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The lime rotary kiln systems are widely used in the metallurgical industry, where 
the combustion state is exceptionally complex, and it is difficult to predict and con-
trol the calcined zone’s temperature. The lime rotary kiln system uses the entropy 
and grey correlation model, combining the lime rotary kiln operation process to 
determine the input and output characteristics of the model. Then, it analyzes the 
time lag and inertia in the lime rotary kiln combustion system to compensate for 
the temperature prediction in the lime rotary kiln by using the CNN-BILSTM-OC 
model. Correcting the expected output results with the actual situation. The exper-
imental analysis shows that the proposed model has a higher prediction accuracy 
than others. The maximum relative error calculated for the future temperature pre-
diction is 0.2098%, while the generalized average of the root mean square error of 
the model under different working conditions is 0.9639. The generalized average 
of the mean absolute error is 0.6683, which shows that the model has a strong 
generalization ability to meet practical applications.
Key words: entropy and grey correlation model, lime rotary kiln system,  

the compensation of the time lag of the dynamic error,  
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Introduction

The lime rotary kiln system is widely used in mining, iron and steel smelting, and oth-
er industries, its calcined belt temperature changes the quality of finished products, and material 
heat exchange has a more significant impact. A lime rotary kiln in a combustion state is a con-
siderable time lag, multi-coupling, non-linear complex system, so it is more difficult to control 
the temperature of the lime rotary kiln in the combustion state. Some intelligent lime rotary kiln 
models combined with deep learning have been widely used. Hu et al. [1] established a lime ro-
tary kiln condition recognition model based on migration learning and attention mechanism, re-
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alized feature migration and parameter sharing, and improved the model generalization ability. 
Urbano et al. [2] conducted mathematical modelling and numerical simulation of a lime rotary 
kiln to predict the kiln temperature and suggest control parameters through the model. Li et al. 
[3] proposed a DTDR-ALSTM dynamic time delay model, which can extract the features based 
on the dynamic relationship between the variables and establish a more accurate mathematical 
model. Tian et al. [4] proposed a predictive control model for lime rotary kiln temperature 
combining SVM and improved PSO. Zhang et al. [5] proposed a method for recognizing lime 
rotary kilns with different combustion states based on Otsu-Kmeans flame image segmentation 
and SVM using visual detection technology as a basis. Chen et al. [6] proposed utilizing several 
luminescent features and dynamic features of flame images to overcome the rapid temperature 
changes to predict the temperature condition inside a lime rotary kiln. Hu and Mao [7] proposed 
a method for predicting the temperature of a lime rotary kiln based on a GRP-lstmGAN mod-
el by converting 1-D time-series data into 2-D image data and utilizing the feature-capturing 
ability of the time series. Xu et al. [8] proposed a structure containing a residual network and a 
two-way gated recurrent network to accurately predict the preheater outlet temperature utiliz-
ing an adaptive sliding window. Zheng et al. [9] used recurrent neural networks to establish a 
lime rotary kiln model by combining the mechanism of the lime rotary kiln combustion process 
to improve the accuracy of mathematical modelling. Wang et al. [10] proposed a weighted 
correlation vector machine model based on dynamic time delay estimation. Furthermore, they 
compensated the model’s prediction accuracy based on the time delay difference. Okoji et al. 
[11] used the model for simulation and combined with BANN neural network to accurately pre-
dict the energy efficiency of a cement kiln. Li et al. [12] through optimization of the rotary kiln 
combustion process by the law of conservation of mass and energy. Although many scholars 
have made significant progress in related aspects, due to the complexity of the lime rotary kiln 
combustion model itself, many problems still lead to poor temperature prediction in the lime 
rotary kiln. This paper proposes a fusion neural network (CNN-BILSTM-OC) lime rotary kiln 
temperature prediction model based on dynamic error time lag compensation. First, we use the 
entropy weight method and gray correlation model to combine with the lime rotary kiln process 
to determine the input and output engineering of the model. Then, we use the error performance 
criterion method to determine the time lag and inertial order in the lime rotary kiln combustion 
system. Finally, we predict the temperature of the lime rotary kiln by a fuse CNN-BILSTM 
model and calculate the dynamic error compensation obtain the final output results. This mod-
el’s validity in this paper is verified by experimental simulation analysis.

