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Laplace and Fourier transforms are widely used independently in engineering for 
linear differential equations including fractional differential equations. Here we 
introduce a generalized integral transform, which is a generalization of the Fou-
rier transform, Laplace transform, and other transforms, e.g., Sumudu transform, 
Aboodh transform, Pourreza transform, and Mohand transform, making the new 
transform much attractive and promising. Its basic properties are elucidated, and 
its applications to initial value problems and integral equations are illustrated, 
when coupled with the homotopy perturbation, it can be used for various non-lin-
ear problems, opening a new window for non-linear science. 
Key words: Laplace transform, Fourier transform, Volterra integral equations, 

system of ODE, initial value problems

Introduction

Researchers have developed several mathematical methods that are being employed 
in numerous fields of science, technology, and engineering in order to better understand nature. 
Particularly, the idea of integral transformation was put forth and has since been discovered 
to be a practical mathematical tool for addressing a variety of issues in both pure and applied 
mathematics [1-3]. It is important to recall that a mathematical operator is referred to as an 
integral transform if it transfers a function by means of an integral from its original function to 
another function space. Open literature demonstrates that there are numerous probability appli-
cations that are related to integral transformations, such as the price kernel, also known as the 
stochastic discount factor [4]. The application of these mathematical operators in control theory 
[5] is another significant area.

Since roughly 200 years ago, integral transforms were appeared in literature, among 
which Fourier and Laplace transforms are the most famous ones. Other than the Laplace trans-
form, a number of alternative integrals have been proposed in recent years and have been dis-
covered to share certain intriguing Laplace transform-like features. Elzaki transform [6], Su-
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mudu transform [7], Aboodh transform [8], Natural transform [9], Mohand transform [10], 
Pourreza transform [11], Kamal transform [12], Sawi transform [13], and Emad-Sara transform 
[14] are in the list. These transforms have been crucial in resolving differential equations of 
both integer and non-integer orders. Coupled with the analytical methods like the homotopy 
perturbation method [15] or the variational iteration method [16, 17], these transforms can be 
extended to non-linear problems and fractal/fractional equations [18-24].

Hossein [25] introduced a generalized transform and deduced that every integral 
transform in the class of Laplace transform is actually a special case of its generalized integral 
transform, however, this transform did not preserve the properties of Fourier transform. Recent-
ly, Khan and Khalid [26] proposed the Fareeha transform, which, however, does not contain 
many integral transforms falling under the Laplace transform category. In this article, we are 
being proposed a new generalized integral transform that remove the aforementioned disad-
vantages. The suggested integral transform not only includes many integral transforms falling 
under the Laplace transform category but also holds the properties of the Fourier transform as 
the special case. This unification offers a totally new window for wide applications. 

Background

The background of integral transforms can be traced back to the development of inte-
gral calculus and the need to solve complex problems involving differential equations and other 
mathematical operations [27]. Generally, an integral transform of an input function f(x) defined 
in a ≤ x ≤ b can be expressed:

{ }( ) ( ) ( , ) ( )d
b

a

f x F k K x k f x x= = ∫I (1)

where K(x, k) is the kernel of the transformation, I – the integral transform operator,  F(k) – the 
image of f(x), and k – the transform variable. In order to find f(x) from given F(k), we introduce 
the inverse operator I–1:

{ }1 ( ) ( )F k f x− =I (2)
Based on eq. (1), the Fourier and the Laplace transforms of a function can be written, 

respectively:

{ }( ) ( ) e ( )dikxf x F k f x x
∞

−

−∞

= = ∫ (3)

and

{ }
0

( ) ( ) e ( )dstf t F s f t t
∞

−= = ∫ (4)

Table 1 lists a few integral transformations from the category of the Laplace transform. 
Different types of integral equations, as well as ordinary, partial and fractional equations, have 
all been solved using these transformations [28-31]. Additionally, these types of transforms 
have been used in conjunction with other semi-analytical techniques, including the homoto-
py perturbation method, the variational iteration method, Adomian decomposition, differential 
transform methods, to solve a variety of ordinary, partial and fractional equations [32-36]. Nu-
merous applications of the integral transformations mentioned in tab. 1 can be found in science 
and engineering, including solitary waves, mechanics, finance, economics, and chemistry.
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Table 1. Integral transforms from the class of Laplace transform
Integral formula Transform name

