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In this article, approximate solutions of some PDE of fractional order are investi-
gated with the help of a new semi-analytical method called the optimal auxiliary 
function method. The proposed method was tested upon the time-fractional Fisher 
equation, the time-fractional Fornberg-Whitham equation, and the time-fractional 
Inviscid Burger equation. The beauty of this method is that there is no need for 
discretization and assumptions of small or large parameters and provides an ap-
proximate solution after only one iteration. The numerical results obtained by the 
proposed method compared with the other existing methods used in the literature. 
From the numerical and graphical results, it is clear that the proposed method 
gives a better solution than existing methods. The MATHEMATICA software pack-
age has been used for the huge computational work. 
Key words: optimal auxiliary function method, approximate solution,  

fractional order differential equations, Caputo’s derivative 

Introduction

Most of the problems arise in nature such as in liquid mechanics, biology, and thermo-
dynamics, etc. are the models which can be set to mathematical form by the use of differential 
equation (DE). The DE may be linear or non-linear depends upon the nature of the problems 
arising in different areas of sciences. Linear models of DE may be solved by the use of simple 
analytical methods and most of the problems have an exact solution but when these models 
are in the form of non-linear DE then it is difficult to solve them easily by simple approaches. 
That’s why we different methods to solve such non-linear models of DE. Nowadays the frac-
tional-order DE are a great focus of researches. The fractional calculus is the modification of 
classical calculus. To solve the non-linear PDE of fractional order (FPDE), a variety of numeri-
cal and analytical techniques are used. Many researchers are using computational and analytical 
techniques to solve FPDE i.e., Yapez-Martinez et al., see in [1] obtained the numerical solution 
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of some non-linear fractional-order equations. Atangana et al. [2] solved the non-linear Fisher’s 
equations, reaction-diffusion equation with help of a new fractional operator. Atangana et al. 
[3] analyzed the Keller’ Segel model with a fractional derivative without a singular kernel. A 
lot of work has been done and many applications of fractional order PDE can be seen in series 
of papers [4-11].

We have applied the semi-analytical method called the optimal auxiliary functions 
method (OAFM) to fractional order PDE. The proposed method was introduced by Marinca 
et al. [12, 13] and has been used for different fluid problems. Later on, many other researchers 
applied OAFM different PDE of integer order and for fractional-order Zada et al. [14]. The 
OAFM works without assuming any small or large parameter. The suggested technique has 
the advantage of being able to deal with both linear and non-linear problems effectively and 
without reducing generality.

Basic definitions

Definition 1. The fractional integral operator I α of order α ≥ 0 in the Riemann-Liouville 
sense of a function, is defined:
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where I 0f(χ) = f(χ) and Γ is the well-known function. 
Definition 2. Riemann-Liouville fractional derivative can be defined, If(r) ∈ C[a, b] then:
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Some properties of fractional derivative and integral are given as  f ∈ Cµ, µ ≥ 1, α, β ≥ 0, and  
λ > –1 then:
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Analysis of OAFM

In this section, the OAFM is discussed for the fractional order PDE with convergence 
analysis. For this we consider the most general form of a non-linear fractional order differential 
equation:
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In eq. (3) ∂ α/∂ τ α is the Riemann-Liouville fractional derivative operator, w(ϕ, τ) – the 
function be approximate, N – the non-linear operator, and ℘(ϕ, τ) – the known analytic function.

Step 1: To find an approximate solution (4), we consider the solution in two-compo-
nent:

0 1( , ) = ( , ) ( , , ), = 1,2,3,iw w w C i nφ τ φ τ φ τ+  (5)
Step 2: For obtaining the zero and first-order solution, put the (5) in (3) we obtain:
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Step 3: The initial approximation w0(ϕ, τ) can get from the linear equation:
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applying inverse operator, we get w0(ϕ, χ):

0 ( , ) = ( , )w φ τ φ τ℘ (8)

Step 4: Using (8) the non-linear term can be expended:
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Step 5: For the first order approximation, we consider:
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Remark 1. Where A1 and A2 are auxiliary functions which dependent upon w0(ϕ, τ) and 
the convergence control parameter Ci and Cj, i = 1, 2, 3,... , j = s + 1, s + 2,... ρ.

Remark 2. The A1 and A2 are in the form of w0(ϕ, τ) or N [w0(ϕ, τ)] in the combination 
of both w0(ϕ, τ) andN [w0(ϕ, τ)] but they are not unique. 

