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Abstract: In some nonlinear unsteady inverse problems, the inverse solution 

will oscillate violently in the whole time domain due to the sharp change of 

the sensitivity coefficients. To deal with this problem, a new sequential 

function specification method with variable future time steps is proposed in 

this paper. The future time steps are adjusted by the error amplification 

coefficients which are defined as the reciprocal of the square sum of the 

sensitivity coefficients. When the error amplification coefficients are small, a 

small number of future time steps is used to reduce the deterministic error; 

while in the period with large error amplification coefficient, a large number 

of future time steps is used to reduce stochastic error. Finally, the total error 

of estimated heat flux is reduced. Avoid the sharp fluctuation of estimated 

heat flux in time domain due to the sharp change of sensitivity coefficients. 

The variable future-time-steps method is applied to the estimation of 

one-dimensional nonlinear unsteady heat flux without and with ablation 

through numerical experiments. Numerical experiments show that the 

proposed method can not only estimate various forms of heat flux, but also 

its inversion results are significantly better than those of the fixed future time 

steps method based on the discrepancy principle, and also better than those 

of the fixed future time step method based on the minimum relative error of 

heat flux. 

Key words: Inverse heat conduction problem; sequential function 

specification method; variable future time steps; ablation 

1. Introduction 

Inverse heat conduction problem (IHCP) refers to the estimation problem of some unknown 

characteristic parameters of the heat conduction system, such as boundary conditions, thermophysical 

parameters, geometric shapes, initial conditions and source terms, according to some temperature 

information inside or/and on the surface of the heat conduction system. IHCPs are widely used in 

scientific research and many technical fields, such as power engineering [1], aerospace [2], material 
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processing [3], microelectronics [4], metallurgical engineering [5], nondestructive testing [6], 

biological engineering [7; 8]. 

In recent years, the research on inverse heat conduction problem is very active. Some important 

achievements have been made in inverse heat conduction problem and its application, and some 

valuable mathematical methods have been developed to solve inverse heat conduction problems. 

According to the different time domain involved in the measurement information required by inverse 

methods, the research methods of inverse heat conduction problems can be divided into two types: 

whole-domain inverse algorithm and sequential inverse algorithm. whole-domain inverse algorithms 

mainly include Tikhonov regularization [9], iterative regularization[10; 11], intelligent optimization 

algorithm [12]; sequential inverse algorithms mainly include sequential function specification method 

(SFSM) [13], model prediction inverse method [14], Kalman filter technology [15], and PID inverse 

method [16; 17], etc. The whole-domain inverse method generally has higher computational accuracy. 

The sequential inverse method is a real-time or near real-time estimation method, which has the 

advantages of low storage requirements of temperature information and higher calculation efficiency. 

Among the sequential inverse algorithms, the SFSM proposed by J. V. Beck has been widely applied 

in many fields due to its simplicity and effectiveness.  

The inverse heat conduction problem is ill-conditioned, namely, the existence, uniqueness and 

stability of the Hadamard solution of the inverse heat conduction problem cannot be satisfied at the 

same time. Therefore, any efficient inverse algorithm needs to compromise between fidelity and 

stability, the compromise is called regularization technology. SFSM realizes regularization by 

selecting the number of future time steps. The selection of the number of future time steps has a 

significant impact on the inversion results of SFSM, and must be carefully selected. 

 In Refs. [18; 19], for the one-dimensional linear unsteady inverse heat conduction problem, the 

influence of measurement error, measurement point position, sampling time, heat flux form on the 

optimal number of future time steps is examined by applying the discrepancy principle in the 

whole-time domain. Zhang et al. [20] optimized the fixed number of future time steps by using the 

discrepancy principle in the whole-time domain and estimated the heat flux distribution of 

two-dimensional billet. 

