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In this article, we propose a new technique based on 2-D shifted Legendre poly-
nomials through the operational matrix integration method to find the numeri-
cal solution of the stochastic heat equation with Neumann boundary conditions. 
For the proposed technique, the convergence criteria and the error estima-
tion are also discussed in detail. This new technique is tested with two exam-
ples, and it is observed that this method is very easy to handle such problems 
as the initial and boundary conditions are taken care of automatically. Also, the 
time complexity of the proposed approach is discussed and it is proved to be  
O[k(N + 1)4] where N denotes the degree of the approximate function and k is the 
number of simulations. This method is very convenient and efficient for solving 
other partial differential equations.
Key words: stochastic PDE, heat equation, error analysis, operational matrices,  

shifted legendre polynomials

Introduction

Stochastic differential equations and stochastic integral equations arise as a result of 
the addition of one or more random elements to deterministic differential and integral equa-
tions, respectively. Such random elements are often considered as noise. Such models help in 
studying the random phenomena arising in various physical, biological, or economic changes 
in fields like mechanics, medicine, population dynamics, finance, etc. [1]. Stochastic partial 
differential equations (SPDE) find wide applications in the fields of mathematical physics, en-
gineering, financial mathematics, and financial physics, such as random interface growth, ran-
dom evolution of surfaces, fluids subject to random forcing, asset pricing theory, and pricing of 
financial derivatives, etc. The applications of stochastic functional equations in various fields 
can be found in [2-6]. In most of the aforementioned situations, finding the analytic solution the 
problem modelled is not an easy task. An alternate method to solve such functional equations 
(both linear and non-linear) is to approximate the unknown function in terms of a linear combi-
nation of the basis functions of suitable polynomials [2].

* Corresponding author, e-mail: drumad2018@gmail.com



Raja Balachandar, S. et al.: Numerical Solution for Stochastic Heat Equation ... 
S58	 THERMAL SCIENCE: Year 2023, Vol. 27, Special Issue 1, pp. S57-S66

The stochastic heat equation that we consider in this article has been obtained by re-
placing the space-time white noise Ẇ(t, x) as given in [7] by time white noise dB(t)/dt. Hence, 
the new equation takes the form:

2

2
( , ) ( , ) d ( )= ( , )

d
u x t u x t B tb u x t

t tx
σ∂ ∂  + + ∂ ∂  

(1)

where u is a function of (x, t) and t ≥ 0, x ∈ [0, 1] and the Neumann boundary conditions given:

0
( ,0) ( ,1)( ,0) = ( ); = = 0, > 0u t u tu x u x t
x x

∂ ∂
∂ ∂

(2)

The constants b and σ belong to real numbers, are the drift and diffusion co-efficient, 
respectively. Also, u0(x) : [0, 1] → R is the initial condition. The b, σ are Lipschitz continuous 
for some constants Cb, σ. The space (Ω, F, P) is called the probability space. Here, u(x, t) is the 
unknown function. The B(t) is the 1-D Brownian motion process.

The generalisation of the previous equation is an SPDE with reflection, in particular, 
a stochastic heat equation given:

[ ]
2

,2
( , ) ( , )= ( , ) x t

u x t u x t f u x t W
t x

∂ ∂
+

∂ ∂
 (3)

with the aforementioned Neumann Boundary conditions. In this equation, authors have con-
sidered a space-time white noise on a probability space (Ω, F, P). It has been proved that the 
solutions of the previous equation depend continuously on the function f. The stability proper-
ties of the solution are also discussed for the function f. Next, we discuss some of the literature 
pertaining to stochastic heat equations.

Fundamental solutions of parabolic equations with time-dependent coefficients have 
been studied in [8], along with the existence and uniqueness of the solution for the stochastic 
reaction-diffusion equation. Computational methods based on wavelets were studied by Aidoo 
and Wilson in [9] and they considered three different types of stochastic equations with random 
inputs. It has also been established in that article that the solution obtained through the wavelets 
method is stable. Chen et al. [10], the boundedness parameter has been studied for the sto-
chastic heat equation. The stochastic heat equation with non-homogeneous Neumann boundary 
conditions has been investigated in [11] where the finite element method has been implemented 
to discretize the spatial co-ordinates and the linear implicit Euler method has been implement-
ed to discretize the temporal co-ordinates. An implicit Euler scheme with non-uniform time 
discretization has been adopted where the error bound is achieved in terms of the number of 
evaluations of 1-D components of Brownian motion. The path-wise uniqueness of the solution 
the stochastic heat equation has also been discussed in [12]. Also, the stability properties of the 
stochastic heat equation have been carried-out in various perspectives.

