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The fractional variable-order constitutive model for the viscoelastic plate is analyzed. 
The fractional variable-order constitutive equations for the plates are solved numeri-
cally using the shifted Bernstein polynomials directly in time domain. Numerical dis-
placement of Polyurea and HDPE viscoelastic plates at a variety of loads was inves-
tigated. The results show that Polyurea has better bending resistance than HDPE 
viscoelastic plates, which verifies the practicability of the algorithm. 
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Introduction 

The viscoelastic material is a kind of material between viscosity and elasticity, which 

has good noise and vibration reduction performance, and a wide range of applications in aer-

ospace, civil machinery and many fields. The Polyurea and HDPE materials have good material 

properties, which have attracted the attention of many researchers [1]. With the gradual de-

velopment of the viscoelastic materials, the fractional-order models have been extensively 

studied in [2]. Compared with fractional order models, fractional variable-order models can 

more effectively describe the dynamic viscoelastic behaviors when materials are deformed. 

Hao et al. [3] established the equation of a viscoelastic polymer cantilever beam with the use of 

a fractional variable-order model. Meng et al. [4] studied the effect of fractional variable-order 

viscoelastic models on the performance of the parameters of the order function. Cao et al. [5] 

solved a mathematical analysis of a viscoelastic column based on a fractional order-variable 

rheological model to solve for the deformation and stress of the column under the same loading 

conditions. 

_____________ 
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The polynomial algorithms for the mathematical solutions of fractional variable-order 

differential equations have been relatively mature in the field of numerical computation, in-

cluding Legendre polynomial method, Chebyshev wavelet method, Bernoulli wavelet method, 

etc. Dang et al. [6] used the shifted Chebyshev wavelet method for mathematical calculation of 

viscoelastic plates. Sun et al. [7] proposed using the shifted Legendre algorithm to solve the 

trigonometric unknown function in viscoelastic plate equation. The main aim of this article is 

that the governing equations for a fractional variable-order viscoelastic plate is directly re-

solved in time domain with the use of the shifted Bernstein polynomial method. 

Basic knowledge 

The Caputo fractional differential operator D
r(t)

 of variable order r(t) is expressed by 

[2, 8]: 
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where 0 < r(t) £ 1 and f(t) is a continuous function.  

Remark. The different fractional derivative operators were reported in [8]. Recently, 

new fractional derivative operators have been developed with the different kernels, e.g., ex-

ponential [9, 10], fractional-exponential [11, 12], and other [13, 14].  

The Bernstein polynomials on the interval [0,1] is defined by: 
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If we extend x to the range [0,R], the common term formulation for the shifted Bern-

stein polynomial is: 
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The binomial theorem gives: 
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The matrix form is represented by a sequence of the shifted Bernstein polynomials: 
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where k is the number of terms, 
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Q is invertible, Gk(x) = Q
–1
F(x), and 
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The governing equations 

We now consider a viscoelastic plate subjected to an external load f(x,y,t) perpen-

dicular to the horizontal direction of the plate, fig. 1. Assume that Mx and My are bending 

moments, Mxy is twisting moment, sx and sy are normal stresses, txy is shear stress, m is mass 

per unit area, and u(x,y,t) is the displacement of the plate along the direction of external load. 

The dynamic equation of the viscoelastic plate is: 
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The stress strain relation of viscoelastic 

plate is: 

      , , , ,
r t
tx y t E D x y t       (7) 

The governing equation of the obtained plate is: 
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The boundary conditions of the viscoelastic plate read: 
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The shifted Bernstein polynomial algorithm 

Approximation of the displacement function 

The displacement function u(x,y,t)ÎL
2
([0,L]´[0,T]´[0,K]) may be estimated by the 

shifted Bernstein polynomial: 

Figure 1. The model of the four-sided simple 
support plate 
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where U and C are coefficient matrices. 

Integer-order differential operator matrix 

The matrix D with respect to x of the integer-order differential operators is given as: 
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If we differentiate the left and right sides of eq. (12), then we have: 
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This implies that: 
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By eqs. (12) and (14), we show that: 
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Fractional differential operator matrix 

The matrix N with respect to t of fractional-order differential operators is suggested 

as: 
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Combining eqs. (12), (14), and (17), we get: 
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Then, we suggest the form of matrix product as: 
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The method is different from the result in [15].  

Numerical simulation 

The dynamical properties of viscoelastic polymer plates at a variety of loads are in-

vestigated. The displacement of the viscoelastic plate is calculated using the numerical algo-

rithm previously proposed. The geometrical material characteristics of the plates are listed in 

tab. 1, where r(t) is gained by program. 

The displacements of two polymer plates under the different uniform loads are solved 

by the proposed the shifted Bernstein polynomial algorithm. As illustrated in figs. 2 and 3, the 

uniform loads F = 10N, F = 30N, and F = 50N are applied to Polyurea and HDPE plates, re-

spectively. It is seen that the displacement solution of the board reaches the maximum value in 

the middle position, progressively reduces from the centre to the ends, and the displacement of 

the two ends is 0. When the same load is applied, the Polyurea plate always has less dis-

placement than the HDPE plate. It implies that the bending performance of Polyurea material is 

much better than that of HDPE material. The numerical results agree well with the results of the 

experiments, proving the precision of the algorithm. 

 

 

 

 

Table.1 Optimal simulation parameters of Polyurea and HDPE 

Materials r E h r(t) 

Polyurea 1060 1.2·107 0.0012 0.1 + 0.5t 

HDPE 960 8.5·106 0.0039 0.1 + 0.5t 

Figure 2. The displacement of Polyurea under the different uniform loads; 
(a) F = 10N, (b) F = 30N, and (c) F = 50N 
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Conclusion 

In the present work, the shifted Benstein polynomial was used to numerically analyze 

the fractional variable-order viscoelastic plate. The numerical consequences indicate that the 

method is effective for solving the viscoelastic differential equations. The displacement solu-

tions of plates of the viscoelastic materials under the different uniform loads were computed 

and compared.  

Nomenclature 

t – time co-ordinate [s]                                 x,y – space co-ordinate, [m] 
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