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A Haar wavelet collocation method (HWCM) is presented for the solution of Ric-
cati equation subject to the two-point and integral boundary condition. The qua-
silinearization technique is applied to linearized the Riccati equation and then the 
linearized equation with boundary condition is solved by converting into system of 
algebraic equation with the help of Haar wavelets. We have considered three dif-
ferent form of Reccati equation, two having integral boundary condition and one 
with two-point boundary condition. The numerical results obtained by HWCM are 
stable, efficient and convergent. 
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Introduction

The Riccati equation has importance in a variety of fields of engineering and applied 
research like phenomena related to transmission-line, optimal control theory, random process 
theory, diffusion and convection problems [1, 2]. Therefore, engineers and scientists are try-
ing to solve accurately the Riccati differential equations. Because a large number of Riccati 
equations cannot be handle using conventional analytical techniques, alternatively they must 
be solved using numerical techniques or approximation methodologies. Different iterative and 
perturbation numerical procedures like Adomian’s decomposition method [3], variational itera-
tion method [4], homotopy perturbation method [5], decomposition method [6], and piecewise 
variational iteration [7] method are presented recently for the solution of Riccati equation. We 
consider the first-order Riccati equation:

2d ( ) ( ) ( ) = 0
d
y f x y g x y h x
x
+ + + (1)
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subject to the integral boundary condition:

( ) ( ) ( ) =
b

a

y a y b y x dx α+ + ∫ (2)

where f(x), g(x), h(x) are functions of independent variable and α is given known constant.
Riccati differential equation is a subclass of non-linear differential equations that play 

an important role in a variety of sectors of applied research. A 1-D static Schrodinger equation, 
for example, is strongly connected to the Riccati differential equation. A polynomial in two el-
ementary functions meeting a projective Riccati equation can be represented as a solitary wave 
solution of a non-linear partial differential equation [8].

The Haar wavelet scheme is a collocation-based method that has gained popular-
ity in recent years and is widely used to solve a variety of problems in numerical analysis, 
signal processing, and other applicable domains. The Haar wavelet is presented in weak and 
strong formulations like Daubechies wavelet method [9], wavelet collocation techniques  
[10, 11], wavelet mesh-less schemes [12], and wavelet-Galerkin method [13]. Many Haar func-
tion-based methodologies have been used by many researchers to tackle various challenges in 
science and engineering [14, 15]. The Haar wavelet approach has lately been utilized to solve 
linear and non-linear direct and inverse problems [16-21]. In current technology, the Haar func-
tion is often employed to identify software piracy [22].

Haar wavelets as a strong computing tool for the solution of differential equation has 
also been used for the Riccati differential equation. In [23], the Haar wavelets are applied to eq. 
(1) with the simple boundary condition y(0) = α. The Riccati differential equation is solved by  
Haar wavelets operational matrix method in [2] with simple boundary condition y(0) = α. The  
Haar wavelets and high order Haar wavelets methods are also used for eq. (1) with the simple 
boundary condition y(0) = α, where the results of the higher order methods are far better the the 
previous one. To solve eq. (1) by Haar wavelets method with the integral boundary condition 
defined in eq. (2) is challenging and classical one, therefore, it is considered in this study.

In this paper, a technique based on Haar wavelet is introduced such that the highest 
order derivative in the Reccati equation is approximated by Haar series. Due to the discontinu-
ity of the Haar wavelets, one time integration of the Haar wavelet series is preferred to get the 
expression for y. Through quasilinearization and then the Haar wavelets series, we can express 
the Reccati equation into Haar matrix of order 2M × 2M, which can be easily solved. 

Haar wavelets

For x ∈ [a, b] the Haar function can be described:

1 2

2 3

1 if [ ( ), ( ))
( ) = 1 if [ ( ), ( ))

0 otherwise
i

x i i
h x x i i

ν ν
ν ν

∈
− ∈



(3)

where 

1 2 3
( ) ( )( 0.5) ( )( 1)( ) = , ( ) = , and ( ) =b a k b a k b a ki a i a i a

m m m
ν ν ν− − + − +

+ + + (4)

where k is the translation parameter and m – the level of the wavelet such that i = m + k + 1,  
k = 0, 1,...,m – 1, m = 2j, j = 0, 1, ...Considering the nth time integration of the Haar function, 
we get:
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∫ ∫ ∫ (5)

For i = 1, we define:

 
1 1,

1, [ , ] ( )( ) = mother wavelet, and ( )
0 elsewhere !

n

n
x a b x ah x p x

n
∈ −

= =


Haar wavelet collocation method 

The non-linear term in eq. (1) can be approximated by using the quasilinearization 
technique [24]:

2 1 1 2( ) 2 ( )n n n ny y y y+ +≈ − (6)

