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In the present article, the fractional order differential difference equation is solved 
by using the residual power series method. Residual power series method solutions 
for classical and fractional order are obtained in a series form showing good ac-
curacy of the method. Illustrative models are considered to affirm the legitimacy of 
the technique. The accuracy of the chosen problems is represented by tables and 
plots which show good accuracy between the exact and assimilated solutions of 
the models.
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Introduction

Fractional calculus is viewed as an integral asset for demonstrating physical occur-
rence. Recently, the analysts have indicated the best enthusiasm towards fractional calculus 
since its several applications in wide areas of sciences. Regardless of a complex history of frac-
tional calculus, it seemed from an important question of L’Hospital. The dz/dx symbolize slope 
of a function what if we have d1/2y/dx1/2. To discover the appropriate response to this question, 
the mathematicians have figured out how to open another door of opportunities to improve the 
scientific demonstration of certifiable issues, which has brought forth numerous new questions 
and interesting outcomes. These recently settled outcomes have various execution in numer-
ous regions of engineering [1, 2], fractional Caputo Fabrizio derivative for hepatitis B virus 
[3], fractional modelling for disease of chickenpox [4], fractional blood ethanol concentration 
model [5], fractional order pine wilt disease model [6], fractional order pine wilt disease model 
[7], etc. Currently, the attention of the scholars is to improve various analytical and numerical 
techniques for the solution of FDE. Consequently, various types of numerical and semi analyt-
ical methods have been settled and used for the simulation of FDE [8, 9].
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In the existing study we have examined the fractional view of some significant frac-
tional differential difference equations (FDDE). These equations are basically the physical 
modelling of the nanotechnology problems e.g. electric current and flow in carbon nanotubes 
[10], electric lattices, molecular crystals and non-linear coupled optical waveguides and nano-
technology areas [11]. In this article we solved FDDE by using RPSM [12] which give the best 
evidence about the actual physical situation as compare to classical-order problems solution. 
Besides, the suggested method provided the solutions of the problems that have coincidence 
with the exact solutions. The procedure can be drawn towards other FPDE that are often hap-
pened in different field of real existence. The rest of the paper is sorted out as: in 2nd unit, we 
offered the fundamental definitions and hypothesis of the planned method, in 3rd unit we eval-
uated the numerical illustrations by means of the scheduled method and talked about the plots, 
and in 4th unit we in conclusion composed the end. 

Methodology and convergence analysis

Definition 1. [13] Multiple fractional power series (MFPS) of ℑ(s, t) centered at t = t0:
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Theorem 1. [13] Suppose that ℑ(s, t) has MFPS centered at t = t0:
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If  ℑ(s, t) is continuous on [t0, t0 + R] and Dµj ℑ(s, t) is differentiable on [t0, t0 + R] for  
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Consider a coupled fractional differential difference equation:
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where Dµi
t  is the Caputo fractional derivative, χ – the linear, and ℘ – the non-linear terms:
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Subject to Ei(s, 0) = βi(s).
The GRPSM assumes the solution of eq. (3) in multiple fractional power series form 

centered at t0 = 0:
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where mth truncated series of eq. (4) takes the form:
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If we take m = 0 then by eq. (5) we have zero order RPS truncated solutions:
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By the representation of E mi (s, t) the mth RPS approximate solution will be obtained 
when βij are available for j = 1,..., m. 

The residual function for eq. (3):
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We have some useful facts which are essential for RPSM [14]:
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this relation is essential rule in GPSM so fractional power series solution of eq. (3) is considered:
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Applications and discussion

Model 1. Fractional MKDV Lattice equation [15]:
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For µ = 1 exact solution of eq. (7) implies E(s, t) = btanh[ks + 2bt].
Using the process of RPSM we can write solution of eq. (7):
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Equation (8) further takes the form:
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where the initial approximation
 ( )0 tanh[ ]s b sβ =  (9)

Using algorithm, we write our 3rd order approximation:
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By putting all these values in eq. (10) we have:
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Table 1 display the comparison of RPSM and MLHM solution for classical MKDV 
lattice equation. Figure 1 display the 2-D plot of lattice equation using different values of µ it is 
experienced from the figure that space fractional order varies towards space integer order graph. 
Figure 2(a) and 2(b) represent exact and approximate surface of classical lattice equation.

