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In this work, radial basis function collocation method (RBFCM) is implemented for 
generalized time fractional Gardner equation (GTFGE). The RBFCM is meshless 
and easy-to-implement in complex geometries and higher dimensions, therefore, it 
is highly demanding. In this work, the Caputo derivative of fractional order ξ ∈ (0, 1]  
is used to approximate the first order time derivative whereas, Crank-Nicolson 
scheme is hired to approximate space derivatives. The numerical solutions are pre-
sented and discussed, which demonstrate that the method is effective and accurate. 
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Introduction

In the last century, many remarkable contributions have been made to the applications 
and theory of the fractional differential equation (FDE). The FDE are commonly used to model 
problems in research areas as diverse as chaos synchronization, wave propagation phenom-
enon, mixed convection flows, control theory, anomalous diffusive, unification of diffusion, 
dynamical systems, heat transfer, image processing, mixed convection flows, unification of 
diffusion, entropy theory and mechanical systems [1-9]. The most significant advantage of ap-
plying FDE in these and some other applications is their non-local structure, which means that 
the next data not only depends on the current information but also on the previous information. 
Therefore, fractional differential operators provide an admirable tool to describe the memory 
and hereditary properties of various mathematical, physical and engineering models. Fractional 
partial differential equations (FPDE) contains the unknown multivariable function and its frac-
tional partial derivatives. The FPDE are used to model problems with functions of several vari-
ables, to find solution of many physical models. Mathematical methods to find a closed form 
solution for time FPDE (TFPDE) are considerable, amusing and in the wide sense, however, 
there does not exists any method that gives a closed form solution for non-linear FPDE because 
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of fractional derivatives in these equations [10]. Non-linear FPDE are commonly used for the 
description of different phenomena and dynamical processes in acoustics, engineering, material 
science, physics, viscoelasticity, electrochemistry and electromegnetics [11, 12].

The Gardner equation (GE) is an associate uniting of Korteweg-de Vries (KdV) and 
modified KdV equations, and that springs for example the outline of internal solitary waves 
in shallow water. The GE is widely utilized in numerous branches of physics, such as quan-
tum field theory, plasma physics and fluid physics. It additionally, describes a spread of wave 
phenomena in plasma and solid state. In plasma physics time fractional GE (TFGE) is used to 
investigate the non-linear propagation of ion-acoustic waves in an unmagnetized plasma that 
consist of negative ions, non-thermal electrons, positive ions and negative-ion-beam featuring 
the Tsallis distribution [13]. In this investigation, we consider the generalized TFGE (GTFGE):

2
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where ψ(x, t) is the source term, ξ – the time fractional derivative order, and ∂ ξw/∂tξ – the frac-
tional derivative in the Caputo sense.

Radial basis functions (RBF) methodology is one of the best techniques to find the 
numerical solution of fractional order models. The most important property of an RBF meth-
odology is it's meshfree nature because there is no need to create any mesh. Therefore, it can 
be applied easily to high dimensional problems since the computation of distance in any di-
mensions is straightforward. Kansa [14] was the one who introduced RBF collocation method 
(RBFCM) in order to solve PDE. In the same manner, Zerroukat et al. [15, 16] applied the 
MultiQuadrics (MQ) to find the solution of the heat transfer problem and to find the solution of 
linear advection-diffusion equations by applying the thin pate splines (TPS) and also discussed 
the stability. Not only integer order PDE [15] but also Kansa’s approach has been used to find 
the solution of fractional order PDE [17, 18]. In [19] the head-on collision of time fractional 
shock waves is discussed and also local RBFCM is applied to find the numerical solution of two 
sided time fractional KdV Burgers equations.

Formulation of the numerical scheme

This section is devoted to the formulation of the suggested numerical scheme. 

Time fractional derivative

The time fractional derivative ∂ ξw(x, t)/∂tξ in eq. (1), is the Caputo fractional deriva-
tive [20], which can be written:
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where ξ is the fractional order derivative, tm = mΔt, m = 0, 1, 2,..., N and Δt – the time step. The 
finite difference scheme is hired to discretize the classical derivative term:
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the first-order time derivative appearing in eq. (3) is approximated:
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and w0 = w(x, t = 0) = w0(x) is initial condition (IC).
Finally, eq. (5) can be written in precise form:
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Space fractional derivative

In the next step, Kansa’s method is applied and collocatew(x, tm+1) by RBF. The solu-
tion is interpolated at M different collocation points xj | j = 1, 2,..., M, where xj | j ∈ Ω are interior 
points while x1 and xM are boundary points, Ω represents a bounded domain and ∂Ω is its bound-
ary. The numerical solution of w(x, tm+1) can be expressed in terms of RBF:
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where i = 1, 2,..., M and λj
m+1 are the unknown coefficients at the (m + 1)th time level, ϕ(rij) is the 

