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In this paper, we mainly consider the local fractional Vakhnenko-Parkes equation 
with the local fractional derivative for the first time. Some new soliton solutions of 
local fractional Vakhnenko-Parkes equation are derived by using local fractional 
wave method. These obtained soliton solutions suggest that this proposed appro-
ach is effective, simple and reliable. Finally, the physical characteristics of these 
new soliton solutions are described through 3-D figures. 
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Introduction 

Various physical and natural phenomena in fluid mechanics, ocean engineering, space 

science, biological science, plasma physics, new materials science and polymer chemistry are 

modeled by nonlinear evolution equations [1-3]. With the development of non-linear science, 

directly searching the exact travelling wave solutions of non-linear evolution equations has 

become a very hot topic. There are many powerful methods for calculating the travelling wave 

solutions of non-linear evolution equations in current literature, such as Hirota's method [4], 

Functional variable method [5], (m+G’/G)-expansion method [6], exp-function method [7], 

modified auxiliary equation method [8], two-scale wave method [9, 10], Ad-

ams-Bashforth-Moulton method [11], Laplace variational method [12], etc. [13-19]. 

The Vakhnenko-Parkes equation (VPE) is an important non-linear evolution equation 

in physics, which is utilized to elaborate the propagation of waves in a relaxing medium. The 

(3+1)-D VPE is given as [20]: 
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which can be rewritten into the following form: 
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So far, the travelling wave solution of VPE has been derived by many scholars via 

using different mathematical methods. Ozkan, et al. [20] used the exp-function technique to 

gain the N-soliton solutions of the (3+1)-D VPE. Baskonus, et al. [21] obtained the travelling 

wave solition of VPE by utilizing the sine-Gordon expansion method (SGEM). Wazwaz [22] 

investigated the travelling wave solutions of VPE and modified VPE via the simplified Hirota's 

method (SHM), and gained their multiple complex soliton solutions with great ease. 

Because of the propagation of waves with unsmooth boundaries or in microgravity 

[23], the VPE has to be modified by using the local fractional derivative. The local fractional 

derivative is a powerful mathematical tool to describe complex natural phenomena [24, 25].  

The local fractional VPE is the following form: 
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where L xD  is local fractional derivative [14, 25].  

The VPE is defined by employing the local fractional derivative sense for the first 

time, which is called local fractional Vakhnenko-Parkes equation (LFVPE). In this paper, we 

mainly investigate the LFVPE. We successfully establish an efficient and simple scheme to 

acquire the soliton solutions of LFVPE. The new mathematical scheme is constructed based on 

the travelling wave transform, which is local fractional wave method (LFWM). The LFWM has 

the advantage of being direct and easy to operate, and then new soliton solutions of LFVPE are 

obtained. These new soliton solutions have not appeared in the existing literature. Furthermore, 

the dynamical behaviors of these new soliton solutions are shown through 3-D figures. 

Local fractional derivative 

Definition 1. The local fractional derivative of w(x,y,z,t) of a at x = x0 is defined as 

[14, 25]: 
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where: 
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Definition 2. The local Mittag-Leffler function on the Cantor sets is defined as [25]: 
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Some special functions are the following form [2, 25]: 
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A typical application 

Consider the local fractional VPE as: 
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We now present the following fractional wave transformation: 
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Consequently, eq. (10) is transformed into the following form: 
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Assume that: 
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Then, we have: 
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Multiplying daf/dha in eq. (14), we have: 
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By calculating eq. (15), we get: 
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Assume that the solution of eq. (16) is the following form: 
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Therefore, we have the following results: 
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By comparing the coefficients of eqs. (18) and (16), we may get: 
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Solving eq. (19), we obtain: 
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Hence, the soliton solution of eq. (16) is obtained as: 
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The soliton solution of eq.(10) is derived as: 
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The corresponding graphs of eq. (21) are plotted in fig. 1 with fractal dimension a = 

ln2/in3 and fractal parameters ca = 1, da = 3, ea = 4, fa = –1, at y = 0, z = 0. 

 
 

Conclusion 

In this paper, the local fractional derivative is employed to give the fractional 

Vakhnenko-Parkes model. We have successfully obtained the new soliton solutions of LFVPM 

by using LFWM. The properties of these new soliton solutions are analyzed through some 3-D 

graphs. The acquired results are very useful for studying the dynamics of soliton waves in 

complex situations in future. 

Figure 1. The corresponding graph of eq. (21) with 
fractal dimension a = ln2/ln3 
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Nomenclature 

t – time co-ordinate, [s]                                   x,y,z – space co-ordinates, [m] 
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