Table 1. Comparison of absolute error of MLHM and RPSM at t = 0.4 and k = 0.2

s Abs error of 2nd 

order MLHM [16]
Abs error of 2nd 

order RPSM
Abs error of 4th  

order MLHM [16]
Abs error of 3rd  

order RPSM
–10 3.50 ⋅ 10–5 3.50081 ⋅ 10–5 3.43 ⋅ 10–5 2.47792 ⋅ 10–6

–6 8.61 ⋅ 10–5 8.60799 ⋅ 10–5 7.96 ⋅ 10–5 2.72077 ⋅ 10–6

–2 1.461 ⋅ 10–4 1.46099 ⋅ 10–4 1.446 ⋅ 10–4 2.26698 ⋅ 10–5

2 1.048 ⋅ 10–4 1.04839 ⋅ 10–4 1.086 ⋅ 10–4 2.85904 ⋅ 10–5

6 8.44 ⋅ 10–5 8.44154 ⋅ 10–5 7.94 ⋅ 10–5 1.05628 ⋅ 10–6

10 3.06 ⋅ 10–5 3.06169 ⋅ 10–5 3.01 ⋅ 10–5 1.91326 ⋅ 10–6

Figure 2. (a) Numerical solution of MKDV lattice equation at µ = 1 and (b) exact solution

Figure 1. Numerical solution 
of fractional MKDV lattice 
equation at t = 0.4 and k = 0.2
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Model 2. Time fractional Toda Lattice non-linear differential difference equation [16]:
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With IC’s
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For µ = λ = 1 exact solution for given system is:
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where α, ϑ, and δ are constant.
Using the process of RPSM we can write solution of eq. (11):
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Equation (13) can further be written:
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Where the initial approximation:
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Using algorithm we write our 3rd order approximation for E1(s, t) and E2(s, t) of  
eq. (11):
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Using eq. (14) we compute:
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By putting all these functions in eq. (15) we have:
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Table 2 demonstrate the result for E1(s, t)
 
part of fractional Toda non-linear lat-

tice equation using different values of µ. Figures 3(a) and 3(b) shows the space graph for 
 E1(s, t) and E2(s, t) parts of coupled system. It is observed from the graphs that space fractional 

order converges towards space integer order graph. Figure 4 display the time graph for E1(s, t) 
and E2(s, t) parts of coupled system. It is observed that absolute error of time fractional order 
converges to zero as we move from fractional to classical order. 

 Table 2. Solution of RPSM for E1(s, t) part of fractional Toda Lattice equation at t = 1 

s 3rd order RPSM  
at µ = 1/3

3rd order RPSM  
at µ = 2/3

3rd order RPSM  
at µ = 1 Abs error

–40 –1.1032490 –1.1032492 –1.1032494 2.3896923 ⋅ 10–7

–20 –1.0989432 –1.0989516 –1.0989649 1.0048038 ⋅ 10–5

–20 –1.0748055 –1.0748520 –1.0749348 2.6070591 ⋅ 10–5

10 –0.9224896 –0.9225354 –0.9226189 6.6221259 ⋅ 10–4

20 –0.9061378 –0.9061462 –0.9061595 1.2641990 ⋅ 10–4

40 –0.9033832 –0.9033833 –0.9033836 2.4500022 ⋅ 10–6
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Figure 3. Numerical solution for E1(s, t) (a) and (b) E2(s, t) parts  
of fractional Toda Lattice equation at t = 4

Figure 4. (a), (b) display absolute error graph for E1(s, t) (a) and (b) E2(s, t) part of eq. (11) at  
s = 40 seconds 

Conclusion

In the current article, we presented some FDDE, arising in modern sciences. A novel 
and classy technique, which is identified as RPSM is applied for both fractional and classical 
problems. For pertinence and unwavering quality of the proposed method, some illustrative 
models are solved. It has been explored through graphical and tabulated results that the current 
method gives a precise and meriting investigation about the physical occurring of the problems. 
Also, the current method is favored when contrasted with other technique in light of its better 
pace of convergence. This course rouses the scientists towards the execution of the present 
method for other non-linear FDE.
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