Brief description of the rotary kiln system flows

Lime rotary kiln system mainly includes feeding, firing, finished product, and exhaust 
gas systems. Lime raw materials through the feeding belt and conveyor hopper are transported 
into the preheater for material heat reaction complete the feeding action. Preheating is complet-
ed after the raw materials are added to the lime rotary kiln through the primary wind, secondary 
wind, and other combustion wind in the furnace body for high temperature reaction. Finally, the 
finished product is fired through a vibrating screen and other equipment for classification, and 
the chain conveyor and belt storage to the receiving bin. The direction of gas-flow is the oppo-
site direction. The primary wind and secondary wind in the lime rotary kiln participate at the 
end of the combustion through the downstream port back to the preheater. Then, reverse flow 
into the raw material silo dust system to participate in the dust. The lime rotary kiln’s actual 
picture and process flow are shown in fig. 1.
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Figure 1. Lime rotary kiln combustion systems

The most critical link in the entire calcination system is the lime rotary kiln firing 
system. For the benefit of the combustion state of the lime rotary kiln’s internal temperature 
prediction and control for the lime rotary kiln for the analysis, sorted out the factors affecting 
the temperature of the lime rotary kiln contain coke oven gas-flow, mixed gas-flow, the primary 
air-flow, the secondary air-flow, the primary air pressure, the secondary air pressure, the central 
induced air pressure, kiln spindle frequency, the total amount of material fed and so on.

The lime rotary kiln data source analysis

Entropy and grey correlation mixed model analysis

The entropy weight method can transform some uncertainties in the system into defi-
nite outputs that can be precisely expressed. Entropy is mainly used to describe the degree of 
chaos in a system, and the smaller the value calculated by the entropy weighting method, the 
lower the degree of chaos and variability, and the factor occupies a relatively large weight in 
the system [13]. The initial data will be standardized according to eq. (1). Then the standardized 
data will be solved for the information entropy according to eq. (2), which can be calculated by 
substituting eq. (3) to calculate the size of the weight coefficients of the influencing factors in 
the system:
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where rij is the standardized data, i – the number of data items, j – the number of influencing 
factors items, Ej – the value of information entropy, n – the number, pij – the proportion of the 
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The grey relational analysis model can analyze the similarities and differences be-
tween the trends of other independent variable factors and the movements of the target con-
trol group. After selecting the target control group, non-significant factors are removed from 
the system based on the degree of correlation of all independent variable factors in the fuzzy 
system. Furthermore, calculating the gray correlation coefficient allows us to sort out the inde-
pendent variables related to the output factors without specific manifestation. Factors with gray 
correlation coefficients below 0.5 are considered non-significant [14]. The gray correlation 
model ζi(k) is calculated:
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where xo(k) is the target control group, xi(k) – the current comparison group, and ρ – the coeffi-
cient of discrimination.

The result of the entropy and grey correlation model visualization obtained is shown 
in fig. 2.

Figure 2. Entropy and grey correlation degree hybrid model visualisation results

The identified factors were processed for correlation pre-analysis in fig. 2. Correlation 
pre-analysis of the aforementioned control factors, where the upper right data are grey correla-
tion coefficients, which are calculated by eq. (5), and the lower left data are entropy and grey 
correlation hybrid coefficients, which are derived by multiplying the weighting coefficients 
of the different influencing factors in the eq. (3) by the grey correlation coefficients in eq. (5). 
Analysis of the lime rotary kiln system shows that the grey correlation coefficients for the dif-
ferent input factors are all greater than 0.5, and no non-significant factors need to be eliminated. 
Furthermore, the secondary air is analyzed as the main action factor affecting the combustion 
system of the lime rotary kiln, and its corresponding entropy and grey correlation degree mix-
ing coefficient is 0.1889, much larger than the other influencing factors.

