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We investigate traveling wave solutions to the Joseph-Egri equation via extended 
auxiliary equation technique. We have determined stationary points of the dynamical 
systems by using bifurcation method. We also acquire cusp, periodic and homoclinic 
orbits. The investigated solutions are entirely different from the reported in the liter-
ature. However, some of the reported solutions are plotted to understand the physical 
application of the considered model using renowned mathematical software.
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Introduction

In fluid dynamics, a large number of natural theories are formed using soliton theory. 
Some non-linear equations were used to explain propagations of waves. For instance, the KdV 
equation modeled a one-way propagation of waves [1]. Boussinesq equation was employed 
to analyse wave propagation [2] and to study waves in anisotropy [3]. Some authors have ex-
amined problem formulations, applications, and stability analysis of the four and sixth-order 
non-linear Boussinesq equations propagation. The KdV equation is given:

0t x x xxxu u uu u+ + + = (1)
where ut and uux are the perform a role in the evolution of time and uxxx is the used to identify the 
wave propagation [4-10]. Wave solutions to eq. (1) may be created by the mapping:

[ ( ) ]eik x c k tu u −= (2)

If k2 > 1, then c(k) = 1 – k2 < 0, which contradicts with unidirectional propagation [11]. 
To address this problem, in [12] it was offered a substitution of eq. (1) called the BBM equation, 
which is given:

0t x x xxtu u uu u+ + + = (3)
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where c(k) = (1 – k2)–1. Now, if u(x, 0) is ascertained, it is not possible to measure ut(x, 0). Now, 
if u represents the movement with the speed ut, then initially they are independent from one 
another. To prevent these, Joseph and Egri [11] proposed an alternative for eq. (1):

0t x x xttu u uu u+ + + = (4)
subject to phase-field:

2

2

1 1 4( )
2

kc k
k

− + +
= (5)

that converges to 1 + 4k2 for small k and to 1/k for large enough |k|. The bifurcation dynamical 
system method described the different classifications of wave solution of Joseph-Egri equation 
(JEE) [13]. Lie point symmetry of JEE is also analyzed based on the Lie symmetry in [14]. 
Moreover, concerning the exact and numerical solutions of the JEE, the methods are few in 
number. The Jacobi elliptic approach [15], the exact solution using tan-cot functions approach 
[16], exp[–Φ(ξ)]-expansion [17], the G′/G-expansion [18], and the extended homogeneous bal-
ance principle [19]. However, for other interesting scientific phenomena and the exact waves-
olutions for the JEE, we refer readers to [20-27] and the references therein. We employ the 
method of extended auxiliary to present explicit solitary wave solutions to the JEE. The method 
is simple and straightforward for implementation.

Traveling wave properties

Definition 1. A bounded manifold for the flow of the wave propagation is defined:

 ( ){ }, : , u y u y= −∞ < < ∞ ≤ M

where 𝓁 is a maximum value for the propagation in a cannel. 
Letting u(x, t) = h(η), = kx + wt. Substituting into eq. (4) gives a traveling wave equa-

tion:
2( ) 0h hh hκ ω κ κω′ ′ ′′′+ + + = (6)

where h′ = hη. Integrating the previous equation once yields:
2 2( )

2
h h h cκκ ω κω ′′+ + + = (7)

where parameter c is the integral constant. Consider the substitution h′ = f(h). Hence, 
 h″η = f η h′η = fη f  and we can write eq. (7) as:

( )
2

2 2 2 2( ) ( )
2 2 2

h h h h h f cη
κ κ κωκ ω κω κ ω ′′′+ + + = + + + = (8)

which can be expressed

2
2

dh y
d

d 2 ( )
d 2

y c h h

η
κκ ω

η κω

=

 = − + −  

(9)

Integrating, we get:

2 3
2

1 6 6 3 1
3

ch h h hρ ω
κ κ κω

  ′ = ± + − + −    
(10)

where ρ is a conservative energy level of eq. (6). 



Sabi'u, J., et al.: Dynamical Behaviour of the Joseph-Egri Equation 
THERMAL SCIENCE: Year 2023, Vol. 27, Special Issue 1, pp. S19-S28 S21

Bifurcation analyses is employed to illustrate the effects of constants c, κ, and ω on the 
wave propagation and the presence of a complex duping occurrence. The points ( h̄ , ȳ) ∈M for 
those determinant of the Jacobian matrix is non-zero, are refered to generaric points, whereas 
the points for which the determinant of the Jacobian matrix is zero are known as deenarate. 
Both of these points may be virtual if ( h̄ , ȳ) ∉ M.

Solitary wave solutions and homoclinic orbits induced by bifurcation theory hold an 
important role in the qualitative analysis of the dynamical systems. In the existence of homo-
clinic orbits, the flow entering the channel is moved to the trapping mode, but there exists not 
homoclinic orbits, the flow entering the channel exists it without touching to the center of the 
channel. Thus one has the following propositions.