For the above linear problems or weakly nonlinear problems, using the fixed future time steps 

which is determined by the discrepancy principle in the whole-time domain can obtain relatively 

satisfactory inversion results. However, for strongly nonlinear problems, it is difficult to obtain 

satisfactory inversion results by using the fixed number of future time steps. For example, in the bone 

grinding heat source identification problem, the grinding heat source moves relative to the 

measurement point, resulting in this moving heat source identification problem being a kind of 

strongly nonlinear problem. Therefore, in the whole movement process of heat source, using the fixed 

number of future time steps will inevitably lead to too large inversion error in the time period when the 

heat source is far from the measurement point, and even the inversion result has no practical 

significance [21]. A more effective strategy is to adopt different number of future time steps in each 

local time domain. In this way, the balance between fidelity and stability can be achieved in the local 

time domain, and the optimal inversion result in the whole time domain can be obtained. 

Blanc et al. [19] solved the one-dimensional linear unsteady heat conduction inverse problem by 

automatically adjusting the number of future time steps of SFSM using the discrepancy principle, 

obtained the optimal solution at each estimated time, and realized the balance between fidelity and 
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stability in the local time domain. This method can obtain satisfactory inversion results for linear or 

weakly nonlinear inverse problems. However, for the strongly nonlinear inverse problem, using 

Blanc's method directly cannot get a satisfactory solution. There are two main reasons: on the one 

hand, strong nonlinearity leads to the sharp change of sensitivity coefficient with time, which leads to 

the sharp change of estimated heat flux error with time. Therefore, the inversion results fluctuate 

violently in the whole-time domain. Blanc's method does not consider the problem that the inversion 

solution fluctuates violently in the whole-time domain due to the drastic change of the sensitivity 

coefficients in the time domain. On the other hand, for the linear or quasi-linear direct problem, an 

accurate temperature prediction model at the measurement point can be established through the 

first-order approximation of Taylor series. A reasonable number of future time steps can be obtained 

by automatically adjusting the number of future time steps based on the weighted discrepancy 

principle. However, for the seriously nonlinear problem, the prediction model established by using the 

first-order approximation of Taylor series has low accuracy. At this time, Blanc's method tends to use 

small future time steps to meet the weighted discrepancy principle, and small future time steps will 

inevitably lead to unstable inversion results. Based on these two reasons, it is inappropriate to apply 

Blanc's method directly to the seriously nonlinear problems. For the strongly nonlinear estimation 

problem of ablation heat flux of composite materials, Mohammadiun et al. [22] adopted the variable 

future time steps strategy by the trial and error method. Different numbers of future time steps in each 

local time domain of ablation are adopted, and good inversion results are obtained. This idea is of 

great significance for solving strongly nonlinear inverse heat transfer problems. 

In this paper, we attempt to establish a new sequential function specification method with 

variable future time steps. The future time steps of this method are adjusted by the error amplification 

coefficients which are defined as the reciprocal of the square sum of the sensitivity coefficients. When 

the error amplification coefficients are small, a small number of future time steps is used to reduce the 

deterministic error; while in the period with large error amplification coefficient, a large number of 

future time steps is used to reduce stochastic error. Finally, the total error of estimated heat flux is 

reduced. Avoid the sharp fluctuation of estimated heat flux in time domain due to the sharp change of 

sensitivity coefficients. 

The present paper is organized in the following way. First, the direct and inverse heat 

conduction problems with variable geometry domain due to ablation and the numerical solution of the 

direct problem are presented. Then, the sequential function specification method is briefly reviewed, 

and then, a new variable future-time-steps method is proposed. Finally, the new variable 

future-time-steps method is applied to the heat flux estimation with and without ablation, and the new 

method is compared with the fixed future time step method in detail. 

2. Direct and inverse heat conduction problems with variable geometry domain 

To illustrate the variable future-time-steps method for solving the nonlinear inverse heat 

conduction problem, we take the one-dimensional heat conduction problem of a flat plate with 

variable geometry domain (as shown in Fig. 1) as an example for analysis. Suppose that the right side 

is insulated and the position is fixed; the left side is the heating surface, and its position changes with 

time due to some reasons (such as material pyrolysis and ablation [23]). The governing equation, the 

initial condition and boundary conditions are as follows: 
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Fig. 1. Schematic of coordinate system 

for one-dimensional transient heat 

conduction slab with variable geometry 

domain. 
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where x represents the coordinate which origin always attached to the changing ablating surface, as 

