigated in this paper. The modeled problem is presented by 
utilizing the stretching/shrinking and porous velocities and variable thickness of 
the sheet. Consequently, the new problem reproduces the different available forms 
of flow motion maintained over a stretching/shrinking and porous sheet of variable 
thickness in one go. As a result, the governing equations are embedded in sever-
al parameters which can be transformed into classical cases of stretched/shrunk 
flows over porous sheets. A set of general, unusual and new variables is formed 
in order to simplify the governing PDE and boundary conditions. Three different 
series solutions of the final ODE are presented. A single analytical solution is not 
sufficient to predict the exact effects of all parameters on the flow field properties. 
The problem is solved by a power and two asymptotic series methods. The results 
are verified by providing a powerful numerical solution the problem. A complete 
set of solutions is provided and comparison of the solutions with classical models 
is established for appropriate values of the parameters which is shown in different 
graphs and tables.
Key words: permeable (impermeable) and moving sheet, series solutions

Introduction

Fluid-flows over stretching surfaces have numerous applications in engineering, 
physics and other field of sciences. The experimental investigations which exactly satisfy the 
theoretical studies of the physical phenomena can be found in [1]. The first paper appeared 
regarding fluid-flows due to stretching surfaces is presented by Sakiadis [2]. Later on this 
work is further verified and extended by Tsou et al. [3] and the theoretical results are closely 
matched with the experimental data. An exact solution of flows due to linear stretching is 
guaranteed by Crane [4] and further this model is equipped with mass suction (injection) at 
sheet surface [5]. The stretching problem is presented with certain generalizing factors and 
the modified approach can be found in [6]. Stretching (shrinking) problems are invariably 
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attempted by reducing the governing strong non-linear boundary value problem into self-sim-
ilar ODE and then solved exactly, analytically or numerically thereof. Many celebrated solu-
tions have been found for the laminar boundary-layer flows past a stretching flat plate. How-
ever, the non-linear behavior of the modeled equations naturally deviates to the numerical 
solutions of the problem. The governing equations exhibit many characteristics of the thin 
sheet region or boundary-layer behavior. This is the reason many researchers evaluated the 
thickness of the boundary-layer and computed velocity profile of the flow problem. Since the 
boundary-layer thickness and velocity profiles play a significant role in the understanding 
of the behavior of such flows in industrial problems. Moreover, some properties have been 
investigated both numerically and analytically for such different problems [7-10]. In some 
cases the exact solutions of the modeled problem are provided. The power and asymptotic 
series solutions are the simplest and cheapest techniques, used for finding the solution of 
non-linear problems. Non-linear phenomena appeared in broad scientific fields like applied 
mathematics, and engineering. Scientists in those disciplines constantly face the task of find-
ing solutions of non-linear ODE.

In this paper we introduced an interesting and mathematically compact, new and gen-
eralized similarity transformation for stream function and similarity variable and hence pres-
ent a most modified form of transformations. These transformations are used to simplify the 
boundary value PDE and provide an exact boundary value ODE. Further, these transformations 
give rise to a new set of parameters which is playing its role in controlling the suction (injec-
tion), stretching (shrinking), and the thickness of the sheet (boundary deformation). Also, we 
concentrate on different solutions of the flow problem when a viscous and incompressible fluid 
past a porous and stretched (shrunk) sheet. We found different exact and series solutions of the 
non-linear problem. One analytical solution in not sufficient to describe all parameters values at 
one go. This is the reason, we attempt three different analytical series solutions. Accuracy of the 
series solution is insured such that all these series solutions are confirmed with the help of nu-
merical method i.e. shooting method. An asymptotic solution is exactly converged to the closed 
form exact solution. Moreover, a power series solution when coupled with Pade approximation 
is attempted. These series solutions are very simple and straight forward without the needs of 
perturbation, linearization, discretization and rapidly infinite convergence.

Similarity equations 

Continuity and momentum equations subject to the kinematic boundary conditions at 
the surface of the sheet:

0u
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υ∂ ∂
+ =

∂ ∂
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( ) ( ) ( ) ( ), , , at  ( )w wu x y U x v x y V x y f x= = = (3)

( ), ( ) 0u x y U x∞= = (4)
The velocity field has two-components, u(x, y) and v(x, y) in x- and y-directions, re-

spectively. Note that geometry of sheet is defined by a known function of x and variable stretch-
ing (shrinking) and porous velocities are taken. 