Proposition 1: The set of points in that make the change in the sign of the motion 
of wave propagation are called the equilibrium points of system (9). Thus, the traveling wave 
solutions, which is a cubic polynomial in the r.h.s. of (10), be denoted by ϕ(h). Thus, we have 
the following possibilities of equilibrium points of system (9):
 – For 

 
1 2 c

k
ω
κ
+ =

system (9) has a degenerate point is a center 

 
( )3 32 ,0 ,0cE h

k
 

= =  
 

which is a cusp point. In this case ϕ(h) has one real root α.
 – For

 
2 1c ω
κ κ

< +

system (9) has two equilibras

 
( )

2

1,2 1,2
( ) ( ) 2

,0 ,0
c

E h
κ ω κ ω κ

κ

 + ± + + = =
 
 

where E1 is the center while and E2 – the saddle point, which is unstable. Thus, ϕ(h) has three 
real roots satisfying the conditions for γ < β < α, γ = β < 0 < α, and γ < β = α.
 – For

 
2 1c ω
κ κ

> +

system (9) has no equilibrium point. 
Note first that, by the system (9), by taking the derivative of y to be zero, we get aqua-

dratic equation with the discriminant given:

  

2

1,2
( ) ( ) 2c

h
κ ω κ ω κ

κ
+ ± + +

=

which gives the equilibra E1 and E2 of system (9) for

  
2 1c ω
κ κ

< +
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From system (9), we have the coefficient of a linearized matrix at h1,2 given:

 

21

2

0 1
( ) 2( ) ( ) 2

0
J h cκ ω κ ω κ

κω

 
 

=  + + + +
− 
 

and 

 

22

2

0 1
( ) 2( ) ( ) 2

0
J h cκ ω κ ω κ

κω

 
 

=  + − + +
− 
 

with eigenvalues

  

2

2
2( ) ( ) 2cκ ω κ ω κ

λ
κω±

+ ± + +
=

By the qualitative theories of dynamical systems, it is true that E1 is a center while E2 is a saddle 
point. Similarily for:

 

2 21 0cω
κ κ

 + + = 
   

we have a linearized matrix

 
3

0 1
( )

0 0
J h  

=  
 

with eigenvalue λ = 0, which gives rise a degenerate cusp point at E3. Lastly, if

 

2 21 0cω
κ κ

 + + < 
 

we have no equilibrium point for system (9). 
Next, phase portriates of the system (9) is given.

Figure 1. The phase portriates of the system (9)

We shall observe from the bifurcation of phase portriates that there exists one real 
root, three distict real roots with different ways of expressions. Since we are looking bounded 
traveling wave solutions of eq. (8), we can exclude some cases by qualitative theories of dy-
namical systems. Let Case 1 be the equilibrium point corresponding to fig. 1(a). In this case, we 
have a degenerate singular soliton, thus any solution approaches to α = 0 as t doverges to infin-
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ity and moves to ±∞ negative infinity. Let Case 2 corresponds to fig. 1(b), that leads to the so-
called a periodic wave solution (snoidal waves). In this case ϕ(h) has three real solutions given:

 
( ) ( )( )( )2 36 6 3 1ch h h h h h hρ ωφ γ β α

κ κ κ
 = + − + − = − − − 
 

then

 ( ) ( )( )( )h h h hφ γ β α= − − −

for γ < β < α. Thus, eq. (8) can be written 

 ( )( )( )2

d

3

h
h h h

η
γ β αω

=
− − −∫

Hence, we get:

 

( ) 2
1

2 2
1 12

2where and
1 ,

3

h k g
Ak sn g k

β γ α βη γ
α γ α γ

η
ω

− −
= + = =

−  −
−   

 

Corresponding to the third and fourth cases of figs. 1(c) and 1(d), we have three dis-
tinct roots. Now considering Case 3 we have from eq. (10):

 ( ) ( ) ( )22 36 6 3( )h ch h h h hφ ρ κ ω κ γ α= + − + − = − −

then

 ( ) ( ) ( )h h hφ γ α= − −

for γ = β < 0 < α. Thus, eq. (10) can be written:

 ( )2

d

3

h
h h

η
γ αω

=
− −∫

Let υ = h – γ and A = α – h (0 < υ < b), getting:

 
2

d

3 A
η υ

υ υω
=

−∫
Next, we substitute τ = (A – υ)1/2, hence υ2 = A – τ 2 and dτ = dη/2 (A – υ)1/2 so that the 

aforementioned will be transformed:

 
22

d2
3 A
η τ

τω
=

−∫
Using partial fraction method we get:

 

2

1 ln
3

A
A A

η τ
τω

−
=

+
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for 0 < τ < A. Solving for ω we have:

 

2 2

22

1 exp sinh
3 3

coshexp 1
33

A AA A

AA

η η
ω ω

τ
ηη

ωω

    
−            = = −

    
−            

Returning to original variables τ2 = A – υ = α – γ – h + γ = α – h and using the hyper-
bolic identity cosh2θ – sinh2θ = 1, we get:

 

( ) ( ) ( ) ( )

2
2

2 2
2

2
2

sinh
3

sech
3

cosh
3

AA
Ah

A

η
ω

η α τ η α α γ γ α γ η
ω

η
ω

 
     = − = − − − = + −        

 

Obviously, h(η) → γ as η → ±∞, so that the traveling wave solution is a solitary wave 
solution. For the relation:

 
( ) ( )2 3 3 2 2 26 6 3 1 (2 ) 2ch h h h h h hρ ωφ γ α αγ γ αγ

κ κ κ
 = + − + − = − − + − + + 
 

we get 

 
(2 ) ( )

3 3
κ ω γ α α γ γ
κ
+ + −

= = +

Hence the solitary wave solution eq. (10):

 
( )2

2( , ) 3 sech
3

Au x t kx tκ ω ω
κ ω

 + = +       

Similarily, we can find the traveling wave solution of Case 4 by following the same 
procedure as given previously.