shown in Fig.1; T0(x) is the initial temperature; L(t) is 

the thickness of the plate, which can be recorded by the 

displacement measurement instrument; L  is the 

original thickness of the plate; , cp are thermal 

conductivity and specific heat at constant pressure, 

respectively, and they are function of temperature;  is 

density, and it is constant; d / ds s t  and it indicates 

the ablating rate. The direct heat conduction problem 

considered here is concerned with calculating the 

temperature distribution of the ablator when the 

governing equation, boundary conditions, initial 

condition, thermophysical parameters and physical 

dimension are known. On the contrary, the inverse heat 

conduction problem is to estimate the unknown surface 

heat flux by additional temperature measurement 

information, ablation displacement information and Eqs. 

(1a) - (1c). 

3. Numerical solution of direct heat conduction problems with variable geometry domain 

Because the space domain of numerical solution changes with time, a moving grid will be 

generated. In this paper, Landau coordinate system is used to deal with the variable geometry domain 

problem [24]. The Landau coordinate system makes the Landau coordinates of any node constant in 

the whole calculation process by defining new dimensionless coordinates. As shown in Fig.1, the 

origin of the z coordinate is in the original ablation surface, and the origin of the x coordinate is always 

attached to the ablating surface. Landau coordinates at any location are defined as: 

0

0

( )
,

( ) ( )

L zL t x

L t L s t
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
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                                  (2) 

where s(t) is the surface recession. Therefore, for a given time step, any nodes have
1 1 1k k k k

i i i iz z z s t       , and the relationship between the velocity of any nodes and the ablating rate, 
1 1k k

i iv s  , can be obtained. 1 1( ) /k k ks s s t    , which is the discrete format of the ablating rate, s . 

Because the direct heat conduction problem with variable geometry domain is nonlinear, it is 

linearized at each time step by using thermophysical properties and surface recession at previous time 

step. The implicit discrete format of Eq. (1) can be obtained by using the finite difference method [25]. 

The tridiagonal matrix algorithm (TDMA) is used to solve the algebraic equations, and the dynamic 

temperature distribution, k

iT , can be obtained. ( , )k

i i kT T x t ; ( 1)ix i x   ; kt k t  ; ( ) / ( 1)x L t I   ; I 

javascript:void(0);
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is the number of nodes; t is size of time step; 
ix  is the width of the ith control element; k = 1, 2, …, 

K; i = 1, 2, …, I.  

4. Sequential function specification method for inverse heat conduction problems with 

variable geometry domain 

Sequential function specification method (SFSM) sequentially estimates the unknown heat flux 

in a step-by-step fashion. It first temporarily assumes that the heat flux components at r future time 

steps are equal, and then estimates the assumed heat flux by optimizing the least square objective 

function between the measured temperature and the calculated temperature at r future time steps. 

Finally, the temporarily assumed heat flux is brought into the direct heat transfer problem for 

correction. Repeat the above steps at the next time until the entire estimation process is completed. 

SFSM temporarily assumes that the heat flux components at time tk, tk+1, …,
+ 1kk r

t


are equal, 

namely, 
+1 +2 + 1

ˆ ˆ ˆ ˆ= = =kk k kk r
q q q q


.                              

Define objective function ˆ( )kJ q  

1 1 2

1

ˆ ˆ( ) [ ( )]

kr
k i k i

k k

i

J q Y T q   



  ,                             (3) 

where 1k iY   and 1 ˆ( )k i

kT q  are the measured temperature and calculated temperature at the measurement 

point and time tk+i1, respectively. 

Set the guess value of the heat flux to be estimated 0

kq . The calculated temperature at the 

measurement point can be calculate by first order Taylor approximation at 0

kq . 

1 1 0 , 1 0ˆˆ ˆ( ) ( )+ ( )k i k i k i

k k k kT q T q Z q q      ,                           (4) 

where , 1k iZ  is the step function sensitivity coefficient, which is calculated by the following formula： 
1 0 1 01

, 1 ( ) ( )
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where q  is a relatively small quantity. In this article, q=110
-5

 W/m
2
 is used by the trial-and-error 

method. 

