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This paper presents a study of the unsteady flow of second grade fluid through a 
capillary tube, caused by sinusoidally varying pressure gradient, with fractional 
derivative model. The fractional derivative is taken in Caputo-Fabrizio sense. The 
analytical solution for the velocity profile has been obtained for non-homogenous 
boundary conditions by employing the Laplace transform and the finite Hankel 
transform. The influence of order of Caputo-Fabrizio time-fractional derivative 
and time parameter on fluid motion is discussed graphically. 
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Introduction

The study of non-Newtonian fluid-flow through a capillary tube is of great interest due 
to remarkable applications in many physical phenomena, i.e. blood flow in capillaries, flow in 
blood oxygenator, oil transport in pipe-lines, flow of refringent, air conditioning system, heat 
pumps system etc. The well-known Navier Stokes equation successfully describes the flow 
of Newtonian fluid, however, it is unable to describe some unusual characteristics (e.g. shear 
thinning/thickening) exhibited by many fluids, such as, ketchup, shampoo, paints, slurries, etc. 
Several rheological non-Newtonian models are presented to describe the fluid-flow problem 
related to such materials. Amongst the different interesting proposed models, the differential 
type fluids [1] have caught the interest of many researchers. 

The second grade fluid model is proved to be helpful to successfully describe various 
non-Newtonian effects of fluids [2]. It was first proposed by Coleman and Noll [3]. A non-New-
tonian fluid is called a second grade fluid if the velocity field contains up to two derivatives in 
stress strain tensor relationship [4]. The ability of this fluid model to describe the normal stress 
effects and its relatively simpler structure is beneficial in the investigation of various problems 
in fluid dynamics. Sajid et al. [5] obtained the analytical solution of a second grade fluid model 
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with unsteady flow by employing homotopy analysis method. Faraz and Khan [6] discussed 
a second grade model for MHD rotating flow through a porous shrinking surface. Siddiqui  
et al. [7] explored a second grade fluid-flow model for porous medium to observe the influence 
of time-dependent stenosis. Marinca and Marinca [8] presented a novel approach to construct 
exact solutions of a modified fluid model subject to thermal radiation taking into account the 
absorption/generation of heat. Shojaei et al. [9] studied a second grade fluid-flow subject to 
thermal radiation using an analytic approach and observed how different physical parameters 
affect the velocity profile. The flow was considered along a stretching cylinder. Alamri et al. 
[10] studied the Cattaneo-Christov heat flux model and investigated the effect of mass transfer 
for a second grade fluid-flow problem subject to magnetic field effects. 

Recently, fractional calculus has gained popularity to describe mathematical models 
corresponding to various physical phenomena. Fractional order operators are more generalized 
and flexible due to their ability to describe memory and hereditary properties. Many interesting 
applications and investigations related to fractional order differential equations are being re-
ported in physics, biology, engineering and other fields of science. The fractional order govern-
ing equations are used to study the physical phenomena related to melts and polymer solutions. 
The fractional calculus has achieved a special status to describe viscoelastic properties [11, 12]. 
The use of fractional order governing equations is reported in many interesting investigations 
[13-19]. 

The aim of this study is to investigate the effects of the fractional order derivative on 
the analytical solution of the mathematical model for the unsteady flow of second grade fluid 
in a capillary tube. The analytical solution is determined with the help of finite Hankel and 
Laplace transforms.

Mathematical formulation

The pulsating flow of an incompressible second grade fluid in a capillary tube of inter-
nal radius r0 is considered, which is caused by sinusoidally varying pressure gradient:

[ ]0 1= exp( )zp e B B tιω∇ +


(1)
where e→z is the unit vector along z-direction, B0 
and B1 are the amplitudes of pressure gradient, 
ι – the imaginary constant, t – the time, and ∇p 
– the pressure gradient with frequency ω. The 
real part of the pressure gradient defined in eq. 
(1) provides the cosine oscillations, whereas the 
imaginary part provides the sine oscillations. 

The physical aspects of fluid-flow are shown by fig. 1. The Cauchy stress tensor T1 with pres-
sure p, and dynamic viscosity µ can be expressed:

2
1 1 1 2 2 1=T pI A A Aµ α α− + + + (2)

for material moduli α1, α2, unit tensor I and kinematic tensors A1, A2:

 1 = ( ) ( )TA V V∇ + ∇
 

(3)

2 1 1 1
d= ( ) ( )
d

TA A A V V A
t

+ ∇ + ∇
 

(4)

where ∇V
→

 is the gradient of velocity field V
→

= [0, 0, v(r, t)] and T – the matrix transpose. The 
velocity field for the problem under assumption:

Figure 1. The physical configuration
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( , ) = ( , ) zV r t v r t e


 (5)
where r is the distance from the axial direction. Using eq. (5) into eq. (2), gives the non-zero 
component of the shear stress Sr,z:

, 1
( , )=r z

v r tS
t r

µ α ∂ ∂ + ∂ ∂ 
(6)

For the gradient of pressure is in the axial direction, the linear momentum equation:

[ ]0 1 ,
1= exp( ) r z

v B B t S
t r r

ρ ιω∂ ∂ + + + ∂ ∂ 
(7)

where the body forces are neglected. Eliminating Sr,z from eqs. (6) and (7), gives:

[ ]
2 2

0 1 12 2
1 1= exp( )v v v v vB B t

t r r t r rr r
ρ ιω µ α

   ∂ ∂ ∂ ∂ ∂ ∂
+ + + + +      ∂ ∂ ∂ ∂∂ ∂   

(8)

