MHD FLOW AND HEAT AND MASS TRANSPORT INVESTIGATION OVER A DECELERATING DISK WITH OHMIC HEATING AND DIFFUSIVE EFFECT

by

Ruchi JAIN^a, Ruchika MEHTA^a^{*}, Tripti MEHTA^b, Jagdev SINGH^c, and Dumitru BALEANU^{d,e,f}

^a Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur, Rajasthan, India
 ^b Department of Mathematics, S. S. Jain Subodh P. G. College, Jaipur, Rajasthan, India
 ^c Department of Mathematics, JECRC University, Jaipur, Rajasthan, India
 ^d Department of Mathematics, Faculty of Arts and Sciences,
 Cankaya University Eskisehir, Yukarıyurtcu Mahallesi, Etimesgut, Turkey
 ^e Institute of Space Sciences, Magurele-Bucharest, Romania
 ^f Lebanese American University, Beirut, Lebanon

Original scientific paper https://doi.org/10.2298/TSCI23S1141J

The motive of this study is to investigate the spinning fluid-flow due to revolving disk for the magnetic unsteady Brownian motion of viscous nanofluid. Here the disk is assumed to have an inverse linear angular velocity. In this paper mass transfer is incorporated in the analysis with the existing problem. The array of equation for the unsteady flow firstly converted into dimensionless non-linear equation using appropriate transformation and then the dimensionless system of equation is further solved numerically utilizing MAPLE software. The different emerging parameters mainly magnetic parameter, variable viscosity, Prandtl number, Eckert number, thermophoresis, and Brownian motion parameter has been investigated through graphs and shown in tabular form also.

Key words: heat transfer, mass transfer, ohmic heating, thermophoresis, brownian motion, nanofluid, magnetic field

Introduction

Over the last few decades it has been seen that the unsteady motion over a revolving disk for the temperature and mass transfer is analyzed. The study has numerous applications in manufacturing and industrialized areas such as electrical motors, thermal power sector regularly. In the areas of infinite rotating disc having glutinous liquid-flow is initialized by Karman [1]. He is the originator of similarity transformation to solve physical equation by Converting them into a ODE this study of Karman was further improved by Cochran [2], who introduced the method of power series approximation. This study of time dependent flow was then added by Benton [3].

After that many researchers [4-10] applied and study different effects on MHD flow due to a revolving disk. Brownian movement and thermophoresis is applicable in all the streams such as economy physics atomic theory, *etc.* the research in this part has been done by many authors [11-16]. In the fluid mechanics a lot of useful work has been done by different researchers

^{*}Corresponding author, e-mail: ruchika.mehta1981@gmail.com

are due to vast application of heat and mass transport in many important fields of life, some of these work [17-25] is analysed in this paper. In the present time porous media has get vast attention due to its application in various fields like geothermal engineering grain storage petroleum reservoirs, *etc.* Joshi *et al.* [26] investigate the behaviour due to flowing of nanofluid on the rotating disk placed in porous medium. Eid and Mabood [27] investigate the nanofluid-flowing through revolving disk immersed in a permeable medium for the viscoelastic behaviour. Behaviour of temperature dependent viscosity is analysed for the nanofluids bi researcher [28-34].

In the present research we focus mainly on the mass transfer along with heat transfer and applied magnetic field in the model prescribed by the Walson and Wang [28]. Fluid is considered to be MHD and it flow on a revolving disk with angular velocity which is inversely proportional of the time. This study is similar to Rafiq *et al.* [20]. The solution of the governing equation is done by MAPLE and graphically presented the effect of flow on different parameters.

Mathematical formulation

In fig. 1 depict the modelling of unsteady problem of convective temperature and concentration transport on a revolving porous disk, with z-axis as axis of symmetry with cylindrical polar co-ordinates (r, φ, z) . It is seen that the angular movement of disk is inversely linear and follows the form $\Omega(t) = \Omega_0/(1 - ct)$ (where Ω_0 is the angular speed and α – the reducion in the disk).

In this flow problem all three components of motion (u, v, w) are included.