{ } /

0

1( ) e ( )dt sS f t f t t
s

∞
−= ∫ Sumudu transform [7, 37]

{ }
0

1( ) e ( )dstA f t f t t
s

∞
−= ∫ Aboodh transform [8]

{ }
0

( ) e ( )dstN f t s f ut t
∞

−= ∫ Natural transform [9, 38]

{ }
2

0

( ) e ( )ds tP f t s f ut t
∞

−= ∫ Pourreza transform [11]

{ } /

0

( ) e ( )dt sE f t s f t t
∞

−= ∫ Elzaki transform [6]

{ } 2

0

( ) e ( )dstM f t s f t t
∞

−= ∫ Mohand transform [10]

{ } /
2

0

1( ) e ( )dt sSa f t f t t
s

∞
−= ∫ Sawi transform [13]

{ } /

0

( ) e ( )dt sK f t f t t
∞

−= ∫ Kamal transform [12]

{ } 2
0

1( ) e ( )dstES f t f t t
s

∞
−= ∫ Emad-Sara transform [14]

{ }
2

0

1( ) e ( )ds tEF f t f t t
s

∞
−= ∫ Emad-Falih transform [39]

Yang et al. [19] investigated the 1-D fractal heat-conduction problem in a fractal 
semi-infinite bar with local fractional calculus and the Yang-Fourier transform approach. The 
outcome demonstrates the correctness and dependability of the results. Nazari-Golshan et al. 
[18] examined a method by introducing He’s polynomials into the homotopy perturbation 
method coupled with the Fourier transform for the Lane-Emden problem. He and Zhang [6] 
proposed an iterative transformation technique that combines the Elzaki transform and iterative 
approaches to resolve fractional order linear Klein-Gordon and Hirota-Satsuma-linked KdV 
equations. Manimegalai et al. [8] explored the Aboodh transform-based homotopy perturbation 
method to solve a generalized oscillatory differential equation and concluded that the coupling 
gave much better results than many existed methods. Akgul et al. [37] investigated a few alter-
native financial/economic theories based on market equilibrium and option pricing using three 
different fractional derivatives, and obtained the fundamental solutions of the models using the 
Sumudu transform and the Laplace transform. Ahmadi et al. [11] studied the Pourreza integral 
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transform, which is useful for solving both Laguerre and Hermite differential equations used in 
quantum mechanics. Nadeem et al. [10] employed the Mohand transform with the homotopy 
perturbation method for the fractional order Newell-Whitehead-Segel equation. Higazy and 
Aggarwal [13] used the Sawi transformation to solve a system of ODE to calculate the concen-
tration of chemical reactants in a series of chemical reactions.

The proposed generalized integral transform

This section is devoted to present the generalized integral transform that includes 
many integral transforms falling under the Laplace transform category and the properties of the 
Fourier transform as the special case.

Definition 1: Let f(t) be an integrable function defined for t ≥ 0, p(s) ≠ 0 and s is from 
the complex domain, i.e., s = x + iy. We define the generalized integral transform H(s) of f(t):

{ }
0

H ( ) ( ) ( ) e ( )d
ns tf t s p s f t t

∞
−= = ∫H (5)

presuming that the integral exists for some sn where n ∈ Z. Table 2 displays the generalized 
integral transform of some basic functions.

Table 2. New generalized integral transform of some elementary functions
f(t) 1 t tα, α > 0 eat sinbt cosbt sinhbt coshbt

H(s)
( )
n

p s
s 2

( )
n

p s
s ( 1)

( ) ( 1)
n

p s
s α

α
+

Γ + ( )
n
p s

s a− 2 2
( )

n
bp s

s b+ 2 2
( ) n

n
p s s

s b+
2 2

( )
n

bp s
s b− 2 2

( ) n

n
p s s

s b−

Theorem 1. (Existence Theorem): Let f(t) is a piecewise continuous function of expo-
nential order for all t ≥ 0, then H(s) exists for all sn > k.