The initial and boundary conditions:

0( ,0) = 0,       0v r r r∀ ≤ ≤ (9)

(0, ) = 0,       0v t t
r

∂
∀ ≥

∂
(10)

  ( , ) = 0,       0ov r t t∀ ≥ (11)
The dimensionless quantities are considered:
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By dropping the notation *, the dimensionless initial-value problem can be written:

[ ]
2 2
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where
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The constant γ is related to the pressure fluctuation amplitude, whereas vm denotes 
the cross-sectional mean velocity of flow averaged over time. The suitable conditions can be 
expressed:

 ( ,0) = 0,       0 1v r r∀ ≤ ≤ (13)

(0, ) = 0,       0v t t
r

∂
∀ ≥

∂
(14)

(1, ) = 0,       0v t t∀ ≥ (15)
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Calculation of the velocity field

The constitutive equation corresponding to an incompressible second grade fluid with 
fractional derivative can be written:

[ ] ( )
2

0 1 2
1= exp( ) 1t t

v vD B B t D
r rr

α αν γ ιω β
 ∂ ∂

+ + + +  ∂∂ 
(16)

where the fractional derivative operator of order α is defined in the Caputo-Fabrizio sense [20]:

0

( ) ( )exp( ) ( ), 0 < < 1
1 (1 )=
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α

 − − ′
 − −
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∂

∫
(17)

Application of the Laplace transform of sequential fractional derivatives [21] on  
eq. (16), yields the transformed problem:

( ) 2 2
0 1

2 2

, ( ,0) 1 1=
(1 ) (1 )

sv r s v r B B v v s v v
s s s r r s r rr r

βγ
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   − ∂ ∂ ∂ ∂ + + + + +        − + − ∂ − + ∂∂ ∂     
(18)

where s is the transform parameter and
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−∫
is the image function of v(r, t). Using the initial condition, eq. (18) reduces to:

( ) 2
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(19)

Using the zeroth order finite Hankel transform [22] and taking into account the bound-
ary conditions, the finite Hankel transform of v(r, t) is obtained from eq. (19):
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(20)

where

  

1

0
0

( , ) = ( , ) ( )dH n nv r s rv r s J rr r∫
where rn is the positive roots of J0(x) for all natural numbers n, and J0 – the zeroth order Bessel 
function of first kind. The inverse Laplace transform is applied to eq. (20), which yields:
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where
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Applying the inverse Hankel transform:
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the suitable expression for velocity field is obtained:
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Graphical illustration

The 3-D plots of the solution are graphically expressed in fig. 2. The variation of ve-
locity of the fluid is shown in fig. 3 for changes in the time parameter, corresponding to sine and 
cosine pressure gradient. The graphical representation clearly indicates how the fluid velocity, 
v, changes with the increase of time parameter in the boundary-layer region, for both sine and 
cosine pressure gradient. The effects of fractional order α on the velocity of fluid are shown in 
fig. 4. 

Figure 2. The 3-D plots of velocity profile when γ = 0.4, B0 = 0.7, B1 = 0.8, ω = π/7,  
α = 0.55, β = 0.55; (a) sine pressure gradient and (b) cosine pressure gradient

Results and discussion

Fractional order mathematical models are more generalized and flexible due to their 
ability to describe the memory and hereditary properties. The idea of fractionalized differen-
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tial models is not only mathematically intriguing and interesting, it has also been reported to 
provide a deeper insight into various real life phenomena. Motivated by the recently increasing 
interest to explore the fractional order models, this work is aimed to study a fractional order 
unsteady flow of second grade fluid through a capillary tube caused by sinusoidally varying 
pressure gradient.

The fractional derivative is taken in the Caputo-Fabrizio sense. This definition of the 
fractional derivative is found beneficial in many studies and is widely accepted. The proposed 
flow model is solved using the finite Hankel and Laplace transforms. The velocity profile is ex-
amined for varying time as well as the changing fractional order. It is observed that the velocity 
profile changes continuously with the change in the fractional parameter. Graphical illustrations 
of the obtained results have been presented to explain the obtained results.

The results presented in this work are novel and not reported elsewhere to the best 
of our knowledge. In future, the proposed model maybe explored using the recently developed 

Figure 4. The effect of variations in α on plot of velocity profile when γ = 0.4, B0 = 0.7, B1 = 0.8, 
ω = π/7, β = 0.55; (a) sine pressure gradient and (b) cosine pressure gradient 

Figure 3. The effect of time parameter t on plot of velocity profile when γ = 0.4, B0 = 0.7,  
B1 = 0.8, ω = π/7, α = 0.55, β = 0.55; (a) sine pressure gradient and (b) cosine pressure gradient
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definitions of fractional derivatives including beta-derivative, M-truncated derivative and Atan-
gana-Beleanu derivative. The obtained solutions and observations will be helpful to understand 
the dynamical framework of the related flow problems.

Conclusion

The flow of an incompressible fractional second grade fluid through a capillary tube, 
caused by a sinusoidally varying pressure gradient, has been investigated to obtain the ana-
lytical solution for the velocity field v(r, t) by employing Laplace and finite Hankel transform 
techniques. This solution presents the fluid motion for large and small time. It also depicts the 
variations in the fluid velocity for changes in the fractional parameter α. The graphical illus-
trations are used to illustrate the changes in the the velocity field for an increase in the time 
parameter t, corresponding to sine as well as cosine pressure gradient. The figures also depict 
the variations in the fluid velocity with an increase in fractional parameter α, for both sine and 
cosine pressure gradient.
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