Mathematical equations

Figure 1. A schematic of the

flow mode

The system of equation for the hydrodynamic flow are given:

$$\frac{\partial u}{\partial r} + \frac{u}{r} + \frac{\partial w}{\partial z} = 0 \tag{1}$$

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial r} - \frac{v^2}{r} + w\frac{\partial u}{\partial z}\right) + \frac{\partial p}{\partial r} = \frac{\partial}{\partial r}\left(\mu(T)\frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial r}\left(\mu(T)\frac{u}{r}\right) + \frac{\partial}{\partial z}\left(\mu(T)\frac{\partial u}{\partial z}\right) - \sigma B^2(t)u \quad (2)$$

$$\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial r} + \frac{uv}{r} + w\frac{\partial v}{\partial z}\right) = \frac{\partial}{\partial r}\left(\mu(T)\frac{\partial v}{\partial r}\right) + \frac{\partial}{\partial r}\left(\mu(T)\frac{v}{r}\right) + \frac{\partial}{\partial z}\left(\mu(T)\frac{\partial v}{\partial z}\right) - \sigma B^{2}(t)v \qquad (3)$$

$$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial r} + w\frac{\partial w}{\partial z}\right) + \frac{\partial p}{\partial z} = \frac{\partial}{\partial r}\left(\mu(T)\frac{\partial w}{\partial r}\right) + \frac{1}{r}\frac{\partial}{\partial r}\left(\mu(T)w\right) + \frac{\partial}{\partial z}\left(\mu(T)\frac{\partial w}{\partial z}\right)$$
(4)

$$\left(\rho c\right)_{f} \left(\frac{\partial T}{\partial t} + u\frac{\partial T}{\partial r} + w\frac{\partial T}{\partial z}\right) = \left[\frac{\partial}{\partial r} \left(k\left(T\right)\frac{\partial T}{\partial r}\right) + \frac{1}{r}\frac{\partial}{\partial r} \left(k\left(T\right)T\right) + \frac{\partial}{\partial z} \left(k\left(T\right)\frac{\partial T}{\partial z}\right)\right] + \sigma B^{2}\left(t\right)\left(u^{2} + v^{2}\right) + \left(\rho c\right)_{p} \left[D_{B}\left(\frac{\partial T}{\partial z}\frac{\partial C}{\partial z} + \frac{\partial T}{\partial r}\frac{\partial C}{\partial r}\right) + \frac{D_{T}}{T_{\infty}}\left[\left(\frac{\partial T}{\partial r}\right)^{2} + \left(\frac{\partial T}{\partial z}\right)^{2}\right]\right]$$
(5)

Jain, R., et al.: MHD Flow and Heat and Mass Transport Investigation Over ... THERMAL SCIENCE: Year 2023, Vol. 27, Special Issue 1, pp. S141-S149

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial r} + w \frac{\partial C}{\partial z} = D_B \left(\frac{\partial^2 C}{\partial r^2} + \frac{1}{r} \frac{\partial C}{\partial r} + \frac{\partial^2 C}{\partial z^2} \right) + \frac{D_T}{T_{\infty}} \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} \right)$$
(6)

The given non-linear eqs. (1)-(6) are solved wwith the limiting conditions:

 $\langle \rangle$

$$u = 0, v = r\Omega(t), \quad w = -V(t), \quad T = T_w, \quad C = C_w \quad \text{at} \quad z = 0$$

$$u \to 0, \quad v \to 0, \quad T \to T_\infty, \quad C \to C_\infty \quad \text{as} \quad z \to \infty$$
 (7)

Presumptions and clarification of the problem

Unsteady MHD flow on revolving disk is considered and to solve this flow problem (1)-(6) With boundary condition (7) some assumptions are made:

- Here we assume that the viscosity function $\mu(T)$ [24] is inversely linear and dependent on the temperature where μ_{∞} is liquid viscosity, γ is a invariable function and represents the case where fluid is assume to be gas or liquid if it has positive or negative value:

$$\mu(T) = \frac{\mu_{\infty}}{\gamma(T - T_{\infty}) + 1} \tag{8}$$

- It is also assumed that thermal conductivity is time dependent and it follows the given function:

$$k(T) = k_{\infty} \left[1 + \varepsilon \left(\frac{T - T_{\infty}}{T_{w} - T_{\infty}} \right) \right]$$
(9)

where K_{∞} is the ambient fluid thermal conductivity. Now to solve eqs. (1)-(6) numerically some similarity transformation are considered:

$$u = r\Omega(t)U'(\eta), \quad v = r\Omega(t)V(\eta), \quad w = -2\sqrt{\nu_{\infty}\Omega(t)}U(\eta)$$

$$p = -\mu\Omega(t)P(\eta), \quad T - T_{\infty} = (T_{w} - T_{\infty})\theta(\eta), \quad C - C_{\infty} = (C_{w} - C_{\infty})\phi(\eta)$$