Also note that
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are stretching (shrinking) and injection (suction) velocities, respectively. Further, Vw > 0 (Uw > 0) for 
injection (stretching), VW ≺ 0 (Uw < 0) for suction (shrinking) and Vw = 0 (Uw = 0) correspond 
to an impermeable (fixed) sheet. Further A, A1, A2, B, c1, d0, d1, and d2 are the controlling pa-
rameters. The kinematic viscosity, n = µ/ρ, coefficient of fluid viscosity, µ, and density, ρ, are 
constants in the flow region.

Introducing the following similarity transformations in terms of stream function ψ and 
similarity variable η:

( )
1

2
2 2

and yA f
d d

β
βαψ η η α

−
−= = (5)

where η and f(η) are similarity variable and unknown function, respectively. The stream func-
tion is satisfying the relations u = ∂ψ/∂y and υ = ∂ψ/∂x. In view of these definitions, eq. (1) is 
identically satisfied and by substituting the transformations defined in eq. (5) into eqs. (2)-(4), 
we obtained the exact boundary value ODE:

2
1 2 0f f ffδ δ′′′ ′ ′′+ + = (6)
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In the following sections we are emphasized on the asymptotic and power series solu-
tions of the BVP given previously in eqs. (6) and (7). The solutions are accurate and confirmed 
by comparing it with the existing numerical and exact solutions.

Series solutions

In this section, three different series solutions of the BVP (6) and (7) are presented.

Asymptotic series Solution I

An asymptotic series solution of the modeled problem is attempted and this type of 
series solutions are proposed in [11, 12] and for the solution of non-linear BVP. Asymptotic 
series solution of this special format is given:

( )
0

e , for 0nc
n

n

f a cηη
∞

−

=

= >∑ (8)

All the coefficients, an, in the aforementioned series are need to be determined when 
the expression is substituted into ODE (6) and (7). Invoking the assumed solution in eq. (8) into 
BVP (6) and (7) yields: ao = c/δ2 and the recurrence relation for an:
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More coefficients an are calculated from the recurrence relation for 2 ≤ n ≤ 4. All these 
coefficients are appeared in term of a1 and c:
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The coefficients an are not noted here because of massive calculation and further terms 
are calculated with the help of MATHEMATICA. Obviously the series solution in eq. (8) is sat-
isfying the infinity condition presented in BVP (6) and (7). The constant c and a1 are determined 
from eq. (8) when the boundary conditions of BVP (6) and (7) are used. Note that the solution in 
eq. (8) is only valid for δ1 + δ2 ≠ 0. Moreover, when δ1 + δ2 = 0, the solution in eq. (8) is reduced 
to an exact solution. This exact solution has the closed form:
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Asymptotic series Solution II

Consider the asymptotic series solution of ODE in BVP:
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where the coefficients αn are determined by substituting the aforementioned series (9) into BVP 
(6) and (7), and the recurrence relation is obtained for αn:
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More coefficients are calculated from the recurrence relation in eq. (10) and all these coeffi-
cients are appeared in term of α2, δ1, δ2, and b which are:
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These coefficients, αn, are generating a geometric sequence with the common ratio:
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Substituting the values of the coefficients from eq. (11) into eq. (9) we obtained:
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The series in eq. (12) is an infinite geometric series with common ratio:
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Finally the series solution in eq. (12) is reduced to the closed form solution:
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The constants a, b, and α2 are determined by applying the conditions of BVP (6) and 
(7) which have the values:
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Power series solution

Remember that the solution in eq. (13) in not working for δ1 + 2δ2 = 0 where 2δ2 ≠ 0. 
Therefore, we are searching for a power series solution of BVP (6) and (7). Consider the power 
series solution of the problem:

0
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A recurrence relation for βn is formed in the following equation when the series in eq. 
(14) is substituted into the condition of BVP (6) and (7). Since special values are assigned to the 
first two coefficients i.e., β0= δ3, β1= B, and δ1 + 2δ2 = 0 with δ2 ≠ 0:
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Other coefficients βn for fixed values of n are calculated from the aforementioned 
recurrence relation and all these coefficients are appeared in term of arbitrary constant β2 and 
parameters B and δ3 which are:

 

( ) ( )
( ) ( )

2 2
3 2 3 2 4 2 2 2 3 3 2

2 2 2 3
5 2 2 2 3 2 2 3 2

1 1, 3 and
3 12

1 6 2 5
60

B B B

B B B

β δ δ β β δ β δ δ δ β

β δ β δ δ β δ δ β

 = − = + − − 

 = − + − − 

Note that the recurrence relation in eq. (15) is obtained, with an arbitrary β2 which can 
be determine by using the infinity condition with the help of Pade approximation.