 Remark 3. 
–– If w0(ϕ, τ) or N [w0(ϕ, τ)] are polynomial functions then A1 and A2 are taken as the sum of 

polynomial functions. 
–– If w0(ϕ, τ) or N [w0(ϕ, τ)] are exponential functions then A1 and A2 and are taken as the sum 

of exponential functions. 
–– If w0(ϕ, τ) or N [w0(ϕ, τ)] are trigonometric functions then A1 and A2 and are taken as the sum 

of trigonometric functions. 
Step 6: By the use of inverse operator and substitution of auxiliary function in (10), we 

obtain the first-order solution w1(ϕ, τ) by OAFM.
Step 7: To find the residual we calculate the values of Ci and Cj by a different method 

such as the Collocation, or Least Square, Galerkin’s, Ritz method, etc.:
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where R is the residual:
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Applications

In this section, the extended form of OAFM is implemented to fractional order PDE. 
Most of the computation work has been carried out through MATHEMATICA 10.

Example 1. Consider Inviscid Burger’s non-linear non-homogeneous time-fractional 
eq. [15]:
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α
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φ τ φ τφ τ φ τ α

φτ
∂ ∂

+ + + ≤
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(13)

with the initial condition:
( ,0) =w φ φ (14)

For α = 0.1 the exact solution (14):
( , ) =w φ τ φ τ+ (15)

we have linear and non-linear parts form (14):
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using the basic idea of OAFM, to get the zero-order problem from (8):
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Using the inverse operator to (19) we get the zero order solution:
0 ( , ) =w φ τ φ (18)

Using (20) into (18), the non-linear operator:
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The first approximation as w1(ϕ, τ) is obtained:
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Now we select A1 and A2 for the non-linear operator accordingly:
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using eqs. (20) and (21) in eq. (22), and applying the inverse operator, the approximation solu-
tion is obtained:
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Adding eqs. (20) and (24) we get the first order approximate solution:
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For finding the convergence control parameters present in eq. (23), we use the colloca-
tion method. The numerical values are tabulated in tabs. 1 and 2. Using these values in eq. (23), 
we get the first-order approximate solution of Problem 1, figs. 1 and 2.

Table 1. Convergence control parameters for different values of α for Example 1
Ci α = 1.0 α = 0.8 α = 0.7
C1 0.999999999999999480 1.02464231914095 1.0695878711393512200
C2 7.09140491455450 ⋅ 10–15 –0.06934160441034 –0.1086172198564621110
C3 –2.33206336671750 ⋅ 10–15 0.02099652688745 0.0328316457878370660
C4 1.438241672916320 ⋅ 10–16 -0.00113677928872 –0.0017862114301269220

Table 2. Comparison of absolute error obtained by OAFM solution 
and HPTM solution for Example 1, when α = 1.0 

ϕ α = 1.0 α = 0.8 α = 0.7 Absolute error HPTM Absolute error OAFM 
0.2 0.25 0.5 0.5 1.62760 2.604167 ⋅ 10–4 5.55112 ⋅ 10–16

0.25 0.5 0.75 0.75 2.604167 2.604167 ⋅ 10–3 4.44089 ⋅ 10–16

0.25 0.75 1.0 1.0 1.318359 2.604167 ⋅ 10–2 3.33067 ⋅ 10–16

0.25 1.0 1.25 1.25 4.166666 2.604167 ⋅ 10–2 4.44089 ⋅ 10–16

0.5 0.25 0.75 0.75 1.62760 2.604167 ⋅ 10–4 5.55112 ⋅ 10–16

0.5 0.5 1.0 1.0 2.604167 ⋅ 10–3 4.44089 ⋅ 10–16

0.5 0.75 1.25 1.25 1.318359 2.604167 ⋅ 10–2 3.33067 ⋅ 10–16

0.5 1.0 1.5 1.5 4.166666 2.604167 ⋅ 10–2 4.44089 ⋅ 10–16

Figure 1. The OAFM solution (a) and exact solution (b) for Problem 1

Figure 2. Impact of α on 
OAFM solution for Problem 1
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Example 2. Consider non-linear time-fractional Fisher’s equation [15]:
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The initial condition of the non-linear time-fractional Fisher equation:
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For special case α = 1.0, the exact solution for eq. (26) is given:
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The linear and non-linear terms can be chosen from eq. (29):
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Using the basic idea of OAFM with the inverse operator, the zero-order problem can 
be gotten:
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φ τ
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Here we select A1, A2 as according to the non-linear operator for the first operator as, 
A1 = –C1, A2 = 0. Using the same procedure of OAFM as discussed for Problem 1, we get the 
first-order solution:
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To obtain the first order OAFM solution, we add eqs. (31) and (33):
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For finding the convergence control parameters present in eq. (30), we use the collo-
cation method. The numerical values are tabulated in tabs. 3 and 4. Using these values in eq. 
(30), we get the first-order approximate solution of Example 2, fig. 3. 