$$\eta = \sqrt{\frac{\Omega(t)}{\nu_{\infty}}}z$$
(10)

where the given similarity transformation satisfies the equation of continuity. Using assumption 1 and 2 and eq. (10) the following eqs. (2)-(6) altered into joined non-linear differential equation:

$$F''' - \left(\theta - \theta_e\right)^{-1} F'' \theta' + \left\{\frac{\theta - \theta_e}{\theta_e}\right\} \left\{F'^2 - G^2 - 2FF'' + \left(\frac{A\eta F''}{2}\right) + AF' + MF'\right\} = 0$$
(11)

$$G'' - \left(\theta - \theta_e\right)^{-1} \theta' G' + \left\{\frac{\theta - \theta_e}{\theta_e}\right\} \left\{2\left(F'G - G'F\right) + AG + \left(\frac{A\eta G'}{2}\right) + MG\right\}$$
(12)

$$\theta'' - \left(1 + \epsilon \theta\right)^{-1} \left\{ \Pr \theta' \left(\frac{A\eta}{2} - 2F\right) - \epsilon \theta'^2 - M \operatorname{EcPr}\left(F'^2 + G^2\right) - Nt \operatorname{Pr} \theta' \phi' - Nb \operatorname{Pr} \theta'^2 = 0$$
(13)

$$\phi'' - \left(\frac{A\eta \operatorname{Sc} \phi'}{2}\right) + 2\operatorname{Sc} F \phi' + \left(\frac{Nb}{Nt}\right) \theta'' = 0$$
(14)

and the boundary conditions (7) transforms:

S143

$$F'(0) = 0, \ G(0) = 1, \ F(0) = \frac{S}{2}, \ \theta(0) = 1, \ \phi(0) = 1$$

$$F' \to 0, \ G \to 0, \ \theta \to 0, \ \phi \to 0 \ \text{as} \ \eta \to \infty$$
where $V(t) = \frac{V_0}{(1 - \alpha t)^{1/2}}, \ P_r = \frac{\mu_{\infty} C_p}{k_{\infty}}, \ A = \frac{\alpha}{\Omega_0}, \ S = \frac{V_0}{(v_0 \Omega)^{1/2}}$
(15)

The suction parameter which is proportional to initial suction velocity, V_0 , can be given any positive value depending upon how more or less velocity is considered into fluid motion at the surface.

To solve eqs. (11)-(14) along with boundary condition (15) we use MAPLE 2019. With the help of this software we find graph of different physical parameters and we analyse these and reached to useful resuls which can be applied by many other researchers and engineers also.

Results and discussion

The Unsteady flow of nanofluid over a revolving disc whose velocity is inversely proportional to time with applied magnetic field is taken for the current study. This phenomena was numerically solved by the MAPLE 2019 software. Hear the effect of different parameters are obtained and represented through graphs on radial $F'(\eta)$ and tangential $G(\eta)$ velocity profile, Temperature profile and Concentration profile was illustrated. All the work has been done by fixing the values as M = 1, A = -1, $\epsilon = 1$, Sc = 1, S = 1, Ec = 0.5, Pr = 5, Nt = 0.1, $\theta_e = -2.5$.

Table 1 shows the arithmetical results of outspread wall tension and lateral wall stress for various parameters involved. Table 2 showcase the analysis data of non-dimensionalnusselt number and sherwood number, respectively. To justify the finding after present study the values of outspread and lateral skin friction number has been set against the findings of Rafiq *at el.* [20] in tab. 3 and finds that they are very good match so the results achieved in the current study are justified.

A	М	Pr	F''(0)	<i>G</i> ′(0)
0			0.2844091	-2.1844097
-2			0.4102848	-1.5210265
-3			0.4885410	-1.1541750
-4			0.5743449	-0.7729627
-5			0.6663830	-0.3809762
	1		0.3416708	-1.8708305
	2		0.2474960	-2.3436274
	3		0.2014150	-2.6888448
	4		0.1736006	-2.9590523
	5		0.1545958	-3.1811505
		5	0.3426657	-1.8669945
		6	0.3449816	-1.8714885
		7	0.3489060	-1.8751751
		8	0.3489060	-1.8782553
		9	0.3505736	-1.8808610
		10	0.3520792	-1.8830980

 Table 1. The radial and lateral skin-friction factor for several dimensionless parameters