Inserting Eq. (4) into Eq. (3) and setting ˆ ˆ( ) / 0k kJ q q    yields 

0 1 1 0 , 1 , 1 2

1 1

ˆˆ ( ) ( )

k kr r
k i k i k i k i

k k k

i i

q q Y T q Z Z     

 

   
   .                    (6) 

This is the classical sequential function specification method. Usually, kr  is a constant in this 

method, it is called the fixed future-time-steps method in this work. The optimal future time steps of 

fixed future-time-steps method, ropt, is usually determined by the discrepancy principle or the criterion 

of minimum relative error of heat flux. 

The idea of the discrepancy principle is that the root mean square error of the measured 

temperature and the reconstructed temperature should be consistent with the standard deviation of the 

measurement error. Therefore, ropt can be determined according to the following formula: 

+

2

opt

1

1 ˆmin ( ( ) )
1

K

k k
r

k

r T r Y
K






  
   

  


N

,                         (7) 

where ˆ ( )kT r  is the reconstructed temperature at the measurement location based on the estimated heat 

flux,  is the standard deviation of measurement temperature error. 

The ropt determined by the criterion of minimum relative error of heat flux is the future time 
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steps corresponding to the minimum mean square error of the retrieved heat flux and the actual heat 

flow. It can be expressed as 

+

2

opt

1

1
ˆarg min ( ( ) )

1

K

k k
r k

r q r q
K 

 
   


N

.                        (8) 

5. Sequential function specification method with variable future time steps 

Different error statistical assumptions will lead to different estimation methods. Therefore, 

reasonable statistical assumptions must be made. The statistical assumptions about temperature 

measurement errors in this work are referred to Ref. [19]. 

In order to measure the estimation error, we use the mean squared error of the estimated heat 

flux to measure: 

2 2ˆ[( ) ]k k kE q q S ,                                      (9) 

where qk is the exact but usually unknown heat flux. 

The mean squared error of heat flux retrieved by SFSM consists of deterministic error and 

random error [26]. Adding and subtracting the expected value of estimated heat flux on the right side 

of Eq. (9) gives: 

     22 ˆ ˆ ˆ( ) ( )k k k k kE q E q q E q   S                               (10a) 

         2 22 ˆ ˆ ˆ ˆ ˆ ˆ( ) 2 ( ) ( ) + ( )k k k k k k k k kE q E q E q E q q E q E q E q     S ,             (10b) 

where the first term on the right of Eq. (10b) is the variance of the estimator, ˆ
kq , 
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Based on statistical assumptions in Ref. [19], the following formula can be derived. 

2
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1
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It can be seen from Eq. (11b) that the variation of sensitivity coefficients has a great influence 

on the variance of the estimator. If the sensitivity coefficients change dramatically with time, the 

inversion result will oscillate violently with time, even it will lead to unstable inversion results. 

Therefore, measures must be taken to avoid this situation. 

The second term on the right side of Eq. (10b) can be proved to be equal to zero. ˆ ˆ( )k kq E q  is 

not a random variable, therefore,  ˆ ˆ ˆ ˆ( ) = ( ) ( ) 0k k k kE q E q E q E q   . 

The last term on the right side of Eq. (10b) is the square of a bias, and the outer expected value 

symbol can be dropped. It can be represented by  
22 ˆ( )k k kq E q D .  

It can be seen from Ref. [27] that the heat flux estimated by the SFSM is the weighted average 

of the heat flux at r future time steps. Therefore, the square of the deterministic error can be expressed 

as: 
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2
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1
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k k k i k i

i
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
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where , 1 , 1 , 1 2

, 1 1 1
( ) ( )

k kr rk j k j i k j

k i j j
w Z X Z   

  
   , , 1k j iX   is the pulse sensitivity coefficient. 

1( 1,2,..., )k

k iq i r    are kr  future heat flux values corresponding to the exact matching of the 

measured temperature. 
, 11

=1
kr

k ii
w  . It can be seen from Eq. (12) that for the case where the heat flux 

changes slowly with time, the change of weighting coefficients (or the variation of sensitivity 

coefficients) almost does not affect the deterministic error. 