Data source preprocessing

The data collected in the field, may lead to the existence of recording errors in the 
initial data. We propose to use the Pauta criterion deal with the gross errors. Through eqs. (6) 
and (7) eliminate errors in the initial dataset, and then Newton interpolation method as shown 
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in eqs. (8) and (9), is used for the missing values and the blank values after the elimination of 
the gross errors to be filled to make the dataset more complete and smooth:
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where σ is the standard deviation, xp – the mean; N3(x) – the Newton interpolated quotient, and 
f [x0,x1,…,xk] – the kth difference quotient of f(x).

The CNN-BILSTM-OC lime rotary kiln temperature prediction model

Convolutional neural networks (CNN model)

The convolutional neural networks model possesses the feature of weight sharing. Its 
local range of features is consistent with the global. This model can reduce the dimensionality 
of the data, starting from the local perspective to analyze the global attributes, so this model 
is widely used to process some complex situations. Its basic structural framework is shown in 
fig. 3.

Figure 3. Convolutional neural network structure

The convolutional neural network first analyzes and processes the input data using a 
sliding convolution kernel window and extracts vector features in the local range through the 
sliding window, in which the computational process of the convolution kernel to extract the 
data features is shown in eq. (10) [15]. After the convolution of the convolution kernel window 
convolution of the data features need to go through the downsampling layer of the extracted 
features for screening and analysis, compression of similar feature representations, reduce the 
complexity of the convolution model, so the convolution and downsampling layers are gener-
ally stacked, and the extracted features can repeatedly reduce dimensionality. This model uses 
the maximum pooling method to reduce the model feature dimensionality and its calculation 
process is shown in eq. (11). After the pooling and dimensionality reduction, the features must 
select different activation functions for activation analysis [16]. This model uses the ReLU 
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activation function, which can significantly improve the convergence speed of the model, and 
there is no gradient disappearance. The activation form is shown in eq. (12):
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where yl,n(m) is the convolution output value, wl-1,n – the weight value, xl-1(m) – the convolution 
input value, bl-1,n – the bias value, rj – the region maximum, l – the interval length, and ReLU – the 
activation function.

Bi-directional long short-term memory  
networks (BiLSTM model)

The lime rotary kiln system under the combustion state is a dynamic cycle system that 
constantly changes, and the parameters measured by the model continue to change in this state. 
The current and historical moment data strongly influence the model’s predictions, so they need 
to be analyzed and processed in combination with the overall before and after the state of the 
system [17]. When traditional recurrent neural networks deal with long time series data, there is 
a possibility that the gradient explosion or disappearance may occur in the memory prediction 
of the past data. In contrast, bi-directional long short-term memory networks not only propagate 
the information features positively from the starting point but also propagate the information 
features negatively from the end [18]. Through the associated use of input gate, output gate, 
forgetting gate, and other memory units, the Bi-directional long short-term memory network is 
similar to the human brain, which constantly forgets the non-important features and strength-
ens the weights of essential features in the model cycle, to achieve better prediction results. Its 
structural model is shown in fig. 4.

Figure 4. Bi-directional long short-term memory networks structure

The prediction model can save the data features at a specific moment through forward 
and backward propagation, and the specific computational process is shown [19]:
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where h
→

t is the forward propagation output value, f, g are different function correspondences, wi 
– the different weights, x→t – the forward propagation input value, h←t – the backward propagation 
output value, x←t – the backward propagation input value, and pt – the final value.

The CNN-BILSTM-OC prediction modelling

Data dynamic error offset time lag compensation analysis

During the data acquisition process, the lime rotary kiln has been in a dynamic com-
bustion working state, which is a typical significant time lag and multi-coupling model, and 
some data values may have minor dynamic errors [20]. In order to determine the time lag and 
inertia order of the combustion system of the lime rotary kiln, the model is analyzed using the 
method based on the error performance criterion. We establish the time-lag inertia model using 
the secondary air-flow input parameter and the temperature output parameter. It is assumed that 
the predicted temperature of the lime rotary kiln system at time t can be expressed:
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where y(t) is the output parameter at t moment, x(t) – the input parameter at t moment, τ – the 
system time lag, d – the system inertia, and α and β are the time lag and inertia weighting co-
efficients.