From eqs. (1) and (6) we obtain:

1 2d ( )(2 ) ( ) = ( )( ) ( )
d

n n ny f x y y g x y f x y h x
x

++ + − (7)

Now to approximate the linearized eq. (7) with the given boundary condition (2) the 
wavelets expansion can be written:

2

=1

d = ( )
d

M

i i
i

y a h x
x ∑ (8)

Integrating eq. (8) with respect to x, we get:
2

,1 0
=1

( ) = ( )
M

i i
i

y x a p x c+∑ (9)

where c0 is the unknown integration constant. By putting eqs. (8) and (9) in eq. (7), we get:
2

,1 ,1 0
=1

( ( ) ( )(2 ( ( ))) ( ) ( )) ( ( )(2 ) ( )) = ( )( ) ( )
M

n n n
i i i i

i

a h x f x y p x g x p x c f x y g x f x y h x+ + + + −∑ (10)

Introducing the collocation points:

 
( )( 0.5)=

2j
b a jx a

M
− −

+
   = 1,2,..., 2j M

we get the following 2M equation in 2M + 1 unknowns: 
2

,1 ,1
=1

0

( ( ) ( )(2 ( ( ))) ( ) ( ))

( ( )(2 ) ( )) = ( )( ) ( )

M
n

i i j j i j j i j
i

n n
j j j j

a h x f x y p x g x p x

c f x y g x f x y h x

+ + +

+ + −

∑
(11)
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The remaining one equation can be obtained from the given boundary condition (2):
1

0
2

,1 ,2 0
=1

(0) (1) ( ) =

( (1) (1)) 3 =
M

i i i
i

y y y x dx

a p p c

α

α

+ +

+ +

∫

∑
(12)

Now we have a complete system of 2M + 1 equations with 2M + 1 unknowns includ-
ing 2M Haar coefficient, ai, and single constant of integration, c0. After finding ai and c0 and 
then using them in eq. (9) the required solution based on Haar wavelet to the Reccati equation 
can be obtained. 

Results and discussion

We apply the HWCM to Reccati equation and used the experimental convergence 
order and the maximum error to observe the performance and accuracy of the current approach, 
which are defined:

 

( ) = log( ( / 2) / ( )) / log(2)
= (| ( ) ( ) |)max

R

M
a x b

C M L M L M
L y x y x

∞ ∞

∞
≤ ≤

−

To present the time efficiency, we have used the second unit of time in different tables.
Test Problem 1. Consider the Riccati equation:

2d = 1
d
y y
x

− (13)

subject to the integral boundary condition:
1

0

( ) = 0.4337y x dx∫ (14)

The exact solution of the aforementioned problem is

  

2

2
1( ) =
1

x

x
ey x
e

−
+

The approximate solution of Riccati equation are interpolated using eq. (9) for different points 
with different values of J, which are given in tab. 1. The point wise approximate solution along 
with the absolute error are shown in fig. 1, where the numerical results obtained after 10 number 
of iterations are in good agreement with the exact solutions. 

Figure 1. Comparison of 
exact solution and error for 
Test Problem 1
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Table 1. The L∞ error of HWCM for Test Problem 1

x L∞ HWCM
M = 8 M = 16 M = 32

0.1 1.0229 ⋅ 10–4 9.8588 ⋅ 10–5 1.0521 ⋅ 10–4

0.2 1.0483 ⋅ 10–4 1.1633 ⋅ 10–4 1.0167 ⋅ 10–4

0.3 1.0668 ⋅ 10–4 1.2139 ⋅ 10–4 9.8156 ⋅ 10–5

0.4 2.1834 ⋅ 10–4 9.6383 ⋅ 10–5 9.8646 ⋅ 10–5

0.5 1.2042 ⋅ 10–4 3.2526 ⋅ 10–5 7.0735 ⋅ 10–5

0.6 2.0839 ⋅ 10–4 7.9084 ⋅ 10–5 8.3862 ⋅ 10–5

0.7 6.4956 ⋅ 10–5 9.6859 ⋅ 10–5 6.7263 ⋅ 10–5

0.8 3.9687 ⋅ 10–5 8.3192 ⋅ 10–5 5.8005 ⋅ 10–5

0.9 1.1879 ⋅ 10–4 4.1710 ⋅ 10–5 5.5953 ⋅ 10–5

0.0 2.1502 ⋅ 10–4 2.0288 ⋅ 10–5 2.8361 ⋅ 10–5

Test Problem 2. Consider the non-linear equation of the form:
2d = 1 2

d
y y y
x

+ − (15)

subject to the integral boundary condition: 
1

0

(0) ( )d = 0.7891y y x x+ ∫ (16)

The exact solution of eq. (15) is given:

( )( )
( )

2 2

2 2

1 2 1
( ) =

1 3 2 2

x

x

e
y x

e

− + − +

+ −
(17)

The maximum absolute error, convergence rate and CPU time for Test Problem 2 are 
given in tab. 2. It is clear from the table that the error decreases when the value of J increases 
that means that by increasing the collocation point the accuracy increases. The comparison 
of numerical solution obtained by 10 iteration is performed with the exact solutions in fig. 2, 
where the absolute errors are also shown having magnitude of 10–4.