Not only motivated by the aforementioned works but also due to the limited availabil-
ity of literature on the study of approximate solutions to the stochastic heat equation, we have 
employed the shifted version of Legendre polynomials called 2-D shifted Legendre polyno-
mials (2-DSLP) to obtain an approximate solution of eq. (1) in the interval (0, 1) × (0, 1). The 
usage of shifted Legendre polynomials has provided fruitful results for various other works 
undertaken in [13]. The operational matrices of integration are coupled with the salient proper-
ties of these polynomials to convert the given problem into a system of simultaneous algebraic 
equations. Solving these equations provides the required numerical solution.
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Mathematical background 

The basic definitions of stochastic calculus [14], which are required for our further study, 
have been highlighted in this section. The concept of Brownian motion in 1-D, which is consid-
ered to be an important tool in the development of stochastic calculus, is available in [15, 16].

Definition 1. Let p ≥ 2 and Lp(Ω, H) be the collection of all strongly measurable ran-
dom variables and if:

 	

1/
1/

|| || | | = | | dp

p
pp p

LV E V V P
Ω

 
  =    
 
∫

	
for each V ∈ Lp(Ω, H) then Lp(Ω, H) is a Banach space. 

Definition 2. Let A, B ∈ [0, T] → R and if:

	
[ ]

0 0

( ) ( ) ( )d for 0, then ( ) ( )d
t t

A t B s A s s t T A t B s sλ λ
 
 ≤ + ∈ ≤
  

∫ ∫
 

for all t ∈ [0, T] with λ ≥ 0. 
Definition 3. The sequence Xn converges to X in L2 if:

	 ( ) ( )22| | < and 0 whenn nE X E X X n∞ − → →∞

Lemma 4. The Ito isometry of f ∈ v(s, T) f is given:

	
[ ]2 2( , )d ( )( ) = ( , )d

T T

s s

E f t w B t w E f t w t
   

        
   
∫ ∫

Shifted Legendre polynomials

Preliminaries and properties

The Legendre polynomials Pn(z) are the solutions of Legendre’s differential equation. 
The orthogonal property of Legendre polynomials is defined as:

 	

1

1

2( ) ( )d =
2 1n m nmP z P z z

n
δ

−
+∫

where δnm is the Kronecker delta. The shifted Legendre polynomials are derived from Pn(z) by 
replacing z by 2t-1, denoted by Ln(t) thereby refined interval is [0,1]. The detailed information 
about the orthogonality of shifted Legendre polynomials, its analytic form and the vector form 
of L(t) can be found in [13]. 

The matrix form of L(t) which is of degree N can be represented:

1 2
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Thus:

( ) = ( )L t DY t (5)

The 2-DSLP are defined on Δ = [0, K1] × [0, K2]:

	 1 2

2 2( , ) = 1 1 , , = 0,1,2,...ij i jL x y L t L s i j
K K

   
− −   

   

We consider the space L2(Δ) equipped with the following inner product and norm:

	

1 2

0 0

( , ), ( , ) = ( , ) ( , )d d
K K
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where u(x, y), v(x, y) are arbitrary functions. The set of 2-DSLP forms a complete L2(Δ) orthog-
onal systems such that the orthogonality condition:

	

1 2 1 2

0 0

, for = , =
(2 1)(2 1)( , ) ( , )d d =

0 otherwise

K K

ij mn

K K i m j n
i jL x y L x y x y


 + +
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∫ ∫
 

Any arbitrary function u(t) ∈ L2[0, 1] can be approximated in terms of Ln(t):

=0

( ) = ( )n n
n

u t u L t
∞

∑ (6)

from which the coefficients uj are given:
1

0

= (2 1) ( ) ( )d , = 0,1,...j ju j u x L x x j+ ∫ (7)

Approximating u(t) by the first (N + 1) terms:

=0

( ) ( ) = ( ) = ( )
N

T T
n n

n

u t u L t U L t L t U∑ (8)

where U is the shifted Legendre coefficient vector given by U = [u0, u1,..., uN]T.
Similarly, an arbitrary function u(x, y) ∈ L2(Δ) can be expressed by 2-DSLP:

=0 =0

( , ) = ( ) ( ) = ( ) ( )T
ij i j

i j

u x y u L x L y L x UL y
∞ ∞

∑∑ (9)

Approximating the previous equation by the first N + 1 terms:

=0 =0

( , ) ( ) ( ) = ( ) ( )
N N

T
ij i j

i j

u x y u L x L y L x UL y∑∑ (10)
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Operational matrices

This section discusses the concept of constructing the operational matrices for the 
shifted Legendre polynomials using integration. In addition, the stochastic operational matrix 
of integration of order (N + 1) × (N + 1) is derived. 