Therefore, the mean squared error of the estimator, ˆ
kq , is composed of the square of the variance 

and the deterministic error, and their relationship is as follows: 

2

2 2 2 1 2

, 1 1

1 1

ˆ( ) ( )

k kr r
k i

k k k k k i k i

i i

V q Z q E w q  

  

 

  
      

   
 S D .            (13) 

For the slowly changing heat flux, the variation of sensitivity coefficients mainly affects the 

variance of estimated heat flux, and has little influence on the deterministic error. Therefore, when the 

sensitivity coefficients change significantly, the variance mainly affects the inversion error. Effective 

means must be used to control the rapid change of variance, otherwise the inversion result will 

oscillate violently, and the inversion solution will be unstable. 

In this paper, we attempt to overcome the instability of inversion result caused by the drastic 

variation of the sensitivity coefficients by adopting the variable future-time-steps method. The error 

amplification coefficient at the kth moment, Ak , is introduced, namely, 

, 1 2

1

1 ( )

kr
k k i

i

A Z 



  .                               (14) 

The error amplification coefficient represents the degree to which the random error of 

temperature measurement in the inversion result is amplified at the kth time step. Its unit is W
2
m

4
 K

2
. 

The larger Ak
 is, the larger the random error is amplified. If Ak

 oscillates violently with time, the 

temperature measurement error will be amplified differently at different times, and the inversion 

results will oscillate violently in time domain. Therefore, the occurrence of such oscillation must be 

reasonably limited. The minimum error amplification coefficient under the optimal future time steps is 

defined as the benchmark error amplification coefficient: 

opt

, 1 2

b opt
1 1

1

min 1 max ( )

r
K K

k k i

k k
i

A A Z 

 


 
   

  
 ,                          (15) 

where
opt

kA  denotes the error amplification coefficient under the optimal future time steps, optr . bA  

represents the minimum limit of the amplification of the measurement random error in the inversion 

results under the condition that the deterministic error is not over amplified. Therefore, we use it to 

adjust the number of future time steps. 

In the calculation, the benchmark error amplification coefficient must be found first. Then, by 

adjusting the number of future time steps, kr , the error of inversion results in the time with small 

sensitivity coefficient is roughly consistent with that in the time with big sensitivity coefficient. The 

adjustment of the number of future time steps is usually to increase the number of future time steps, so 

as to make inversion results more stable in the time with small sensitivity coefficient. By changing the 

number of future time steps, it can effectively avoid the unreasonable situation that the inversion error 

oscillates violently in the whole time domain. 



8 
 

Fig. 2 Flowchart of the sequential 

function specification method with 

variable future time steps. 

 

6. Estimation process of sequential function specification method with variable future time 

steps 

The calculation flowchart of the SFSM with variable future time steps for solving the nonlinear 

inverse heat conduction problem is shown in Fig. 2. The 

calculation process includes the calculation of the 

benchmark error amplification coefficient and the 

estimation process of variable future-time-steps method. 

It can be seen from the calculation flowchart that 

compared with the classical SFSM, the new method 

needs to determine the benchmark error amplification 

coefficient in advance. However, the determination of the 

benchmark error amplification coefficient in advance 

requires the estimation of the boundary heat flux in the 

whole time domain. Overall, the new method is a 

whole-domain inverse method. Considering that the 

future time steps of the new method at each time step are 

adjusted based on the benchmark error amplification 

coefficient which needs the information in whole time 

domain, the new method has an insight of whole 

evolution process. 

Another notable feature of the new method is that 

although the new method adds an inner loop on the basis 

of the classical SFSM (see the estimation process of 

variable future-time-steps method in Fig. 2), since the 

inner loop does not involve the repeated solution of the 

direct and inverse problems, the amount of inverse 

calculation has hardly increased. The new variable 

future-time-steps method has high computational efficiency. 

7. Numerical tests and discussions 

7.1 Solution conditions of inverse problem 

In this section, we attempt to verify the effectiveness of the variable future-time-steps method by 

numerical simulation. Numerical experiments are carried out on a one-dimensional carbon-carbon 

composite plate which has the initial thickness L0=0.05 m and initial temperature T0(x) =100 K. The 

thermophysical properties of carbon-carbon composites are shown in Fig. 3. The density of carbon-carbon 

composites is 1900 kg/m
3
. In numerical simulation, the number of nodes I = 21, the size of time step t = 

0.1 s. 