RBF, and || ⋅ || – the Euclidean norm and rij = ||xi – xj||. 
Equation (7) can be written in matrix form:
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and the collocation matrix S 0 is given: 
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Generalized time fractional Gardner equation

Consider eq. (1) with the boundary conditions (BC):

	 ( , ) = ( , ), > 0,w x t g x t t x∈∂Ω
and IC 

0( ,0) = ( )w x w x (10)

Time derivative is discretized by Eq. (6) and space derivatives are discretized by 
Crank-Nicolson scheme (CNS). Equation (1) can be written:
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In eq. (11) non-linear terms (wwx)m+1 and (w2wx)m+1 are linearized, respectively:
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Now from eq. (8) it is known that wm+1 = λm+1S(0). Thus, eq. (12) can be written:
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Rewrite eq. (13) in the matrix form:
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where G1
m+1 is a column vector of order N × 1.
From eq. (8):
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This scheme can be used to find the numerical solution at any time level m. The W 0 is 
taken from the IC (10). The collocation matrix S is non-singular for distinct collocation points [21]. 

Numerical experiments

In this section, the derived RBF collocation scheme (12) is applied to solve the gov-
erning eq. (1). 
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Test Problem 1. Consider A1 = 1, A2 = 0, A3 = 0, and ψ(x, t) = x + xt2, in eq. (1), which 
is the non-linear time fractional advection equation, subject to the IC: 
	 w(x, 0) = 0 

In tab. 1, the results obtained by RBF collocation scheme are compared with the 
exact solution w(x, t) = xt as well as with results of adomian decomposition method (ADM) 
and variational iteration method (VIM) at ξ = 1for different t and x. From tab. 1, it can be 
noted that the solution obtained by RBFCM is more accurate as compared to that of VIM 
and less accurate to that of ADM. However, with the passage of time the results obtained by 
ADM become less accurate than the results obtained by RBFCM. In fig. 1, numerical values 
for different values of ξ are plotted, which demonstrate that, by increasing the value of time 
fractional order ξ, the amplitude and steepness decreases. In fig. 2, the numerical values at 
different values of t are plotted, which indicates that, the amplitude and steepness increases 
by increasing the timet t. Figures 3 and 4, the 3-D plot of numerical solutions for different 
fractional order ξ are plotted. 

Table 1. Comparison of numerical values when ξ = 1.0, Δt = 0.0001,  
c = 1500, and M = 21, for Test Problem 1 

 t  x  wAPP  wADM  wVIM  wEXACT 
 0.25  0.050024  0.050000  0.050309  0.050000 

0.2  0.50  0.100049  0.100000  0.100619  0.100000 
 0.75  0.150073  0.150001  0.150928  0.150000 
 1.0  0.200098  0.200001  0.201237  0.200000 
 0.25  0.100023  0.100023  0.101894  0.100000 

0.4  0.50  0.200046  0.200046  0.203787  0.200000 
 0.75  0.300069  0.300069  0.305681  0.300000 
 1.0  0.400093  0.400092  0.407575  0.400000 
 0.25  0.150005  0.150411  0.153094  0.150000 

0.6  0.50  0.300074  0.300823  0.306188  0.300000 
 0.75  0.450008  0.451234  0.459282  0.450000 
 1.0  0.600189  0.601646  0.612376  0.600000 

       
Figure 1. Numerical solution for different 
values of ξ at t = 0.2, Δt = 0.0001, c = 1500, 
and M = 21, for Test Problem 1 

Figure 2. Numerical solution for different 
values of t at ξ = 0.75, Δt = 0.1, c = 1500,  
and M = 21, for Test Problem 1
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Figure 3. Numerical solution against the position x and time t at Δt = 0.04, c = 1500,  
and M = 26, for ξ = 0.2 (a) and ξ = 0.5 (b), for Test Problem 1

 
Figure 4. Numerical solution against the position x and time t at Δt = 0.04, c = 1500,  
and M = 26, for ξ = 0.75 (a) and ξ = 0.9 (b), for Test Problem 1

Conclusion

In this work, RBFCM is applied to find the numerical solution of GTFGE. The time 
derivative is considered in Caputo sense and the scheme is derived for 0 < ξ < 1. Different test 
problems are included to check the efficiency and accuracy of the scheme, and that the current 
method is straightforward and simple. Results obtained by RBFCM are compared with ADM 
and VIM, which demonstrates the accuracy of the scheme. The numerical solutions are plotted 
for different values of ξ to show the influence of the fractional order ξ on the solution.
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