Operational matrices of integration

The integrals of Ln(s) are evaluated with the aid of recurrence property of Ln(t):

[ ]1 1
0

1( )d = ( ) ( )
2(2 1)

t

n n nL s s L t L t
n + −−
+∫ (11)

Therefore:

1
0

1( ) = ( ) ( )
2(2 1)

t

nL s ds PL t L t
n +−
+∫ (12)

where P is the matrix, which denotes the integration matrix of polynomials. The integration of 
the vector L(t) can be approximated from eq. (12):

0

( )d ( )
t

L s s PL t∫  (13)

Hence any function u(t) can be approximated:

0 0

( )d ( )d = ( )
t t

T Tu s s U L s s U PL t∫ ∫ (14)

Stochastic operational matrix of shifted Legendre polynomials

For the the vector L(t), we define its Ito integral with stochastic matrix which is de-
rived with the help of integration and is given:

1

0

( )d ( ) = ( )sL s W s P L t∫ (15)

where Ps is the stochastic operational matrix of integration whose order is (N + 1) × (N + 1) and 
they are calculated:

	

0 0

0 0 0

1

0 0
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= ( ) ( ) 0 d ( )... d ( )

t t
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N

Tt t
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 
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∫ ∫
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∫ ∫

(16)

( )iD λ= (17)
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where each

 	

1

0
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t
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Evaluating the integral for each i, we get:

	

1
1( ) 2 ( ) 1 ( )

4 2 2 4 2 2
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−
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We assume that W(0.5) and W(0.25) are the approximate value of W(t) and W(t/2), 
respectively for any value of t in [0,1]. Hence:

1 1

( )
(0.5) 0 0

13 10 (0.5) (0.25) 0
4 2

0 0 1 (0.5) (0.25)
4 2

( ) ( ) ( ), where
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N

N
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=
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Therefore, the Ito integral of an arbitrary function u(t) can be represented:

0 0

( )d ( ) = ( )d ( ) = ( )
t t

T T
su s W s U L s W s U P L t∫ ∫ (18)

Proposed methodology

Consider the stochastic heat equation introduced in section Introduction:
2

2
( , ) ( , ) d ( )= ( , )

d
u x t u x t B tb u x t

t tx
σ∂ ∂  + + ∂ ∂  

(19)

with assumptions and boundary conditions as in eq. (2). Integrating eq. (19) with respect to t, 
together with the boundary conditions, we get:

2

0 2
0 0 0

( , )( , ) = ( ) d ( , )d ( , )d
t t t

u xu x t u x b u x u x B
x
τ τ τ τ σ τ τ∂

+ + +
∂∫ ∫ ∫ (20)

where the third integral is an Ito integral. Approximating ∂2u(x, t)/∂x2 using 2-DSLP:
2

2
( , ) ( ) ( )Tu x t L x UL t
x

∂
∂


(21)

where U = [uij] is a square matrix of order (N + 1)which is to be determined. Integrating eq. (21) 
twice with respect to x successively:

( , ) ( ) ( )T Tu x t L x P UL t
x

∂
∂

 (22)

and 
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( )2( , ) (0, ) ( ) ( )T Tu x t u t L x P UL t+
(23)

Using the boundary conditions, it is understood that u(0,t) = k (a constant):

	 2( , ) ( ) ( ) ( )( ) ( )T T Tu x t L x KL t L x P UL t+

therefore:

( )2( , ) ( ) ( ),  =T Tu x t L x ML t M K P U+ (24)

Using the aforementioned approximation, eq. (20) becomes:

0( , ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T T
su x t L x U E L t L x UPL t bL x MPL t L x MP L tσ+ + + (25)

which in turn, gives:

0( , ) = ( )[ ] ( ) = ( ) ( )T T T
su x t L x U E UP bMP MP L t L x UL tσ+ + +  (26)

where

 	 0= T
sU U E UP bMP MPσ + + + 



and E, the shifted Legendre coefficient vector of the unit step function.
We generate (N + 1)2 linear algebraic equations based on the connection coefficients, 

ui,j, i, j = 0 to N, using the following equation and to find the solution of the equation given in 
(1) numerically:

( )
1 1

0 0

( ) ( ) ( ) ( ) ( , )dxd = 0; , = 0 toT
i jL x M U L t L x L t w x t t i j N − ∫ ∫ (27)

Convergence analysis

The error function is defined and the convergence of the error function zero is estab-
lished in the following theorem. 

Theorem 5. Let u(x, t) and uN(x, t) be the exact and approximate solutions of (19) 
with boundary conditions (2). Let eN denote the error function eN(x, t) = u(x, t) – uN(x, t). Also, 
assume that:

|| u(x, t)|| < ∞ 

	

2

12
( , )

<N
N

e x t
M e

x
∂

∂

then for large values of N, ||u(x, t) – uN(x, t)|| tends to 0 where ||u||2 = E[|u|2]. 
 Proof. We begin with eq. (20) 

	

2

2
0 0 0

( , )
( , ) = d ( , )d ( , )d ( )

t t t
N

N N N N
e x

e x t b e x e x B R x
x

τ
τ τ τ σ τ τ

∂
+ + +

∂∫ ∫ ∫
where RN(x) is the residual error of u0(x). Let this be written as eN(x, t) = I1 + I2 + I3 + RN(x).