Jain, R., *et al.*: MHD Flow and Heat and Mass Transport Investigation Over ... THERMAL SCIENCE: Year 2023, Vol. 27, Special Issue 1, pp. S141-S149

tor the unter ent unitensionless par uniters								
Nt	Nb	$-\theta'(0)$	$-\phi'(0)$					
1		1.5927280	1.37365615					
2		0.7550885	3.76768668					
3		0.2820150	1.62664260					
4		0.0269633	2.58221688					
5		0.2843200	8.67405192					
	0	1.9092728	2.00358736					
	0.5	0.9445088	4.00054676					
	1	0.5524820	1.99852664					
	1.5	0.0069633	3.15762582					
	2	0.5238843	9.02475267					

 Table 2. The skin friction and nusselt number

 for the different dimensionless parameters

Table 3. Comparison of F''(0) and G'(0) obtained by [20] when M = 0, Sc = 0, Ec = 0, Nt = 0, and Nb = 0

A	<i>F</i> "(0)			<i>G</i> ′(0)		
	Current	[20]	Variation	Current	[20]	Variation
0	0.276348	0.276229	0.000119	-0.728566	-0.717747	-0.010819
-2	0.398457	0.383317	0.015140	-0.300357	-0.259630	-0.040727
-3.179941	0.445856	0.439443	0.006413	-0.000008	0.0000000	-0.000008
-5	0.6015400	0.519050	0.082490	0.398784	0.389722	0.009062

Figures 2-5 represents the distribution of $F'(\eta)$, $G(\eta)$, $\theta(\eta)$, and $\phi(\eta)$ for distinct values of unsteadiness parameter. Figure 2 shows the reduction in velocity profile as increment in A. While fig. 3 shows that mass concentration reduces as values of A increases and temperature profile rises. Figures 6 and 7 showcase that the speed profile reduces as the magnetic parameter rises. When magnetic parameter rises which produces Lorentz Force, this force acts in reducing the motion and hence the velocity profile decelerates. In figs. 8 and 9 it has been seen that temperature as well as concentration profile up lift as the magnetic parameter increases but it is also noted in fig. 9 that after the critical value ($\eta = 0.704$) the concentration profile shows a dual behaviour.

Figures 10-13 demonstrated the behaviour of variable viscosity parameter on all three profiles. It is observed that as viscosity rises the velocity margin layer decreases and heat and concentration boundary-layer increases.

Figures 14-17 give a description about the effect of parameter Nt. It shows that the temperature and concentration profile rises as the Nt increases and motion of practical slow down due to increment of Nt. The reduction and enhancement of motion and concentration profile due to Brownian motion parameter and Nb is seen in figs. 18-21, respectively.

Impact of Prandtl number over velocity distribution is uplifted by the increasing the values of Prandtl number add and reduces due to increment in values of Prandtl number, in fig. 22 an opposite behaviour is noticed after the critical value $\eta = 0.65539$.

on velocity profile

Figure 15. Effect of Nt on velocity profile

Figure 16. Effect of Nt on temperature profile

Conclusion

Unsteady MHD motion of fluid consists of nanoparticle is investigated along with thermophoresis and Brownian motion for heat and mass concentration in the present research many noticeable results are drawn here are some useful conclusions are as follows.

- The unsteady parameter gives a special condition ($A^* = -5.75988$) for which the torque [G'(0)] • vanishes and it validates that the disk is rotating freely without torque and when $A \leq A^*$ the torque is negative which notify that liquidneighbouring the disk revolve quicker than the disk.
- The magnetic parameters show a dual behaviour in concentration profile it has been seen that after a critical value $\eta = 0.704$ the concentration profile reduces drastically.
- A dual behaviour is also noticed in concentration profile as the parameter Pr increases after a critical value of $\eta = 0.65539$.

Nomenclature

- concentration near-wall $C_{\rm w}$
- C_{α} - concentration far from the wall
- coefficient of Brownian diffusion D_R
- coefficient of thermophoresis diffusion D_T
- F'- non-dimensional radial velocity
- G- non-dimensional tangential velocity
- coefficient of mean absorption k^*
- М - magnetic parameter
- Nh - Brownian moion coefficient
- thermophoresis coefficient Nt
- Prandtl number Pr
- pressure p
- radial direction
- T_{u} - temperature of disk plane - free stream temperature
- T_{∞} - time
- t u
- Radial velocity factor v
- axial velocity factor