Numerical solution

Comparison of the series solutions with published  
and numerical results and graph discussion

In this section, we present the numerical solution of the third order, non-linear ODE 
(6), satisfying the boundary condition (7). Also a comparative study of series solutions with 
classical results and numerical results is carried out to establish the accuracy of series solutions. 
Series solution in eq. (8) is the uniformly valid solution of BVP (6) and (7) for appropriate 
ranges of parameters values. All possible roots of arbitrary constants a1 and c are evaluated 
numerically with the help of MATHEMATICA. Accuracy of the series solution in eq. (8) is 
established by comparing it with the previous published results and numerical solution of the 
BVP (6) and (7). This task is simply achieved when different profiles of f ′(η) are plotted in fig. 1 
and compared with the exact solutions of [13] for the following three different cases. In addition 
that we have also compared the results of eq. (8) with the corresponding numerical solutions of 
the BVP (6) and (7) and the results are shown oin fig. 8(d).

Case I: When δ1 = δ2: The current result in eq. (8) is compared with literature and 
analyzed the behavior of δ1 and δ2 on velocity profiles for δ3 = 1 and B = 1.The series solution 
in eq. (8) is exactly matched with the published results of eq. (12) in [13] and these profiles are 
plotted in fig. 1(a). It is noticed from this figure that the velocity profiles are decreased with 
increasing values of δ1 when stretching is taken into account. The shapes of the profiles are 
changed smoothly with δ1 and δ2 over the range and no odd or unstable behavior has been seen. 
The parameter δ1 tends to draw the profiles towards the wall as shown in fig. 1(a). 

Case II: When δ1 ≠ δ2: The condition (i.e. δ1 ≠ δ2 is analogous with the exact solution of 
eq. (15) in [13], therefore, the asymptotic series solution in eq. (8) is compared with it and ex-
cellent agreement between the two is found. For fixed value of δ1 = –1 and shrinking parameter 
B = –1, effects of δ2 and δ3 on velocity profiles is shown in fig. 1(b). With the boosting values of 
δ2 and declining values of δ3 velocity profiles are decreased.

Case III: When δ1 = – δ2 (δ2 > 0): In this case we have chosen different values for 
suction and stretching parameters i.e. δ3 = –1 and B = 1 in order to compare the results of  
eq. (8) with exact solution in eq. (18) of [13]. All these profiles have been plotted in fig. 1(c). 
The two results are exactly matched and fluid velocity is decreased with the increasing values 
of δ2.

Case IV: Comparison with numerical solution: The series solution in eq. (8) is also 
compared with the numerical solution of BVP (6) and (7) and plotted in fig. 1(d). In this part 
of fig. 1, f ′ is plotted against η and computed from two different solutions. The numerical 
results are obtained by Shooting method, and effects of suction (injection) parameter is seen 
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on fluid-flow for fixed values of B, δ1 and δ2. The velocity profiles are analyzed for increasing 
values of injection parameter δ3 in fig. 1(d). With the increasing values of δ3, velocity of the 
fluid is decreased. For this case the numerical and analytical solutions are exactly matched with 
each other. At the vicinity of sheet, differences between numerical and analytical results are bit 
higher for δ3 = 1.4, and acceptable results have been obtained. Moreover, the series solution 
in eq. (8) is also compared for f ″(η) with the numerical results for which different values are 
assigned to parameters and the results are shown in tab. 1. In this table, the numerical solution 
of BVP (6) and (7) and analytical results in eq. (8) are compared and the two results are also 
compared with the published data of [12, 14-16]. Note that different values of the missing con-
stants c and a1 are taken and evaluated from eq. (8) with MATHEMATICA when conditions 
of BVP (6) and (7) are used. Strong resemblance is found among these results and shown in  
tab. 1. The second asymptotic series solution in eq. (13) is compared with the numerical and ex-
act solutions and the results are exactly matched to each other when different values are given to 
δ2, δ3, and B ≻ 0. The results are plotted in fig. 2(a). It is observed that the velocity is decreased 
with the increasing of δ2 and decreasing of δ3 for fixed values of δ1 = –1 and α2 = 0. Since the 
BVP (6) and (7) has semi-infinite domain and its power series solution has been attempted, 
the solution in eq. (14) is carried out with the infinity condition of BVP (6) and (7), using the 
diagonal Padé approximation of order [N/N] = [5/5]. One can see the detail of diagonal Pade 