Considering:

	

2
2 2 2

2 2 2 2 2 2
1 1 12 2 2

0 0 0

( , ) ( , ) ( , )
= d , | | =| d | d

t t t
N N N

N
e x e x e x

I I M e
x x x

τ τ τ
τ α τ α τ α

 ∂ ∂ ∂ ≤ ≤
∂ ∂  ∂  
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Taking expectation results:

1 1 NI M e≤ (28)
Similarly, taking expectation results by considering I2 and I3, we have:

2 NI be≤ (29)

3 NI eσ≤ (30)
Equations (28)-(30) and the property (l + m + n + o)2 ≤ 4(l2 + m2 + n2 + o2) results in:

	 ( )
2

2 2 2 2 2 2 2 2
1 2 2 2

1

4 ( )
( , ) 4 ( )

1 4

N
N N N N N

R x
e x t M e b e e R x

M b
σ

σ
 ≤ + + + ≤  − + +

For large values of N, the residual error tends to 0 and hence eN(x, t) becomes 0. 

Time complexity

The total number of arithmetic operations required for the proposed method is dis-
cussed in the following theorem. 

Theorem 6. Suppose that N and k are the degree of the approximate function and 
the number of simulations, respectively, then the time complexity of this proposed method is  
O[k(N + 1)4].

Proof. The total number of arithmetic operations required to compute the each of 
the matrices D, P, Γs, Ps, U, M, U

~
 is (N + 1)4. In addition, (N + 1)4 operations are required to 

determine the values of the unknown coefficients. Hence, the overall time complexity of this 
proposed method is (N + 1)4 to perform K runs. 

Numerical examples

To illustrate the applicability, effectiveness, and reliability of the proposed method, 
some illustrative examples are considered in this section. The computational work has been car-
ried out using MATLAB. The N and k represent the highest degree of the approximate function 
and the number of simulations, respectively. A simulation study was carried out by assigning 
different values of N and k.

Example 1. We consider the stochastic heat equation of the type 

	

2

2
d ( )= ( , )

d
u u B tb u x t
t tx

σ∂ ∂  + + ∂ ∂  
with regard to the constraints 
	 ( ,0) = 3 2cos( ),  (0, ) = (1, ) = 0x xu x x u t u t− π

The 2( , ) = 3 2cos( )exp( )u x t x t bt− π −π +  is the exact (deterministic) solution of the 
problem for σ = 0. The graph of the approximate solution for σ = 0 obtained by the proposed 
methodology is shown in fig. 1(a). We observe that the results obtained through the proposed 
algorithm match the exact solution while increasing the values of the parameters involved in 
the function approximation. The figures reveal that the approximate solution is very close to 
the exact solution. The graph of the approximate solution for σ = 1 and b = 1 obtained by the 
proposed methodology is shown in fig. 1(b). 

Example 2: Next, we consider the stochastic heat equation

	

2

2
1 d ( )= 1 ( , )
4 d

u u B t u x t
t tx

σ∂ ∂  + + ∂ ∂  
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with respect to the constraints

	
2( ,0) = (15 ), (0, ) = (1, ) = 0,  0 < < 1,   > 0x xu x x x u t u t x t−

The graph of the approximate solution for σ = 0 obtained by the proposed method-
ology, is shown in fig. 2(a). The graph of the approximate solution corresponding to σ = 1 and  
b = 1 is shown in fig. 2(b).

 
Figure 1. The Graph of the approximate solution for Example 1 

Figure 2. The Graph of the approximate solution for Example 2

Conclusion

This paper discusses a fast approximation method for solving a stochastic heat equa-
tion with Neumann boundary conditions. To solve the given equation, stochastic operational 
matrices for stochastic integration and fractional stochastic integration have been constructed. 
The shifted Legendre polynomial matrix is a triangular matrix. As a result, the dual matrix 
is found to be diagonal. This is a noteworthy characteristic when working with the shifted 
Legendre polynomial. The proposed methodology has undergone theoretical research, and the 
method’s applicability has been statistically validated by using numerical examples. The pro-
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posed approach’s time complexity is also discussed, and it is proven to be O[k(N + 1)4], where 
N is the degree of the approximate function and k is the number of simulations.This method is 
easy to implement and to handle other types of partial differential equations governing various 
parameters encountered in different disciplines of science and engineering.
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