Table 2. Results of HWCM for Test Problem 2
M HWCM

 L∞ CR CPU time

2 1.4448⋅ 10–2 – 0.0027

4 3.7005⋅ 10–3 1.9651 0.0073

8 9.0340⋅ 10–4 2.0343 0.0098

16 2.1018⋅ 10–4 2.1037 0.0414

32 3.6116⋅ 10–5 2.5409 0.0929

 



Ahsan, M., et al.: The Haar Wavelets Based Numerical Solution of Reccati ... 
S98 THERMAL SCIENCE: Year 2023, Vol. 27, Special Issue 1, pp. S93-S100

Figure 2. Comparison of exact solution with HWCM at J = 4 for Test Problem 2

Test Problem 3. Considering the variable coefficients non-linear differential equation: 
2

3
d 1 1= 2
d
y x y y
x x x

− + (18)

with two point boundary condition y(1) = y(1/2). The exact solution of the previous problem:
3 22 30( ) =
2 15
x xy x

x
+
+

(19)

For Test Problem 3 the error is calculated in the internal points of the interval as 
shown in tab. 3. The numerical and exact solution are computed for two different values of J  
(J = 4 and J = 5). From the table it is clear that by increasing the values of J the error decreases. 
The comparison of exact and numerical solution are present at 32 points, which have very small 
amount of difference of 10–5 as seen in fig. 3. The The maximum absolute error, convergence 
rate and CPU time are given in tab. 4, which shows that the HWCM is time efficient and con-
vergent. 

       Table 3. Comparison of numerical solution, exact solution and  
       error of HWCM at J = 4 and J = 5 for Test Problem 3

x J = 4 J = 4

HWCM Exact Error HWCN Exact Error

0.1 0.0196986 0.0198684 1.6976E ⋅ 10–4 0.0198643 0.0198684 4.0712 ⋅ 10–6

0.2 0.0789472 0.0789610 1.3799 ⋅ 10–5 0.0789200 0.0789610 4.0941 ⋅ 10–5

0.3 0.1765265 0.1765384 1.1888 ⋅ 10–5 0.1764985 0.1765384 3.9950 ⋅ 10–5

0.4 0.3117423 0.3118987 1.5635 ⋅ 10–4 0.3118958 0.3118987 2.9065 ⋅ 10–6

0.5 0.4839347 0.4843750 4.4023 ⋅ 10–4 0.4842649 0.4843750 1.1006 ⋅ 10–4

0.6 0.6931775 0.6933333 1.5583 ⋅ 10–4 0.6933294 0.6933333 3.8710 ⋅ 10–6

0.7 0.9381507 0.9381707 1.9947 ⋅ 10–5 0.9381313 0.9381707 3.9393 ⋅ 10–5

0.8 1.2182872 1.2183132 2.5974 ⋅ 10–5 1.2182727 1.2183132 4.0499 ⋅ 10–5

0.9 1.5330463 1.5332142 1.6789 ⋅ 10–4 1.5332056 1.5332142 8.5900 ⋅ 10–6

1.0 1.8819127 1.8823529 4.4023 ⋅ 10–4 1.8822428 1.8823529 1.1006 ⋅ 10–4
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       Table 4. Results of HWCM for Test Problem 3
 M  HWCM 

 L∞  CR CPU time

2  9.9696 ⋅ 10–4  –  0.0104

4  3.4456 ⋅ 10–4  1.5328  0.0049

8  9.9388 ⋅ 10–5  1.7935  0.0093

16  2.6594 ⋅ 10–5  1.9019  0.0191

32  6.8729 ⋅ 10–6  1.9521  0.0518

  
Figure 3. Comparison of exact solution with HWCM at J = 4 for Test Problem 3

Conclusion

In this work, HWCM is applied to solve Reccati equation with constant and variable 
coefficients along with different types of boundary conditions. To linearize the Reccati equation 
the quasilinearization technique has been introduced and then Haar wavelets are used to ap-
proximate the differential equation. The results of the proposed method are numerically stable. 
The HWCM is efficient and gives acceptable and accurate solutions. The HWCM is simple 
and accurate numerical technique which is applied to non-linear ODE and can be extended to 
solve PDE with various boundary conditions without any difficulty, as compared to the other 
numerical methods.
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