Figure 1. (a) The f ′ is plotted against η from eq. (8) for δ2 = δ1 = 1 (top profile), 1.5, 2, 3.5, 
6, and 10.5 (bottom profile), present solution (……) and solution of eq. (12) form [13] 
(____) where δ3 = B = 1, (b) the f ′ is plotted against η from eq. (8) for δ1 ≠ δ2 and (δ2, δ3) = 
(2, 21/2) (bottom profile), (2.5, 1.22474), (3.2, 1.05409), [4, (6/7)1/2], [5, (2/3)1/2] (top profile), 
present solution (……) and solution of eq. (15) form [13] (____) where δ1 = B = –1, (c) the 
f ′ is plotted against η from eq. (8) for δ1 = δ2 (δ2 > 0) = 1 (top profile), 1.5, 2, 3.5, 6, 10, and 
60. 5 (bottom profile), present solution (……) and solution of eq. (18) form [13] (____) 
where δ3 = –1, B = –1, and (d) the f ′ is plotted against η from eq. (8) for different δ3 = 1.4 
(top profile), 1.6, 1.8, 2.0, and 2.2 (bottom profile), analytic solution (……) and numerical 
solution (____) where δ1 = δ2 = B = 1
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approximation in [17]. In order to claim the validity and accuracy of power series solution, we 
compared f ′(η) from eq. (8) for fixed values of δ1, δ2, and δ3 with the numerical solution and 
absolute error between solutions is shown in tab. 2 and different profiles of f ′(η) are plotted in 
fig. 2(b) using the diagonal Pade approximation [N/N] = [5/5]. In fig. 2(b), we noticed that ve-
locity profiles is decreased with decreasing values of δ2 for fixed values of suction and shrinking 
parameters δ3 = –1, B = –1. 

Table 1. The f ″(0) is computed numerically and analytically 
from the BVP (6) and (7), and eq. (8), respectively

δ3 c a1 δ1 δ2 Numeric Analytic Previous results

0 0.783599 –1.94083 –0.1 0.5 –0.5045 –0.504472 –0.5044714296 [14]

0 0.707107 –1.41421 –0.5 0.5 –0.7071 –0.707107 –0.7071067812 [14]

0 0.640387 1.03778 –1.0 0.5 –0.9064 –0.906376 –0.9063755237 [14]

0 1 –1 –1.0 1.0 –1.0 –1.0 –1.0 [12, 16, 18]

–1 0.388468 –1.17906 –1.0 0.5 –0.7085 –0.70853 –0.708761 [15]

1 0.965555 –0.834067 –1.0 0.5 –1.1756 –1.17561 –1.17561409 [15]

Table 2. The f ′(η) is computed numerically and analytically from 
BVP (6) and (7) and eq. (14) for B = 1, δ3 = –1/5 

    η δ2 = –1/6 
Numeric analytic abs. error

 δ2 = –4/21
Numeric analytic abs. error

δ2 = –5/36 
Numeric analytic abs. error

0 –1 –1 0.0 –1 –1 0.0 –1 –1 0.0

0.4592 –0.7964 –0.78536 1.10 ⋅ 10–2 –0.7848 –0.77224 1.26 ⋅ 10–2 –0.8116 –0.8022 9.40 ⋅ 10–3

1.8367 –0.4251 –0.40232 2.28 ⋅ 10–2 –0.4033 –0.37856 2.47 ⋅ 10–2 –0.4546 –0.43449 2.01 ⋅ 10–2