In practical engineering applications, due to human or non-human factors, there are inevitable 

measurement errors in the actual temperature (and ablation surface position) measurement results. In 

numerical simulation, the actual measurement temperature or the measurement position of the ablation 

surface are usually simulated by the virtual measurement temperature or location of the ablation surface, 

that is, they are generated by exact values plus random disturbances. They can be expressed by the 
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following formula: 

exaM M   ,                                     (16) 

where
exaM and M  represent exact measurement and “actual” measurement, respectively.   is the 

standard deviation of the measurement error, and   is a random number of the standard normal 

distribution with zero mean and unit standard deviation in the confidence interval [2.576, 2.576] for a 99% 

confidence coefficient.  

To facilitate the comparison of inversion results, the relative error of estimated heat flux, Sq , is 
defined as

f f2 2

q
0 0

ˆ[ ( ) ( )] d ( ) d 100%
t t

S q t q t t q t t    . 
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Fig. 3 Thermophysical properties of 

carbon-carbon composites. 

Fig.4 Typical reentry vehicle surface 

heat flux [25; 28]. 

7.2 Estimation of heat flux with temperature-dependent physical properties and no ablation 

In this section, the inversion results of rectangular wave, triangular wave and typical reentry vehicle 

surface heat flux [25; 28] retrieved by variable future-time-steps method and traditional fixed 

future-time-steps method are compared through numerical tests. In this section, it is assumed that the 

material is highly heat-resistant, the change of sensitivity coefficients caused by surface ablation is not 

considered temporarily, that is, the influence of sensitivity coefficients caused by the change of 

thermophysical properties on the inversion result is only considered. The surface heat flux of a typical 

reentry vehicle is shown in Fig.4.  

In this section, the number of future time steps in traditional fixed future-time-steps method is 

determined by the discrepancy principle, and the determination method is referred to Ref. [19]. The 

benchmark error amplification coefficient adopts the error amplification coefficient at the first moment.  

For the above three different heat flux forms, the inversion results of variable future-time-steps 

method and traditional fixed future-time-steps method under different measurement point positions and 

measurement errors are compared and shown in Tab.1. Figs. 5 - 7 shows the inversion results of three 

different heat flux forms retrieved by the two methods when the temperature measurement error T = 5 K 

and the measurement point location zm=1 cm. The dotted line in the figures is the corresponding future time 

steps when the future time steps are variable.  

Tab. 1 and Figs. 5 - 7 show that the variable future-time-steps method is significantly better than the 

fixed future-time-steps method. For zm=1 cm, the estimation errors of variable future-time-steps method are 

0.73 ~ 3.8 times lower than that of the fixed future-time-steps method. For zm=1.5 cm, the estimation errors 

of variable future-time-steps method are 3.1 ~ 37.0 times lower than that of the fixed future-time-steps 

method. The heat flux estimation error of fixed future-time-steps method in the initial phase is small, but 

the heat flux estimation error in the final phase is too large. The variable future-time-steps method uses 

small future time steps in the initial phase and large future time steps in the final phase, so that the heat flux 
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estimation error is small in the entire time domain. The reason can be observed through the variation rule of 

measurement error amplification coefficient with time. Fig. 8 shows the variation of measurement error 

amplification coefficient with time during rectangular wave estimation when zm=1 cm. When the number of 

future time steps are equal to 1, the error amplification coefficient is equal to the reciprocal of the square of 

the sensitivity coefficient. Since the sensitivity coefficient decreases with time, the error amplification 

coefficient increases with time. When the measurement errors are the same, the error amplification is small 

in the initial phase, and large in the final phase, using the fixed future-time-steps method will cause the 

inversion results to be unstable in the time domain, and will lead to excessive relative error of estimated 

heat flux. It can also be seen from Fig. 10 that the measurement error amplification coefficient decreases 

with the increase of future time steps. This feature shows that the error amplification coefficient can be 

reduced by increasing the future time steps to overcome the instability of the solution caused by the 

variation of sensitivity coefficients. The solid line in Fig.8 shows when the benchmark error amplification 

coefficient Ab=2.10×10
9
 W

2
m

4
 K

2
, the variation of error amplification coefficient with time in variable 

future-time-steps method. The observation shows that the error amplification coefficient line is basically 

stable at different time, that is, the error amplification coefficient is approximately equal to a constant. 