Different time lag and inertia steps are experimented on analysis for the same set of 
input parameters. Through the selected degree of fit of the error function identify the model 
time lag and inertia order selection is good or bad, this paper selects the mean-square error as 
the error performance criterion, the specific calculation is shown:
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where n is the data number, y(t) – the predicted value, and y ′(t) – the real value.
In order to verify the time lag and inertia of the system, three control data of different 

periods under a steady combustion state were re-selected for comparative analysis as shown in 
fig. 5.

Analysis of the lime rotary kiln time lag and inertia results show that in the time lag 
order is less than 2, inertia order is less than 2, the error calculation results of the magnitude of 
change are less than 0.0005, the overall trend of change is more gentle. When exceeding the 
node, the surface out of the face of the inflection point, the calculation error began to climb, 
indicating that the selected time lag and inertia do not comply with the model of the actual 
situation, which results in the model overall error gradually become more significant. After an-
alyzing the lime rotary kiln system, time lag and inertia order can be determined as 2, so using 
the dynamic error offset time lag compensation method to fit the output data to compensate for 
the analysis; the main calculation steps are shown:

Step 1: Calculate the offset error amount at the current moment according to eq. (18) 
for the predicted output temperature data;

Step 2: Obtain an overall error offset of the output value according to the calculation 
process shown in eq. (19);

Step 3: Calculate the error correction value of the output data by substituting the pre-
viously obtained overall error offset into eq. (20) to obtain the final result:

( ) ( ) ( )1 1st y t y tδ = − − − (18)
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( ) ( ) ( ) ( )1 1t t tδ λδ λ δ′ = + − − (19)

( ) ( ) ( )sy t y t tδ′ ′= + (20)
where δ(t) is the amount of offset error at the current moment, y(t – 1) – the ex-true value,  
ys(t – 1) – the ex-predicted value, δ’(t) – the overall error offset, λ – the weight coefficient, and 
y(t) – the error correction value.

Figure 5. Analysis of time delay and inertia in lime rotary kiln systems;  
(a) initial model time lag, (b) control Group 1 time lag, (c) control Group 2 time lag,  
and (d) control Group 3 time lag

Basic workflow of the prediction model

In order to accurately control the overall state of the lime rotary kiln, this paper pro-
poses a hybrid neural network prediction model based on dynamic error time lag compensa-
tion, using the modules in an organic linear overlay. The prediction model mainly comprises a 
data source pre-processing module, convolutional neural networks module, bi-directional long 
short-term memory networks module, and error offset dynamic time lag compensation module. 
The basic flow of the prediction model is shown in fig. 6.

The basic workflow is First, analyze the process flow of the lime rotary kiln operation 
get the input and output characteristics of the lime rotary kiln prediction model, after the data 
source pre-processing module for the initial data set entropy and grey correlation analysis and 
data smoothing, transformed into the form of the input in line with the prediction model, and 
then pass through the convolutional neural network module and bi-directional long short-term 
memory network module for feature extraction processing and time series prediction analysis 
of the data, and finally for the prediction results obtained by the model for the data dynamic 
error offset time lag compensation, and the actual data for comparison and analysis, and con-
stantly adjusting the model parameters so that the prediction error is minimized.
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The Lime rotary kiln prediction model’s  
simulation experiment analysis