- tangential velocity factor w
- axial direction z

Greek symbols

- non-dimensional element η
- θ - non-dimensional heat
- temperature dependent vicinity prameter ϵ
- thermal conductivity κ
- magnetic porosity
- μ_{∞} - kinematic viscosity v
- density
- ρ
- $(\rho c)_f$ heat capability of fluid - nanoparticles heat capability
- $(\rho c)_p$
- lateral direction φ
- φ - non-dimensional density
- angular speed of the circular lamina Ω
- uniform fluid thickness μ_{∞}

References

- [1] Karman, V. T., Uber laminare und turbulentereibung (in German), Z Angew Math. Mech., 1 (1921), pp. 233-252
- Cochran, W., The Flow Due to a Rotating Disc, Mathematical Proceedings of the Cambridge Philosophical Society, 30 (1934), 3, pp. 365-375
- [3] Benton, E. R., On the Flow Due to a Rotating Disk, Journal Fluid Mech., 24 (1966), pp. 781-800
- [4] Frusteri, F., Osalusi, E., On MHD and Slip Flow over a Rotating Porous Disk with Variable Properties, Int. Commun. Heat Mass Transf., 34 (2007), 34, pp. 492-501
- [5] Ram, P., Kumar, V., Swirling Flow of Field Dependent Viscous Ferrofluid over a Porous Ratating Disk, Int. J. Appl. Mech., 6 (2014), 1450033
- [6] Reddy, P. S., et al., The MHD Boundary-Layer Flow, Heat and Mass Transfer Analysis over a Rotating disk through Porous Medium Saturated by Cu-Water and Ag-Water Nanofluid with Chemical Reaction, *Powder Technol.*, 307 (2017), Feb., pp. 46-55
- [7] Sharma, K., et al., Hydromagnetic Boundary-Layer Flow with Heat Transfer Past a Rotating Disc Embedded in a Porous Medium, *Heat Trans Asian Res.*, 50 (2021) 5, pp. 4342-4353
- [8] Sharma, K., et al., Boundary-Layer Flow with Forced Convective Heat Transfer and Viscous Dissipation Past a Porous Rotating Disk, Chaos Solitons Fractals, 148 (2021), 111055
- [9] Sharma, K., et al., Rheological Effects on Boundary-Layer Flow of Ferro Fluid with Forced Convective Heat Transfer over an Infinite Rotating Disk, Pramana J. Phys, 95 (2021), 113
- [10] Beg, O. A., et al., Numerical Investigation of Von Karman Swirling Bioconvective Nanofluid Transport from a Rotating Disk in a Porous Medium with Stefan Blowing and Anisotropic Slip Effects, Proc. Inst. Mech. Eng., Part C, Journal Mech. Eng. Sci., 235 (2020), 19, pp. 3933-3951
- [11] Makinde, O. D., Animasaun, I. L., Thermophoresis and Brownian Motion Effects on MHD Bioconvection of Nanofluid with Non-Linear Thermal Radiation and Quartic Chemical Reaction Past an upper Horizontal Surface of a Paraboloid of Revolution, *Journal of Molecular Liquids*, 221 (2016), 733
- [12] Sheikholeslami, M., et al., Magnetohydrodynamic Free Convection of Al₂O₃-Water Nanofluid Considering Thermophoresis and Brownian Motion Effects, Computers and Fluids, 94 (2014), May, pp. 94-147
- [13] Mittal, et al., Influence of Thermophoresis and Brownian Motion on Mixed Convection 2-D MHD Casson Fluid-Flow with Non-Linear Radiation and Heat Generation, *Physica A, Statistical Mechanics and its Applications*, 537 (2020), 122710
- [14] Reddy, J. V., et al., Thermophoresis and Brownian Motion Effects on Unsteady MHD Nanofluid-Flow over a Slendering Stretching Surface with Slip Effects, Alexandria Engineering Journal, 57 (2018), 2465
- [15] Babu, M., et al., The 3-D MHD Slip Flow of Nanofluids over a Slendering Stretching Sheet with Thermophoresis and Brownian Motion Effects, Advanced Powder Technology, 27 (2016), Oct., pp. 2039-2050
- [16] Kandasamy, R., et al., Thermophoresis and Brownian Motion Effects on MHD Boundary-Layer Flow of a Nanofluid in the Presence of Thermal Stratification Due to Solar Radiation, International Journal of Mechanical Sciences, 70 (2013), May, pp. 146-154
- [17] Jain, R., et al., Mathematical Study of MHD Casson Fluid-Flow through Porous Media Along with Soret and Dufour Effects over a Stretching Surface, Science and Technology Asia, 26 (2021), Oct., pp. 60-73
- [18] Jain, R., et al., Numerical Study of Chemically Reactive MHD Hydrodynamic Boundary-Layer Fluid-Flow over an Absorptive Surface in the Presence of Slip and Mixed Convection, Advances in Mathematics: Scientific Journal, 9 (2020), 9, pp. 7057-7064
- [19] Sharma, K., et al., Heat and Mass Transfer Study of Hydrocarbon Based Magnetic Nanofluid (C1-20B) with Geothermal Viscosity, Proceedings of the Institution of Mechanical Engineers Part E: Journal of Process Mechanical Engineering, On-line first, https://doi.org/10.1177/09544089221079949, 2022
- [20] Rafiq, T., et al., Modelling Heat Transfer in Fluid-Flow Near a Decelerating Rotating Disk with Variable Fluid Properties, International Communications in Heat and Mass Transfer, 116 (2020), 104673
- [21] Shevchuk, V., Convective Heat and Mass Transfer in Rotating Disk System, Berlin, Heidelberg: Springer, New York, USA, 2009
- [22] Turkyilmazoglu, M., Senel, P., Heat and Mass Transfer of the Flow Due to a Rotating Rough and Porous Disk, Int. J. Thermal Science, 63 (2013), Jan., pp. 146-158
- [23] Mushtaq, A., Mustafa, M., Computations for Nanofluid-Flow Near a Stretchable Rotating Disk with Axial Magnetic Field and Convective Conditions, *Results Phys*, 7 (2017), Aug., pp. 3137-3144
- [24] Tassaddiq, A., et al., Heat and Mass Transfer Together with Hybrid Nanofluid-Flow over a Rotating Disk, AIP Adv., 10 (2020), 055317

