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In the paper, based on the quasi-geostrophic potential vorticity equation with 
topography effect, we derived a modified ZakharovKuznetsor (mZK)-Burgers 
equation by employing multiscale analysis and perturbation method. The model 
can be described the propagation of the nonlinear long wave and solitary eddy. 
The exact solutions are given by virtue of the (G'/G)-expansion method to analyze 
wave propagation characteristics. 
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Introduction 

The Rossby wave is a large-scale wave with a long lifespan generated by the com-

bined effect of spherical effect and Earth rotation. Its horizontal scale can be compared to the 

radius of the Earth. One of the nonlinear wave structures has similar characteristics to stable 

large amplitude solitary waves, and many problems in non-linear atmospheric and oceanic 

dynamics can be attributed to the study of the evolution of large amplitude nonlinear Rossby 

waves [1]. In the early stages, the KdV and the modified KdV (mKdV) [2, 3] were derived to 

describe non-linear wave amplitudes. Afterwards, Boussinesq equation [4], Schrodinger 

equation [5], and Boussinesq-BO equation [6] are more suitable due to the multi-dimensional 

nature of fluid motion. Over the years, Yang et al. [7] has derived a new ZK-BO equation for 

3-D algebraic Rossby solitary waves. The model is gradually developing from low dimen-

sional to high dimensional, and the influencing factors considered are becoming more com-

prehensive. 

Many scholars have devoted themselves to finding analytical solutions to explain the 

properties of wave motion, such as Homogeneous Balance Method [8], Backlund transfor-
mation [9, 10], Jacobi elliptic function expansion method [11, 12], Hirota’s method [13], 

and extended tanh-function method and the (G'/G)-expansion method [14]. Different partial 
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differential modes need to be matched with appropriate methods. In this article, we solve the 

equation using the (G'/G)-expansion methodaccording to the new model. 

Derivation of forced (2+1)-D mZK-Burgers equation 

According to Earth's fluid dynamics, the dimensionless quasi-geostrophic vortex 

equation can be written [15]: 
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) is the Laplace operator, f0 and 

b are called Coriolis parameter and Rossby parameter, h(y) is the topography effect, and 

K = (f0L/HU)D. 

The boundary condition is: 
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We assume the total stream function: 
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where j is disturbed stream function, U(Y) is latitude shear flow, c0 is wave velocity, d(d << 1) 

is a parameter, g is a detuning parameter with O(g) = 1. 

We take a simplified perturbation approach, and assume that: 
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another expression of eq. (4): 
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Substituting eqs. (3) and (5) into eq. (1), we obtain: 
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Adopting the perturbation expansion method, we assume: 

 

3

1

2

3
2

2( , , , )x Y y t           (8) 

Substituting eq. (8) into eqs. (6) and (7), specifically, we discuss the large topogra-

phy effect, where the magnitude of K is O(K) = 1 we derive the multi order expression of d 

and make the expression to zero: 
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where 
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We assume Y1 = A1(x,y,t)F1(Y) and substitute it into eq. (13): 
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In eq. (14), U – c0 ¹ 0, we suppose Y2 = A2(x,y,t)F2(Y) and substitute Y2 into O(d
2
): 
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According to eqs. (14) and (15), we obtain: 
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So 
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We suppose Y3 = A3(x,y,t)F3(Y), because of F1(0) = F1(1) = 0, with an identity rela-

tionship: 
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For eqs. (12), (13), (18)，the singularity elimination condition can be obtained 
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To simplify writing, let A1 = B after a series of calculations, and we finally obtained: 
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where 
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where BxB represents nonlinear convection term, Bxxx and Bxyy represent the dispersive term. 
Equation (19) is called the (2+1)-D mZK-Burgers equation. 

Analytical solutions of (2+1)-S mZK-Burgers equation 

According to the (G’/G)-expansion method [16], we give the traveling wave trans-

formation to obtain the solitary wave solution of the equation: 
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Substituting eq. (20) into eq. (19), we can get: 
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Then we integrate eq. (21) twice: 
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We give the solution to eq. (22) in the following form: 
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where G = G(x) satisfies the second order linear ODE: 
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where l and m are constants. Taking the homogeneous balance between BxB and Bxxx in eq. (22), 

we obtain n = 2: 
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We obtain the value of the parameter b0, b1, b2, and l through Maple software: 
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and 
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Finally, we obtain the solitary wave solution of eq. (19). 

Conclusion 

In our work, based on quasi-geostrophic potential vorticity model, we obtained a 

new mZK- Burgers model that characterizes nonlinear long waves in Earth's fluids through 

perturbation expansion and scale transformation. Different from the previous topography 

forcing effect, lower order models including topography affect spatial structure because of the 

large topography effect. The form of the theoretical solution reflects the characteristics of 

solitary waves. 
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Nomenclature 

t – time, [s]                                       x,y,z – co-ordinates, [m] 
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