2.7551 –0.2888 –0.26588 2.29 ⋅ 10–2 –0.2681 –0.24356 2.45 ⋅ 10–2 –0.3176 –0.29699 2.06 ⋅ 10–2

3.5204 –0.212 –0.19061 2.14 ⋅ 10–2 –0.1935 –0.17077 2.27 ⋅ 10–2 –0.2383 –0.21885 1.95 ⋅ 10–2

4.5918 –0.1349 –0.12106 1.83 ⋅ 10–2 –0.1243 –0.10503 1.93 ⋅ 10–2 –0.1613 –0.14453 1.68 ⋅ 10–2

5.5102 –0.098 –0.08257 1.54 ⋅ 10–2 –0.0858 –0.06953 1.63 ⋅ 10–2 –0.1163 –0.10209 1.42 ⋅ 10–2

6.5816 –0.0652 –0.05296 1.22 ⋅ 10–2 –0.0559 –0.04286 1.30 ⋅ 10–2 –0.0795 –0.06845 1.10 ⋅ 10–2

7.6531 –0.0433 –0.0339 9.40 ⋅ 10–3 –0.0363 –0.02614 1.02 ⋅ 10–2 –0.0543 –0.04606 8.24 ⋅ 10–3

8.5714 –0.0303 –0.023 7.30 ⋅ 10–3 –0.025 –0.01684 8.16 ⋅ 10–3 –0.0389 –0.03285 6.05 ⋅ 10–3

9.4898 –0.021 –0.01549 5.51 ⋅ 10–3 –0.017 –0.0106 6.40 ⋅ 10–3 –0.0275 –0.02344 4.06 ⋅ 10–3

10 –0.017 –0.01239 4.61 ⋅ 10–3 –0.0136 –0.00808 5.52 ⋅ 10–3 –0.0225 –0.01944 3.06 ⋅ 10–3

10.5102 –0.0136 –0.00987 3.73 ⋅ 10–3 –0.0108 –0.00608 4.72 ⋅ 10–3 –0.0183 –0.01614 2.16 ⋅ 10–3

11.5306 –0.0085 –0.00622 2.28 ⋅ 10–3 –0.0116 –0.00327 3.33 ⋅ 10–3 –0.0116 –0.01116 4.44 ⋅ 10–4

12.6531 -0.0046 –0.00371 8.93 ⋅ 10–4 –0.0035 –0.00146 2.04 ⋅ 10–3 –0.0064 –0.00753 1.13 ⋅ 10–3

13.4649 -0.0026 –0.00257 3.23 ⋅ 10–5 –0.0019 –0.00071 1.19 ⋅ 10–3 –0.0036 –0.00575 2.15 ⋅ 10–3

14.4898 -0.0007 –0.0017 1.00 ⋅ 10–3 –0.0005 –0.00022 2.80 ⋅ 10–4 –0.001 –0.00425 3.25 ⋅ 10–3

15 0.0000 –0.00144 1.44 ⋅ 10–3 0.0000 –0.00011 1.12 ⋅ 10–4 0.0000 –0.00373 3.73 ⋅ 10–3
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Conclusion

The present model demonstrates flow over a vertical porous (both suction and injec-
tion cane take place) and stretching (shrinking) sheet of variable thickness. The boundary-layer 
equations and boundary conditions are transformed into non-linear ODE by introducing unusu-
al and generalized similarity transformations for the stream function and similarity variable. 
Three different series solutions of the modeled BVP (6) and (7) are presented here. All the series 
solutions are compared with numerical solution of the governing Navier-Stokes equations for 
an incompressible viscous fluid-flows over a stretching (shrinking) and permeable surfaces. 
Comparison between solutions is established in different tables and graphs and excellent agree-
ment is found. Note that two exact solutions are retrieved from the series solutions for some 
conditions on the parameters values. Meanwhile, the series solution in eq. (8) is reduced to an 
exact solution for δ1 + δ2 = 0 and δ2 ≠ 0. The series solution in eq. (9) is converged to exact solu-
tion when δ1 + δ2 ≠ 0. Two series solutions are exactly reduced to the existing exact solutions 
of [17] for special values of the parameters. All these results are shown in different graphs and 
tables. The series solutions are not working simultaneously for all choice of parameters value. 
Each series solution is compared with the numerical solution and excellent agreement is found.
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