Therefore, the variable future-time-steps method can overcome the instability of the solution caused by the 

variation of sensitivity coefficients. The inversion result of rectangular wave in Fig. 5 also confirms the 

above conclusions. In addition, it should be noted that if the too large future time steps in variable 

future-time-steps method will increase the error of the downward step phase, that is, it increases the 

deterministic error of estimated heat flux, but it brings greater stability benefits. 
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Fig. 5 Estimated rectangular heat flux by 

variable and fixed future-time-steps 

method. 

Fig. 6 Estimated triangular heat flux by 

variable and fixed future-time-steps 

method. 
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From Tab. 1, it can also be observed that the estimation results of triangular and typical reentry 

vehicles surface heat flux have smaller errors compared with rectangular heat flux, and they are easier to be 

estimated, regardless of the variable or fixed future-time-steps method. This is because the rectangular heat 

flux contains more high-frequency signals. Under the same conditions, the greater the measurement error, 

the greater the inversion error. Under the same conditions, the farther the measurement point is, the greater 

the inversion error is. Because the farther the measurement point is, the smaller the sensitivity coefficients 

are, and the greater the error amplification effect is. 

 

Tab.1 Comparison of inversion results of variable and fixed future-time-steps method. 

 

 

 

 

 

 

7.3 Estimation of heat flux with temperature-dependent physical properties and ablation 

In this section, the variable future-time-steps method is applied to the heat flux estimation of 

composite materials with ablation. This case is taken from Ref. [28]. The problem solved in this case is 

basically the same as that in Section 7.2, except that the surface ablation recession shown in Fig.9 is 

generated on the surface of the ablator due to the thermochemical effect. The temperature thermocouple is 

arranged at the position where zm = 1 cm, and the ablation surface position is recorded by the position 

sensor. Because both temperature and position measurements have measurement errors. Therefore, we will 

discuss three cases: the temperature measurement error is 5 K, and the position measurement error is 0 mm 

(Case #1); the temperature measurement error is 0 K, and the position measurement error is 3.8810
-5

 mm, 

as shown in Fig.9 (Case #2); the temperature measurement error is 5 K, and the position measurement error 

is 3.8810
-5

 mm (Case #3).  
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Fig. 7 Estimated typical reentry vehicles 

surface heat flux by variable and fixed 

future-time-steps method. 

Fig. 8 Error amplification coefficients 

during rectangular heat flux estimation 

under different future time steps. 

Item 
=5 K  =3 K 

qsqu qtri qre  qsqu qtri qre 

zm=1cm 

Sq of variable r (%) 17.59 3.01 5.06  14.67 2.45 3.80 

Sq of fixed r(%) 41.13 14.08 9.44  40.21 11.75 6.58 

r for fixed r 7 10 11  6 8 10 

zm=1.5cm 

Sq of variable r(%) 21.02 4.11 6.39  19.88 3.29 5.26 

Sq of fixed r(%) 171.54 156.30 40.32  121.04 30.67 21.50 

r for fixed r 9 12 14  8 10 12 
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Because the discrepancy principle cannot be used in the case with position measurement error. 

Therefore, the criterion of minimum relative error of heat flux is adopted in this section to determine the 

number of future time steps in the fixed future-time-steps method. For Case 1#, both the discrepancy 

principle and the criterion of minimum relative error of heat flux are adopted. The benchmark error 

amplification coefficient is also determined by the criterion of minimum relative error of heat flux. 

Tab.2 lists the relative errors of estimated heat flux by the variable and fixed future-time-steps 

method for the above three cases. The second row of Tab. 2 lists the benchmark error amplification 

coefficient in variable future-time-steps method; the fourth row of Tab. 2 lists the number of future time 

steps in fixed future-time-steps method. Fig. 10 shows the inversion results of fixed and variable 

future-time-steps method for Case #1 based on the discrepancy principle. It can be seen from the Fig. 10 

that the inversion error of the new method is obviously smaller than that of the traditional fixed 

future-time-steps method, whose future time steps are determined through the discrepancy principle. The 

inversion error of the new method is 1.9 times smaller than that of the traditional fixed future-time-steps 

method in this case. 

