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In this article, the surface wave in inviscid fluid was analyzed. Based on the Euler 
equation and mass conservation equation, and coupled with a set of boundary 
conditions, the (2+1)-dimensional sixth-order Boussinesq equation is derived for 
the first time. According to double-series perturbation analysis and scale transfor-
mation, the one soliton solution is obtained with (G′/G)-expansion method. Finally, 
the effects of amplitude parameter and shallowness parameter on the amplitude of 
surface wave are analyzed.
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Introduction

A shallow water wave is a wave with a water depth less than the wavelength [1, 2]. 
In 1872, the French scientist Boussinesq assumed that the water depth was constant, and the 
vertical velocity was distributed linearly along the water depth, and then obtained a set of 
non-linear equations with horizontal 1-D weak dispersion. With the deep research of the water 
wave theory and application of Boussinesq equation, a great number of modified Boussinesq 
equations have been obtained, such as a 2-D Boussinesq equation describing the propagation 
of gravity waves on the surface of water [3], the classical fourth order Boussinesq equation [4], 
the 2-D sixth-order non-linear Boussinesq equation [5] and a new (3+1)-Boussinesq equation 
implemented for the first time to this model [6]. The model describing water waves gradually 
develops from low to high dimensions and orders. The propagation law of water waves will be 
explored by solving the model. 

The Boussinesq equation applies to many physical models [7]. Theoretical solution of 
partial differential systems is a priority method to consider. Many methods have been used to 
solve fractional order equations, such as Hirota bilinear method [8], the exp-function method 
[9], local fractional derivative [10, 11], the Galerkin finite element method [12], (G′/G) expan-
sion method [13], and so on. These solutions of fractional equations studied in these theories 
have made great contributions to the theory of natural science, allowing future generations to 
better understand natural science. In this paper, we will use (G′/G) expansion method to solve 
the equation.
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In this paper, the 3-D sixth-order Boussinesq equation in the water wave equation is 
derived by using double-series perturbation analysis and scale transformation, and the soliton 
solution of the equation is obtained based on the (G′/G)-expansion method. Finally, some con-
clusions are given.

Derivation of the 3-D sixth-order Boussinesq model

According to the Euler equation of motion, we give the governing equations [14]:
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where (u, v, w) is the velocity in the direction (x, y, z) in Cartesian co-ordinate system,  
g – the gravity, and P – the pressure. Due to the incompressibility of inviscid fluid，fluid den-
sity ρ = constant. The kinematic condition，dynamic condition and bottom condition of the 
water wave problem satisfied:
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where z = h(x, y, z) is the free surface, Pa – the pressure of fluid surface, Γ – the coefficient of 
surface tension, and Γ/R – the pressure difference:
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Dimensionless and variable scaling are given:
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Through dimensionless and variable scaling, the equations are obtained:
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and boundary conditions are:
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where the amplitude parameter α = a/h0, the shallowness parameter β = h0/λ and the Weber 
number τ = Γ/ρgh0. By further analyzing the boundary conditions, we expand the Taylor series 
of u, v, w, p at z = 0, and z = 1, and obtain:
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Introducing transformation the Y-direction on the space scale:
1/2, , ,X x y Y Z z T tβ= = = = (9)
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We use the perturbation expansion in the form of two parameters (α and β) for the 
variable u, v, w, p, and φ:
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Substitute eqs. (10) and (11) into eqs. (7) and (8), according to the different or-
ders of parameters α and β, and the following relations are obtained: O(1), O(α), O(α2) and  
O(β), O(β2), O(αβ) order equations and the boundary conditions. Through substitution and com-
plex calculations [15], finally we get:
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where φ = φ(0, 0). It describes the two-way propagation of small amplitude and long capillary 
gravity waves on the surface of shallow water. Let’s consider the case where the surface ten-
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sion τ is close to 1/3. That is to say, we can get |(1/3) – τ| = K1β, β → 0. In order to balance the 
non-linear and dispersion relations, we make O(α) = O(β3), β → 0, that is α = K2β3.

Finally, we get:
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All aforementioned equations ignore the higher-order term of O(β3), and then we take 
the co-ordinate transformation:
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Calculate and omit the upper right corner apostrophe, ignore the higher-order item of 
O(α2), and we get:
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Equation (15) is the (2+1)-D sixth-order Boussinesq equation, which describes the 
gravity shallow water waves. If a4 = 0, eq. (15) is the 3-D fourth order Boussinesq equation. If 
a3 = a4 = 0, eq. (15) degenerates to the classical Boussinesq equation.

Analytical solutions of (2+1)-D sixth-order Boussinesq equation

According to the (G’/G)-expansion method [16], in order to provide the solitary wave 
solution of eq. (15), we can consider the traveling wave transformation:
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Substituting eq. (17) into eq. (15), we can obtain:
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with G = G(ξ) satisfying the second order linear ODE:
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where λ, µ are constants.
Taking the homogeneous balance between u2 and uξξξξ in eq. (19), we obtain n = 4:
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Now we substitute eq. (22) into eq. (15), collect the coefficients of (G′/G)r,  
(r = 0, 1, 2, 3, 4), set each coefficient to zero, and we can obtain a set of algebraic equation 
for bi(i = 0. 1, 2, 3, 4), c, λ, and µ. With the help of MAPLE software, we solve the system of 
algebraic equations:
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Therefore, we obtained the value of the undetermined coefficient in eq. (22), and thus 
obtained the structural expression of the solution of eq. (17). As compared to the single soliton 
solution, we get more general and some new exact traveling wave solutions.

Conclusion

In this paper, starting from the Euler equation of motion and the mass equation, the 
3-D sixth-order Boussinesq equation is derived by double-series perturbation analysis method. 
We obtain the soliton solution and periodic solution of Boussinesq equation from the (G′/G) 
expansion method. As a result, this prominent method might be more effectively used for solv-
ing a wide variety of non-linear partial differential equations that frequently arise in science, 
engineering and other technological fields. 
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