The method of extended auxiliary equation

In this section, we will investigate the solutions of eq. (6) using extended auxiliary 
equation technique (EAET) described in [28]. Now setting the integration constant to zero  
eq. (8) yields:

2
2( ) 0

2
hw k h k kw h′′+ + + = (11)

Balancing h2 with h″ gives N = 2 and suggest the solution:
2

0 1 2( ) ( ) ( )h n n nη η η= + Ψ + Ψ (12)

2
2 4 6

1 2 3
d ( ) ( ) ( )
d

m m mη η η
η

 Ψ
= Ψ + Ψ + Ψ 

 
(13)

where m1, m2, m3, n0, n1, n2 are determined constants. Proceeding by substituting eq. (10) into 
eq. (12) by setting the coefficient of Ψi(i = 0, 1, 2,..., 6) to 0, we get a system of linear equations 
whose solutions are:
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2
0 1 2 2 1 2 2 32

10, 0, 12 , , , 0
4

w kn n n w m m m m m
kw
+

= = = − = − = = (14)

2
0 1 2 2 1 2 2 32

2( ) 1, 0, 12 , , , 0
4

w k w kn n n w m m m m m
k kw
+ +

= − = = − = = = (15)

Substituting eq. (14) with the solution given in [28] into eq. (12) to recover the solu-
tions:

1
3( ) 1( , ) sech ( )

2
w k w kh x t kx wt

k w k
 + +

= − − +  
 

(16)

2
3( ) 1( , ) csch ( )

2
w k w kh x t kx wt

k w k
 + +

= − +  
 

(17)

3
6( )( , )

1cosh ( ) 1

w kh x t
w kk kx wt

w k

± +
=

  +
± − + −      

(18)

2

4 2

2

148 ( )exp ( )
( , )

1exp ( ) 4

w km w k kx wt
w k

h x t
w kk kx wt m

w k

±

 +
+ ± − +  

 =
  +

− + −      

(19)

2

5
3( ) 1( , ) sec ( )

2
w k w kh x t kx wt

k w k
 + +

= − +  
 

(20)

2

6
3( ) 1( , ) csc ( )

2
w k w kh x t kx wt

k w k
 + +

= +  
 

(21)

7
6( )( , )

1cos ( ) 1

w kh x t
w kk kx wt

w k

± +
=

  +
± + −      

(22)

8
6( )( , )

1sin ( ) 1

w kh x t
w kk kx wt

w k

± +
=

  +
± + −      

(23)

Substituing eq. (15) with the solution given in [28] into eq. (12) to recoverthe follow-
ing solutions:

9
1( , ) 2 3sech ( )

2
w k w kh x t kx wt

k w k
  + +

= − − +      
(24)
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2

10
( ) 1( , ) 2 3csch ( )

2
w k w kh x t kx wt

k w k

  + + = − + +     
(25)

11
2( ) 6( )( , )

1cosh ( ) 1

w k w kh x t
k w kk kx wt

w k

± + +
= − −

  +
± + −      

(26)

2

12 2

2

148 ( )exp ( )
2( )( , )

1exp ( ) 4

w km w k kx wt
w kw kh x t

k w kk kx wt m
w k

±

 +
+ ± +  +  = − −

  +
+ −      

(27)

2

13
( ) 1( , ) 2 3sec ( )

2
w k w kh x t kx wt

k w k

  + + = − − − +     
(28)

2

14
( ) 1( , ) 2 3csc ( )

2
w k w kh x t kx wt

k w k

  + + = − − − +     
(29)

15
2( ) 6( )( , )

1cos ( ) 1

w k w kh x t
k w kk kx wt

w k

± + +
= − −

  +
± − + −      

(30)

16
2( ) 6( )( , )

1sin ( ) 1

w k w kh x t
k w kk kx wt

w k

± + +
= − −

  +
± − + −      

(31)

The 3-D and contour plots  
of some traveling wave solutions

We have plotted both the 3-D for some of the recovered solutions using some appro-
priate values to exhibit some of the characteristics of the solitary solutions of eqs. (16), (19), 
(21)-(25) in figs. 2(a)-2(f).

Conclusion

This paper extensively dealt with the JEE using the bifurcation method and the EAET. 
Quite a several new and effective exact traveling wave solutions were recovered for the JEE 
that has not been reported before. Therefore, the EAET has provided the robust and efficient for 
the JEE. The acquired results are shown in figs. 1 and 2 with the different values.
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