Proof: Given that f(t) is a piecewise continuous function of exponential order so it 
satisfies | f(t)| ≤ Mekt, where M is positive constant and k is the order of the function. Since:

	
{ } ( ) ( ) ( ) ( ) ( )

0 0 0

( ) H ( ) e d e d e e d
n n ns t s t kt s ts f t p s f t t p s f t t p s M t

∞ ∞ ∞
− − −= = ≤ ≤∫ ∫ ∫H

equivalently

( ) ( )( )

0

( ) e d ,
ns k t n

n

p s M
s p s M t s k

s k

∞
− −≤ = >

−∫H (6)

Thus the statement is correct.
Theorem 2. (Linearity Theorem): For any constants β and γ and any two functions f(t) 

and g(t) whose transforms exist individually, H satisfies:
{ } { } { }( ) ( ) ( ) ( )f t g t f t g tβ γ β γΗ + = Η + Η (7)

Proof: By applying the definition (5), we have:

	
{ } [ ]

0

( ) ( ) ( ) e ( ) ( ) d
ns tf t g t p s f t g t tβ γ β γ

∞
−Η + = + =∫

	
{ } { }

0 0

( ) e ( )d ( ) e ( )d ( ) ( )
n ns t s tp s f t t p s g t t f t g tβ γ β γ

∞ ∞
− −= + = Η + Η∫ ∫

Hence it is proved.
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Theorem 3. (Differentiation Theorem): Let f(t)is differentiable for t ≥ 0, p(s) ≠ 0 and s 
is from the complex domain, i.e., s = x + iy, then:

{ } ( ) ( )(a) ( ) ( ) 0nf t s s p s f′Η = −H (8)

{ } ( ) ( ) ( ) ( )2(b) ( ) ( ) 0 0n nf t s s s p s f p s f′′ ′Η = − −H (9)

{ } ( ) ( ) ( )
1

0

(c) ( ) ( ) 0
m

km nm nm n nk

k

f t s s p s s f
−

− −

=

Η = − ∑H (10)

Proof. (a): Using the definition (5), we have:

	
{ } ( )

0
0 0

( ) ( ) e ( )d ( ) e e ( )d
n n ns t s t n s tf t p s f t t p s f t s f t t

∞ ∞∞
− − −

 
 ′ ′Η = = +
  

∫ ∫

	 { } { } ( ) ( )( ) ( ) ( ) 0ff t p s f t p s f′Η = Η −

Proof. (b): we assume h(t) = f ′(t) so f ″(t) = h′(t), so we have:

{ } ( ) ( ) { } ( ) ( ) { } ( ) ( )
0

( ) e d ( ) 0 ( ) 0
ns t n nh t p s h t t s h t p s h s f t p s f

∞
−′ ′ ′ ′Η = = Η − = Η − =∫

	
{ } ( ) ( ) ( ) ( )( ) 0 0n ns s f t p s f p s f  ′= Η − − 

	 { } { } ( ) ( ) ( ) ( )2( ) ( ) 0 0n nh t s f t s p s f p s f′ ′Η = Η − −

By principle of mathematical induction, we can Proof (c).
Theorem 4. (Convolution Theorem): Let

	 { } { }1 1 2 2( ) ( ) and ( ) ( ) thenf t s f t sΗ = Η =H H

{ } { } { }1 2 1 2 1 2
1( )* ( ) ( ) ( ) ( ) ( )
( )

f t f t f t f t s s
p s

Η = Η Η = H H (11)

where f1(t)* f2(t) is called the convolution of f1(t) and f2(t) and is expressed:

	
1 2 1 2

0

( )* ( ) ( ) ( )d
t

f t f t f t fτ τ τ= −∫
Proof. Using the definition (5), we have:

	

{ }1 2 1 2
0 0

1 2
0 0

( )* ( ) ( ) e ( ) ( )d d

( ) e d ( ) ( )d

n

n

t
s t

t
s t

f t f t p s f t f t

p s t f t f

τ τ τ

τ τ τ

∞
−

∞
−

 
 Η = −
 
 

= −

∫ ∫

∫ ∫
By changing the order of integration:

	
{ }1 2 2 1

0

( )* ( ) ( ) ( ) e ( )d
ns t

t

f t f t p s f d f t t
τ

τ τ τ
∞ ∞

−

=

Η = −∫ ∫
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By the change of variable t – τ = u, previous equation leads to:

	

{ } ( )
1 2 2 1

0 0

2 1 1 2
0 0

( )* ( ) ( ) ( )d e ( )d

1( ) e ( )d e ( )d ( ) ( ).
( )

n

n n

s u

s s u

f t f t p s f f u u

p s f f u u s s
p s

τ

τ

τ τ

τ τ

∞ ∞
− +

∞ ∞
− −

Η =

= =

∫ ∫

∫ ∫ H H

This completes the proof.

Table 3. Integral transforms belongs to the class of Laplace transform  
for various values of p(s) and n

p(s) n Integral formula Transform name

1 1
0

e ( )dst f t t
∞

−∫ Laplace transform [40, 41]

1/s –1 /

0

1 e ( )dt s f t t
s

∞
−∫ Sumudu transform [7, 37]

1/s 1
0

1 e ( )dst f t t
s

∞
−∫ Aboodh transform [8]

s 1
0

e ( )dsts f ut t
∞

−∫ Natural transform [9, 38]

s 2
2

0

e ( )ds ts f ut t
∞

−∫ Pourreza transform [11]

s –1 /

0

e ( )dt ss f t t
∞

−∫ Elzaki transform [6]

s2 1 2

0

e ( )dsts f t t
∞

−∫ Mohand transform [10]

1/s2 –1 /
2

0

1 e ( )dt s f t t
s

∞
−∫ Sawi transform [13]

1 –1 /

0

e ( )dt s f t t
∞

−∫ Kamal transform [12]

1/s2 1 2
0

1 e ( )dst f t t
s

∞
−∫ Emad-Sara transform [14]

1/s 2
2

0

1 e ( )ds t f t t
s

∞
−∫ Emad-Falih transform [39]
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Similarly, we can prove the first shifting theorem, second shifting theorem, scaling 
property and other concepts for this new generalized transform.

Analysis of proposed generalized integral transform

As discussed earlier that the proposed integral transform not only encompasses var-
ious transforms that belong to the Laplace transform category, but also exhibits the properties 
of the Fourier transform in specific instances. For p(s) = 1 and s = x + iy, eq. (5) becomes the 
Fareeha transform [27] that includes all the properties of Laplace and Fourier transform, and 
for positive real value of sn where n ∈ Z, we can obtain an integral transform belonging to the 
Laplace transform class. Table 3 discusses about the integral transformations from the category 
of Laplace transform for various values of p(s) and n.

The convergence of the generalized integral transform of a function f(t) depends on 
three factors. The f(t) must be continuous, bounded by an exponential function and absolutely 
integrable over the real line. The generalized transform of a function may diverge and in this 
case it cannot be computed using the standard techniques.

Applications

This section is devoted to present methodologies stem from generalized integral trans-
form to solve initial value problems (IVP), system of first-order differential equations and Volt-
erra integral equations.

Solving initial value problem by new generalized transform

Consider the general form of an IVP:
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
1

1
0 1 10 , 0 , , 0

m m
m

m
m

z t a z t a z t g t

z z z z z z

−

−
−

+ + + =

′= = =





(12)

Now we employ new generalized integral transform to each side of eq. (12), then 
apply linearity and differentiation theorems, we have:

( ) ( ) ( ) ( ){ } ( ){ }
( ){ } ( ) ( ){ } ( ){ } ( ){ }

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1

1
1

1

1
0

2
2

0

( )

( )

( ) 0 ( )

0 ( )

m m
m

m m
m

m
knm nm n nk nm n

k
m

knm n nk
m

k

z t a z t a z t H g t

z t a H z t H a z t H g t

s s p s s s z a s s

p s s z a s G s

−

−

−
− − −

=
−

− −

=

Η + + + =

Η + + + =

− +

− + + =

∑

∑







H H

H

(13)

where G(s) = H{g(t)}. By applying the initial conditions in eq. (13):
( ) ( ) ( )( ) ,h s s G s s= +ΨH (14)

where

	
( ) ( )1 andnm nm n

mh s s a s a−= + + +

	

	
( ) ( ) ( ) ( )

1 2
2

1 0
0 0

m m
nm n nk nm n nk

k k
k k

s p s s s z a s s z z
− −

− − − −

= =

 
Ψ = + + +  

 
∑ ∑ 
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From eq. (14), we find H(s):
( )
( )

( )
( )

( )
G s s

s
h s h s

Ψ
= +H (15)

Lastly, we apply inverse generalized transform on each side of previous equation get 
the solution:

( )
( )

( )
( )

1 1( )
G s s

z t
h s h s

− −   Ψ   = Η +Η   
      

(16)

Two examples will be solved by utilizing the aforementioned approach.

Example 1. Homogenous IVP

Consider the following second-order homogenous IVP:
( ) ( ) ( ) ( )( ) 6 0, 0 1, 0 0z t z t z t z z′′ ′ ′+ − = = = (17)

By employing H on each side of eq. (17) yield:
( ){ } ( ){ } ( ){ }

( ) ( )2

6 0

( ) (0) (0) ( ) (0) 6 ( ) 0n n n n

z t z t z t

s s p s s z s z s s p s z s

′′ ′Η +Η − Η =

 ′− + + − − = H H H
(18)

By substituting the initial conditions, we reach:

	
( )2 6 ( ) ( 1)n n ns s s p s s + − = + H

After simplification:
( ) ( )

2

1
( )

6

n

n n

s p s
s

s s

+
=

+ −
H (19)

After simple operation, eq. (19) becomes:
( )

( )
( )

( )
3 2

( )
5 2 5 3n n

p s p s
s

s s
= +

− +
H (20)

Now applying H–1 on both sides of eq. (20), we obtain the exact solution:

( ) ( )
( )

( )
( )

1 2 33 2 3 2e e
5 55 2 5 3

t t
n n

p s p s
z t H

s s
− −
 
 = + = + 

− +  

(21)

Example 2. Inhomogenous IVP

Consider the following third-order inhomogenous IVP:
( ) ( ) ( )

( ) ( ) ( )
2 2 3 sin cos

0 0 0, 0 1

z t z z t z t t t

z z z

′′′ ′′ ′+ + + = +

′′ ′= = =
(22)

Utilizing H on both sides of eq. (22), we have	
( ){ } ( ){ } ( ){ } ( ){ } { } { }

( ) ( ){ }
( ){ } ( ) ( )

3 2 2

2 2

2 2 3 sin cos

( ) (0) (0) (0) 2 ( ) (0) (0)

2 ( ) (0) 3 ( )
1 1

n n n n n

n
n

n n

z t z t z t z t t t

s s p s s z s z z s s p s s z z

p s s p s
s s p s z s

s s

′′′ ′′ ′Η + Η + Η + Η = Η +Η

   ′ ′′ ′− + + + − + +   

+ − + = +
+ +

H H

H H

(23)
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By applying the initial conditions and then simplification of aforementioned equation, 
we obtain:

	

( ) ( ) ( ) ( )3 2
2 22 2 3 ( ) 2

1 1

n
n n n n

n n

p s s p s
s s s s p s s p s

s s
 + + + = + + +  + +

H

After simple calculation, we get:
( )

2( )
1n

p s
s

s
=

+
H (24)

Employing H–1 on each side of eq. (24) yields the following analytic solution:

( ) ( )1
2 sin

1n

p s
z t H t

s
−   = = 

+  
(25)

Solving system of first-order ODE by new generalized transform

Consider the general form of a system of first-order ODE:

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 11 1 12 2 1 1

2 21 1 22 2 2 2

1 1 2 2

z t a z t a z t a z t g t

z t a z t a z t a z t g t

z t a z t a z t a z t g t

α α

α α

α α α αα α α

′ = + + + +

′ = + + + +

′ = + + + +





    



(26)

with initial conditions:
( ) ( ) ( )(0) (0) (0)

1 21 20 , 0 , , 0z z z z z zα α= = = (27)
Now we employ new generalized integral transform to both side of eq. (26), then ap-

ply linearity and differentiation theorems:

 	

( ){ } ( ) ( ) ( ) ( ){ }
( ){ } ( ) ( ) ( ) ( ){ }

( ){ } ( ) ( ) ( ) ( ){ }

1 11 1 12 2 1 1

2 21 1 22 2 2 2

1 1 2 2

z t a z t a z t a z t g t

z t a z t a z t a z t g t

z t a z t a z t a z t g t

α α

α α

α α α αα α α

′Η = Η + + + +

′Η = Η + + + +

′Η = Η + + + +





     



Assuming now that H1(s), H2(s),..., Hα(s) are the corresponding generalized trans-
form of z1(t), z2(t)..., zα(t). Under these conditions:

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 11 1 12 2 1 1

2 2 21 1 22 2 2 2

1 1 2 2

( ) 0 ( ) ( ) ( )

( ) 0 ( ) ( ) ( )

( ) 0 ( ) ( ) ( )

n

n

n

s s p s z a s a s a s G s

s s p s z a s a s a s G s

s s p s z a s a s a s G s

α α

α α

α α α α αα α α

− = + + + +

− = + + + +

− = + + + +





      



H H H H

H H H H

H H H H

(28)

Equation (28) can be written an algebraic system of α linear equations:

0( ) ( ) ( )ns s p s Z A s G= + +H H (29)
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where
(0)
11 11 12 1 1
(0)

2 21 22 2 22
0

(0) 1 2

( ) ( )
( ) ( )

( ) , , , and

( ) ( )

zs a a a G s
s a a a G szs Z A G

s a a a G sz

α

α

α α α αα αα

                  = = = =                   





     





H
H

H

H
	  

Once eq. (29) is solved by means of any algebraic method or solved computationally, 
the inverse generalized transform is applied to the values of H1(s), H2(s),..., Hα(s) in order to 
get the solution of z1(t), z2(t)..., zα(t).

The generalized integral transform method for the system of first-order ODE will be 
illustrated by studying the following examples.

Example 3. Homogenous system of first-order ODE

Consider the following first-order homogenous system of ODE:
( ) ( )
( ) ( )

1 2 1

2 1 2

0, (0) 3
0, (0) 0

z t z t z
z t z t z
′ + = =
′ + = =

(30)

By applying generalized transform operator H on each side of eq. (30) we have:

	

( )1 2

2 1

( ) 3 ( ) 0

( ) ( ) 0

n

n

s s p s s

s s s

− + =

+ =

H H

H H

that give:
( )1 2

2 1

( ) ( ) 3

( ) ( ) 0

n

n

s s s p s

s s s

+ =

+ =

H H

H H
(31)

Solving the aforementioned system for H1(s) and H2(s):
( )

( )

1 2

2 2

3
( )

1
3

( )
1

n

n

n

p s
s

s
s p s

s
s

−
=

−
−

=
−

H

H

(32)

By using H–1 on aforementioned system, the exact solution can be obtained:
1

1

( ) 3cosh
( ) 3sinh

z t t
z t t

=
= −

(33)

Example 4. Inhomogenous system of first-order ODE

Consider the following first-order inhomogenous system of ODE:
( ) ( )
( ) ( )

1 2 1

2 1 2

2 3 , (0) 2

2 4, (0) 3

z t z t t z

z t z t z

′ + = =

′ − = =
(34)

By utilizing generalized transform operator H on both sides of eq. (34), we havwe:

	

( )

( )

1 2 2

2 1

3 ( )( ) 2 2 ( )

4 ( )( ) 2 2 ( )

n
n

n
n

p ss s p s s
s
p ss s p s s
s

− + =

− + =

H H

H H
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this in turn gives:

( )

( )

1 2 2

2 1

3 ( )( ) 2 ( ) 2

4 ( )( ) 2 ( ) 3

n
n

n
n

p ss s s p s
s
p ss s s p s
s

+ = +

+ = +

H H

H H
(35)

Solution of the previous system can thus be expressed:

( )

( )
( )

( )

2

1 2

3 2

2 2 2

2 6 5
( )

4

3 8 6
( )

4

n n

n n

n n

n n

p s s s
s

s s

p s s s
s

s s

 − − =
+

 + + =
+

H

H

(36)

Partial fraction of the aforementioned system leads:

( ) ( )

( ) ( )

1 22

2 2 22

13 6 5( )
4 44 4

3 13 3( )
4 22 4

n

n nn

n

n nn

ss p s
s ss

ss p s
s ss

 
 = − −
 ++  
 
 = + +
 + +  

H

H

(37)

Taking H–1 gives:

1

1

13 5( ) cos 2 3sin 2
2 4

13 3( ) 3cos 2 sin 2
4 2

z t t t

z t t t t

= − −

= + +
(38)

Solving integral equations by new generalized transform

In this section, with the help of generalized integral transform, we solve two linear and 
one non-linear Volterra integral equations and exact solutions are found in all cases.

Example 5. Volterra integral equation of the second kind

Consider:

0

( ) (1 ) ( )d 1 sinh
t

z t z t tτ τ τ− + − = −∫ (39)

By taking the generalized transform on each side of previous equation and then using 
the convolution theorem, we have:

	
{ } ( ){ } ( ) ( )

2
1( ) 1
( ) 1n n

p s p s
s t z t

p s s s
 − Η + Η = −  −

H

this is equivalent to

	
( )2 2

1 1 1 1( ) ( )
1n n n ns s p s

s s s s
   − + = −   −   

H H
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After simple calculation, we reach:

	

( )
2( )

1

n

n

p s s
s

s
=

−
H

By using H–1, the solution can be expressed:
( ) coshz t t= (40)

Example 6. Volterra integral equation of the first kind

Suppose the Volterra integral equation of the first kind:

0

e sin cos 2e ( )d
t

t tt t zτ τ τ−− − = ∫ (41)

By using the generalized transform and the convolution theorem, we have:

	
( ) ( ) ( ) { } ( ){ }2 2

2 e
( )1 1 1

n
t

n n n

p s p s p s s
z t

p ss s s
 − − = Η Η − + −

this in turn gives

	
( ) 2 2

1 1 2( )
1 1 1 1

n

n n n n
sp s s

s s s s

   − − =   − + − −   
H

Simple calculation yields:

	
( )

2( )
1n

p s
s

s
=

+
H

By utilizing H–1, the solution can be depicted:
( ) sinz t t= (42)

Example 7. Non-linear Volterra integral equation of the first kind

Consider the non-linear Volterra integral equation of the first kind:

2 2

0

1 1 1e ( ) ( )d
4 2 4

t
t t t zτ τ τ− − = −∫ (43)

We first let:

	
2( ) ( ), ( ) ( )v t z t z t v t= = ±

Equation (43) gets the form:

	

2

0

1 1 1e ( ) ( )d
4 2 4

t
t t t vτ τ τ− − = −∫

With the help of generalized transform and convolution theorem:

	

( )
( )

( ) ( ) { } ( ){ }2
1
( )24 2 n nn

p s p s p s
t v t

p ss ss
 − − = Η Η −

or equivalently

	

( )
2 2

1 2 1 1( )
4 2n n n n

p s
s

s s s s
   − − =   −   

H
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Simple calculation results:

	

( )
( )

2n

p s
s

s
=

−
H

By operating H–1, we have:
	 v(t) = e2t

The exact solutions are therefore, can be expressed:
( ) etz t = ± (44)

It is important to note that there were two solutions found since equation is a non-lin-
ear and there may not be a single solution.

Discussion and conclusion

In this article, we introduce a new generalized integral transform unifying the La-
place, Fourier and many other integral transforms belonging to the family of Laplace transform 
as special cases as shown in tab. 3. This unification has offered many opportunities for engi-
neering applications.

A methodology is developed for ODE with constant coefficients, and after that, this 
strategy is used to resolve two different systems. It is concluded that Laplace and all of the 
integral transforms from its family result in the same solution. In other words, the solution 
is unchanged by the choice of integral transform method for the case of ODE with constant 
coefficients. This property is advantageous because it allows mathematicians and engineers to 
choose the integral transform that is best applicable to a particular scenario or that simplifies the 
arithmetic while still being confident in the final solution.

We have also constructed a technique for the system of ODE and established the fact 
that the Laplace transform is recognized as the best method for resolving these systems with 
constant coefficients due to its efficiency in terms of computational requirements. This trans-
form facilitates the manipulation of the equations, eliminates the need for recurrent differenti-
ation, and frequently facilitates the derivation of closed-form solutions because there are many 
interrelate equations in this circumstance.

In the last part, we have solved linear and non-linear Volterra integral equations and 
noted that a linear equation has a unique solution while there may not be a single solution 
for the non-linear case. Non-linear equations commonly cause mathematical complexities, de-
manding for specialized techniques and methodologies and this generalized transform has done 
remarkably well for the said case. In addition complicating the problem, more than one solution 
gained by the proposed transform helps us understand the underlying system by shedding light 
on a variety of possible outcomes or scenarios.

We have studies all problems with constant coefficients, but for variable coefficients, 
whole scenarios will be changed and the choice of transform becomes much importance. We 
will develop methodologies based on generalized integral transform that will solve ODE with 
variable coefficients, such as those with polynomials, exponential and trigonometric coeffi-
cients in the future work. Consequently, when coupled with the homotopy perturbation method 
[15], the variational iteration method [16], and the Adomian decomposition method [41], the 
new integral transform becomes a promising tool to non-linear problems and fractal/fractional 
differential equations, and it is transformative for research because the transform has the same 
essential qualities as those for Laplace and Fourier transform.
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