Table 3. Parameters for different values of α for Example 2
Parameters α = 1.0 α = 0.8 α = 0.7

C1 –1.0013046523143574 –1.07601806643966 –1.183040098101294
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Table 4. Comparison between OAFM solutions and abs. error with exact, ADM for  
on-linear time-fractional Fisher’s equation when α = 1.0 and τ = 0.001 

 ϕ α = 1.0 α = 0.8 α = 0.7 Absolute  
errors ADM OAFM 

0.01 0.248752 0.248752 1.480 ⋅ 10–3 –1.453 ⋅ 10–6 4.7211 ⋅ 10–8

0.02 0.246264 0.246264 1.434 ⋅ 10–3 –1.825 ⋅ 10–6 2.3731 ⋅ 10–8

0.03 0.243789 0.243789 1.395 ⋅ 10–2 –1.798 ⋅ 10–6 4.9084 ⋅ 10–8

.04 0.241327 0.241327 1.361 ⋅ 10–2 –1.771 ⋅ 10–6 2.2505 ⋅ 10–8

0.05 0.238878 0.238878 1.331 ⋅ 10–2 –1.743 ⋅ 10–6 4.5252 ⋅ 10–8

 
Example 3. Consider the time-fractional Fornberg-Whitham equation [15]:

3 3 2

2 3 2
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with initial condition, w(ϕ, 0) = e ϕ/2. For special case when α = 1.0 then the exact solution for 
(31):
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The auxiliary functions can be choose for Example 3:
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then using the same procedure as discussed in Example 2, we get zero-order and the first order 
AOFM solution for Example 3:
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To obtain the first order OAFM solution, we add eqs. (46) and (47):
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Figure 3. Behaviour of α on the 
solution of OAFM for Example 2  
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For finding the convergence control parameters present in eq. (35), we use the colloca-
tion method. the numerical values are tabulated in tabs. 5 and 6. Using these values in eq. (35), 
we get the first-order approximate solution of Example 3, fig. 4. 

Table 5. Convergence control parameters for different values of α for Example 3
Ci α = 1.0 α = 0.8 α = 0.7
C1 –1.3333328680180432 –2.015914169868006 –3.214654344418841
C2 0.2222193527869724  1.6609111229542566  4.560007833350679 
C3 –0.0493681190158767 –3.409779522526362 –10.980886563771994
C4 0.00819312144303661 4.4012448967414874 14.967519893198872
C5 –0.00104635037495981 –2.976078223819042 –10.405871287220586

Table 6. Comparison of numerical results of Fornberg-Whitham 
equation via OAFM is compared with HPTM when α = 1.0 

Ci α = 1.0 α = 0.8 α = 0.7 Absolute  
errors HPTM

Absolute  
error OAFM

0.1 1 1.54239 1.54239 1.19 ⋅ 10–3 9.74481 ⋅ 10–9

0.1 2 2.54297 2.54297 1.96 ⋅ 10–3 1.60665 ⋅ 10–8

0.1 3 4.19265 4.19265 3.24 ⋅ 10–3 2.64891 ⋅ 10–8

0.1 4 6.91251 6.91251 5.34 ⋅ 10–3 4.36732 ⋅ 10–8

0.1 5 11.3968 11.3968 8.80 ⋅ 10–3 7.20049 ⋅ 10–8

 
Figure 4. Behaviour of α on the solution  
of OAFM for Example 3  

Conclusion

The OAFM successfully applied for different non-linear fractional order DE. It is 
observed that the proposed method gives a very powerful approximate solution after only one 
iteration. There is no need of high computational work in method. Similarly, if we want to 
increase the accuracy of approximate solution, only convergence control parters should be in-
crease in the auxiliary function. The proposed method is very effective and easy to implement 
for fractional order non-linear problems.
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