Data set analysis

This experiment takes the lime rotary kiln of the China Shougang Changgang Steel 
as the research object. The sampling interval is 5 minutes, and 2000 sets of data are selected 
as the model data set, of which 80% were used as the training set and 20% as the test set. The 
data set was calculated using MATLAB 2019b. The field technicians can measure the flow rate 
of each parameter the model requires using the Verabar flowmeter (product type: AKLT-BL)
(measurement standard: JJG 640-2016) fixed to the port of the input pipe. Wind pressure can 
be measured by the air pressure sensor(product type: CYYZ16A)(measurement standard: GB/T 
42567.2-2023). The kiln temperature can be obtained by fixing a colorimetric thermometer 
(product type: SA-2S400A) (measurement standard: GB/T 36014.2-2020) on the surface of the 
kiln shell. The total amount of pulverized coal is calculated from the amount fed by the rotor 
conveyor (product type: ZTZJ-1200). The pulverized coal feed can be obtained by calculating 
the times of coal feed from the rotor weigher and the fixed amount of coal feed at each time. 
Among them, the measurement error and repeatability of the Verabar flowmeter are ±1%, the 
measurement error of the colorimetric thermometer is ±0.5% of the range, the comprehensive 
accuracy of the air pressure sensor is 0.5%FS (FS is the maximum range of the air pressure sen-
sor). Errors caused by the measuring instruments do not affect the overall trend of the data and 
the range of the intervals in which each parameter is located but only cause slight fluctuations in 
the data. Datasets that have been smoothed and preprocessed do not affect model construction 
and computation. The sample data set is shown in tab. 1.

Table 1. Examples of data sets
Influencing 

factors
a

[m3 per hour]
b

[m3 per hour]
c

[m3 per hour]
d

[m3 per hour]
e

 [KPa]
f

 [KPa]
g

 [Pa]
h

 [Hz]
i

[t]
j

[℃]

1 4445.59 5214.35 3277.95 20776.7 25.8561 3.18461 –3284.51 24.6246 146.081 1340.59

2 4658.27 5194.06 3295.22 21520.9 25.8496 3.182 –3284.14 24.5911 146.301 1340.59

… … … … … … … … … … …

2000 4883.56 5065.79 4410.02 19701.7 16.8229 2.38571 –3839.34 24.6002 273.241 1348.59
where a is the coke oven gas-flow, b – the mixed gas-flow, c – the primary air-flow, d – the secondary air-flow, e – the primary air pressure, 
f – the secondary air pressure, g – the central induced air pressure, h – kiln spindle frequency, i – the total amount of material fed,  
and  j – kiln temperature.

Figure 6. The CNN-BILSTM-OC model flowchart
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Evaluation indexes

In order to scientifically evaluate the prediction performance of the model, this paper 
adopts the root mean square error (RMSE) and the mean absolute error (MAE) as the indexes 
to judge the model’s accuracy. The calculation process:

( )2

1

1 n

i i
i

RMSE x x
n =

′= −∑ (21)

1

1 n

i i
i

MAE x x
n =

′= −∑ (22)

where n is the number of data, xi – the predicted result value, and x′i – the measured true value.

Comparative analysis of different model prediction results

In order to verify the superiority of the performance of the CNN-BILSTM-OC pre-
diction model proposed in this paper, it is necessary to compare this model with other control 
group experiments, select traditional neural networks such as CNN, BILSTM, and RF as the 
model control group. At the same time, compare the actual data model, the compensation model 
based on the least-squares method, and the compensation model based on the time lag of the 
dynamic error. Then, analyze the compensation model in different ways. The superiority of the 
model performance and the comparison of the different model’s specific prediction error results 
are shown in fig. 7, and the comparison of model numerical errors are shown in tab. 2.

Figure 7. Comparison of the errors of different models (for color image see journal web site)

Table 2. Numerical analysis of prediction errors of different models
Algorithmic models RMSE MAE

CNN 28.9842 22.785
BILSTM 25.6926 21.0024
Stacked BILSTM 24.9644 19.9656
RF 13.3782 10.8473
CNN-BILSTM 10.9289 8.2918
CNN-BILSTM-LSM 1.3027 0.76312
CNN-BILSTM-OC 0.8553 0.61659
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The aforementioned figures show that all the evaluation indexes of the fusion neural net-
work prediction model based on dynamic error time lag compensation are lower than those of the 
control model. The prediction datas obtained from the CNN-BILSTM-OC model have a minor 
error with the actual temperature data, and the prediction curve is the closest to the actual curve.