S148

Jain, R., *et al.*: MHD Flow and Heat and Mass Transport Investigation Over ... THERMAL SCIENCE: Year 2023, Vol. 27, Special Issue 1, pp. S141-S149

- [25] Reddy, P. S., Heat and Mass Transfer Analysis of Unsteady Hybrid Nanofuidfow over a Stretching Sheet with Thermal Radiation, *SN Appl. Sci.*, *2* (2020), 7, pp. 1-15
- [26] Joshi, V. K., et al., Numerical Investigation of Magnetic Nanofluids Flow over Rotating Disk Embedded in Porous Mediu, *Thermal Science*, 22 (2018), 6B, pp. 2883-2895
- [27] Eid, M. R., Mabood, F., Thermal Analysis of Higher-Order Chemical Reactive Viscoelastic Nanofluids Flow in Porous Media Via Stretching Surface, Proc. Inst. Mech. Eng., Part C, *Journal Mech. Eng. Sci.*, 235 (2021), 22, pp. 6099-6110
- [28] Waston, L. T., Wang, C. Y., Deceleration of a Rotating Disk in a Viscous Fluid, *Phys. Fluids*, 22 (1979), 6, pp. 2267-2269
- [29] Xu, H., Liao S., A Series Solution of the Unsteady Von Karman Swirling Viscous Flows, Acta Appl. Math, 94 (2007), Jan., pp. 215-231
- [30] Xu, H., Modelling Unsteady Mixed Convection of a Nanofluid Suspended with Multiple Kinds of Nanoparticles between Two Rotating Disks by Generalized Hybrid Model, *Int. Commun. Heat and Mass Transf.*, 108 (2019), 104275
- [31] Ahmed, J., et al., Transient Thin Film Flow of Non-Linear Radiative Maxwell Nanofluid over a Rotating Disk, Phys. Lett., 338 (2019), 12, pp. 1300-1305
- [32] Pop, I., et al., The Effect of Variable Viscosity on Flow and Heat Transfer to a Continuous Moving Flat Plate, Int. J. Eng. Sci., 30 (1992), 24, pp. 1-6
- [33] Elbashbeshy, E. M. A., Bazid, M. A. A., The Effect of Temperature-Dependent Viscosity on Heat Transfer over a Continuous Moving Surface, *Journal Phy. D: App. Phy.*, 33 (2000), 3, pp. 2716-2721
- [34] Andersson, H. I., Aarseth, J. B., Sakiadis Flow with Variable Fluid Properties Revisited, Int. J. Eng. Sci., 45 (2007), 2-8, pp. 554-561

Paper submitted: April 1, 2022 Paper revised: April 14, 2022 Paper accepted: May 14, 2022 © 2023 Society of Thermal Engineers of Serbia Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions