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In the paper, based on the quasi-geostrophic potential vorticity equation with
topography effect, we derived a modified ZakharovKuznetsor (mzZK)-Burgers
equation by employing multiscale analysis and perturbation method. The model
can be described the propagation of the nonlinear long wave and solitary eddy.
The exact solutions are given by virtue of the (G'/G)-expansion method to analyze
wave propagation characteristics.
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Introduction

The Rossby wave is a large-scale wave with a long lifespan generated by the com-
bined effect of spherical effect and Earth rotation. Its horizontal scale can be compared to the
radius of the Earth. One of the nonlinear wave structures has similar characteristics to stable
large amplitude solitary waves, and many problems in non-linear atmospheric and oceanic
dynamics can be attributed to the study of the evolution of large amplitude nonlinear Rosshy
waves [1]. In the early stages, the KdV and the modified KdV (mKdV) [2, 3] were derived to
describe non-linear wave amplitudes. Afterwards, Boussinesq equation [4], Schrodinger
equation [5], and Boussinesg-BO equation [6] are more suitable due to the multi-dimensional
nature of fluid motion. Over the years, Yang et al. [7] has derived a new ZK-BO equation for
3-D algebraic Rossby solitary waves. The model is gradually developing from low dimen-
sional to high dimensional, and the influencing factors considered are becoming more com-
prehensive.

Many scholars have devoted themselves to finding analytical solutions to explain the
properties of wave motion, such as Homogeneous Balance Method [8], Backlund transfor-
mation [9, 10], Jacobi elliptic function expansion method [11, 12], Hirota’s method [13],
and extended tanh-function method and the (G'/G)-expansion method [14]. Different partial
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differential modes need to be matched with appropriate methods. In this article, we solve the
equation using the (G'/G)-expansion methodaccording to the new model.

Derivation of forced (2+1)-D mZK-Burgers equation
According to Earth's fluid dynamics, the dimensionless quasi-geostrophic vortex
equation can be written [15]:

(0 5_‘P£_5_‘Pi)[v2\p+fo+m+r<h(y)]=o @)

where W is the total stream function, V2 = (6%/0X?) + (6%/0Y?) is the Laplace operator, f, and
[ are called Coriolis parameter and Rossby parameter, h(y) is the topography effect, and
K = (foL/HU)D.
The boundary condition is:
Y _ovoo1 @)
oX
We assume the total stream function:

W(X,Y,T) =~ [U(s)~C,+57kis + (X, Y,T) @3)

where ¢ is disturbed stream function, U(Y) is latitude shear flow, ¢, is wave velocity, 6(6 << 1)
is a parameter, y is a detuning parameter with O(y) = 1.
We take a simplified perturbation approach, and assume that:
1 1 3
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another expression of eq. (4):

1 1 3
0 g0 0 0 50 0 _ G0 ©)
oX ox oY oY oy oT ot
Substituting egs. (3) and (5) into eq. (1), we obtain:
5 A3 3 3 1 A3 3
5262\{’ +0°2 a;y+252_a\y +562‘{’ +
ox2ot oY 2ot oYoyet  oylet
3 1 A3
52 6‘P2+52 alyz
oY ox dyox
1 2 3 1 A3 3 1 A3 1 A3 3
Ghd ICICINCI SPYS Rl SIS Sl P>l S Ll S TS

+02 —| -
ox| dy? oy® oY?ey  oYoy? oY 2oy oY oy? oy’

0
+K —=—h(y,Y
=y (y,Y)

=0

1 A3 1 A3 3 3 A3
+(U —c, +y)| 02 a;}’ +25? ot +0 82‘1’ + 26\5
oY “Ox oYoyox — oy“ox OX

% _o, v =01 )
x



Wang, W., et al.: A New (2+1)-D MZK-Burgers Model for Non-Linear...
THERMAL SCIENCE: Year 2023, Vol. 27, No. 5A, pp. 3883-3888 3885

Adopting the perturbation expansion method, we assume:

3
@(XaY,y,t)=é‘{’1+52‘P2+52\}13+... (8)

Substituting eq. (8) into egs. (6) and (7), specifically, we discuss the large topogra-
phy effect, where the magnitude of K is O(K) = 1 we derive the multi order expression of &
and make the expression to zero:
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We assume W1 = A;(x,y,)®+(Y) and substitute it into eq. (13):
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In eq. (14), U — ¢y [10, we suppose ¥, = Ay(x,y,t)®,(Y) and substitute ¥, into O(5?):
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According to egs. (14) and (15), we obtain:
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a n
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We suppose W3 = As(X,y,1)@3(Y), because of @,(0) = ®4(1) = 0, with an identity rela-
tionship:
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For egs. (12), (13), (18), the singularity elimination condition can be obtained
[ S _dv -0
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To simplify writing, let A; = B after a series of calculations, and we finally obtained:
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where
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where B,B represents nonlinear convection term, By, and B,y represent the dispersive term.
Equation (19) is called the (2+1)-D mZK-Burgers equation.

Analytical solutions of (2+1)-S mZK-Burgers equation

According to the (G’/G)-expansion method [16], we give the traveling wave trans-
formation to obtain the solitary wave solution of the equation:

Mixymy =Ug & =KX +1Y —cT (20)
Substituting eg. (20) into eg. (19), we can get:
B +e¢BB+e,B, +¢eB, +¢B =0 (21)
Then we integrate eq. (21) twice:
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We give the solution to eqg. (22) in the following form:
B(§):Zn:bi(G’/G)‘, G"+AG'+uG =0 (23)
where G = G(¢&) satisfies the seconid:oorder linear ODE:
G"+AG +uG =0 (24)

where 2 and u are constants. Taking the homogeneous balance between BB and By in eq. (22),
we obtain n = 2:

B =BGy 0 [ G(cf)] =

We obtain the value of the parameter by, by, by, and | through Maple software:
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Finally, we obtain the solitary wave solution of eq. (19).
Conclusion

In our work, based on quasi-geostrophic potential vorticity model, we obtained a
new mZK- Burgers model that characterizes nonlinear long waves in Earth's fluids through
perturbation expansion and scale transformation. Different from the previous topography
forcing effect, lower order models including topography affect spatial structure because of the
large topography effect. The form of the theoretical solution reflects the characteristics of
solitary waves.
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Nomenclature
t—time, [s] X,y,Z — co-ordinates, [m]
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