Figs. 11 and 12 show the inversion results of fixed and variable future-time-steps method based on 

the criterion of minimum relative error of heat flux for Cases # 2 and # 3, respectively. By comparing the 

relative error of heat flux of the two methods, it can be seen that when the hyperparameters, Ab and r, are 

determined by using the criterion of minimum relative error of heat flux, the inversion result of the variable 

future-time-steps method is slightly better than that of fixed future-time-steps method. 
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Fig. 9 Variation of surface ablation 

recession with time without error and 

with error. 

Fig. 10 Inversion results of variable and 

fixed future-time-steps method based on the 

discrepancy principle for Case #1. 
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Fig. 11 Inversion results of variable and 

fixed future-time-steps method based on 

the criterion of minimum relative error of 

heat flux for Case #2. 

Fig. 12 Inversion results of variable and 

fixed future-time-steps method based on the 

criterion of minimum relative error of heat 

flux for Case #3. 
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Table 2 Comparison of inversion results of variable and fixed future-time-steps method. 

The new method is slightly better than the traditional fixed future-time-steps method, whose future 

time steps are determined through the criterion of minimum relative error of heat flux. There are two main 

reasons: First, the new method adopts the variable future-time-steps scheme, so that the error is more 

evenly distributed in the time domain. A small number of future time steps are adopted in the time interval 

with large sensitivity coefficients to reduce the deterministic error; in the time interval with small 

sensitivity coefficients, a large number of future time steps are used to reduce the variance. Therefore, the 

total error of estimated heat flux is smaller. Second, when the traditional method determine the number of 

future time steps, the hyperparameters, r, can only be an integer. The benchmark error amplification 

coefficient of the new method can be a continuous real number. Therefore, the new method can tune the 

inversion results more finely. 

In addition, it can also be observed from Tab.2 that the error of inversion results with only position 

measurement error (Case #2) is greater than that with only temperature measurement error (Case #1). The 

error of inversion results (Case #3) is maximum when there are position measurement error and 

temperature measurement error. 

8. Conclusions 

For a class of nonlinear unsteady inverse heat conduction problems that the inversion solution 

oscillates violently in the whole-time domain due to the drastic change of the sensitivity coefficients, a 

new sequential function specification method with variable future-time-steps is proposed in this paper. 

The future time steps are adjusted by the error amplification coefficients which are defined as the 

reciprocal of the square sum of the sensitivity coefficients in the article. When the error amplification 

coefficients are small, a small number of future time steps is used to reduce the deterministic error; 

while in the period with large error amplification coefficient, a large number of future time steps is 

used to reduce stochastic error. Finally, the total error of estimated heat flux is reduced. Avoid the 

sharp fluctuation of estimated heat flux in time domain due to the drastic change of sensitivity 

coefficients. 

The variable future-time-steps method is applied to the estimation of heat flux of nonlinear 

unsteady inverse heat conduction problems without ablation and with ablation. Numerical experiments 

show that the new method is obviously superior to the fixed-future-time steps method based on the 

discrepancy principle. The new method is slightly better than fixed-future-time steps method based on 

the criterion of minimum relative error of heat flux. This is due to the strategy of variable 

future-time-steps and the continuously adjustable characteristic of benchmark error amplification 

coefficient. 

The variable future-time-steps method proposed in this article has the potential to be applied to 

the temporal-spatial distribution parameter estimation topics, which can be further studied in the future. 

Item 

Noisy temperature measurement (#1) Noisy position 

 Measurement 

(#2) 

Full noisy 

data (#3) 
Discrepancy 

principle 
Minimize Sq 

Sq of variable r (%) 2.99 

8.49×10
8
 

4.20 4.47 

Ab [W
2
/(m

4
 K

2
)] 5.81×10

8
 5.81×10

8
 

Sq of fixed r (%) 8.75 3.00 5.00 5.14 

r for fixed r 9 15 19 20 
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