After comparing the error data, it can be quantified that the CNN-BILSTM fusion 
model, compared to the CNN model, reduced the RMSE by 62.29% and the MAE by 63.61%. 
Compared to the BILSTM model, the RMSE was reduced 57.46%, and the MAE was decreased 
by 60.52%. Compared to the stacked BILSTM model reduced the RMSE by 56.22% and the 
MAE by 58.47%. Compared to the RF model reduced the RMSE by 18.31% and the MAE 
by 23.56%. At the same time, the model’s accuracy after compensation is greatly improved 
compared with that of the uncompensated model. After compensation for dynamic error time 
lag, the prediction model reduced the RMSE by 34.34% and the MAE by 19.20% compared 
with the prediction model based on the least squares compensation, making the compensation 
accuracy more favorable. Based on the quantitative comparison of the relative and absolute 
prediction errors of the previously proposed model, the overall error situation of the model is 
analyzed, and the specific distribution is shown in fig. 8.

Figure 8. The CNN-BILSTM-OC model of absolute and relative errors

Figure 8 can be analyzed to show that the prediction circumstances of the CNN-BIL-
STM-OC model can accurately express the system state at the current moment. The maximum 
absolute error of the prediction results of the CNN-BILSTM-OC model in the dataset of this 
paper is 2.926 ℃, and the maximum relative error is 0.2098%, which meets the practical use 
requirements. Compared with other prediction models, the absolute error in predicted tem-
perature derived from this paper is smaller, with a maximum temperature error temperature of  
2.926 °C and an average temperature error value of 0.5711 °C, which is better than the tem-
perature prediction error value of 3.16 °C of other Model 1, it also outperforms the predicted 
temperature of 3.51 °C presented in Model 2.

Meanwhile, to verify the generalization performance of the CNN-BILSTM-OC mod-
el, aforementioned three sets of control data are selected to compare the generalization ability 
of this model under different working conditions, and the model prediction results are shown 
in fig. 9.

The aforementioned figures show that the CNN-BILSTM-OC model can accurately 
predict the temperature data of the lime rotary kiln combustion system under different operat-
ing conditions. The control Group 1 RMSE is 1.0487, and the MAE is 0.81019. The control  
Group 2 RMSE is 0.77677, and the MAE is 0.51023. The control Group 3 RMSE is 1.0664, and 
the MAE is 0.68443. It can be calculated that the generalized mean of the RMSE of the model 
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is 0.9639, and the generalized MAE is 0.6683. Experimentally, it is proved that the prediction 
performance of the CNN-BILSTM-OC model is more excellent under different working con-
ditions, and the prediction error is small, which can reflect the strong generalization ability of 
the model.

Conclusions

	y This paper proposes a hybrid neural network lime rotary kiln temperature prediction model 
based on dynamic error time lag compensation. The validity and relevance of the relevant 
factors of the initial data of the model are analyzed and verified through the entropy and 
grey correlation degree hybrid algorithm. The initial data set is preprocessed to facilitate the 
use of the subsequent prediction model.

	y This prediction model can take into account the spatial feature extraction as well as the 
feature capture of the temporal series, analyze the time lag and inertia order of the lime 
rotary kiln combustion system and compensate the model, and verify the superiority of the 
compensation method proposed in this paper by comparing it with the other compensation 
models. The prediction results of the hybrid neural network model of CNN-BILSTM-OC 
are higher in accuracy and smaller in prediction error compared to the prediction results of 
the other models, and the fusion prediction model reduces the error of the prediction results 
by about 18% compared with optimal other classical models.

	y The model proposed in this paper can compensate for the changes in model prediction ac-
curacy due to data acquisition and system time lag errors. At the same time, it is verified 
that the CNN-BILSTM-OC model has a better generalization ability under different work-
ing conditions, the generalization average of the root mean square error of the temperature 

Figure 9. Prediction results of 
CNN-BILSTM-OC model under 
different working conditions;  
(a) predicted results for control 
Group 1, (b) predicted results for 
control Group 2, and  
(c) predicted results for control 
Group 3 (for color image see 
journal web site)
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prediction data obtained is 0.9639, and that the generalization average of the mean absolute 
error is 0.6683, which can precisely realize the temperature prediction of lime rotary kiln 
system.
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