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In the field of heat transfer in permanent magnet synchronous motors 

(PMSMs) for electric vehicles (EVs), the boundary element method (BEM) 

has been applied for the first time to calculate the steady-state temperature 

of the PMSM with a spiral water-cooled system. In this investigation, the 

boundary-integration equation (BIE) for the steady-state heat transfer 

problem of a water-cooled PMSM is first derived on the basis of 

thermodynamic theory, and the system of constant coefficient differential 

equations is obtained by discretizing its boundaries, while the temperature 

results obtained from the BEM are compared with the fnite element method 

(FEM) results. Furthermore, the temperature distribution and heat transfer 

characteristics obtained from the FEM and BEM were verified twice using 

the PMSM prototype and test platform. The results show that the maximum 

relative error between the temperature calculation results of FEM and BEM 

is 1.97%, and the maximum relative error between the results of BEM and 

the test does not exceed 3%, which finally verifies the validity and accuracy 

of BEM in solving the heat transfer problems of water-cooled PMSMs. 
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1. Introduction 

In recent years, the rapid development of vehicle electrification has shown great advantages and 

long-term prospects in terms of greenhouse gas reduction and fossil fuel savings [1-3]. In this 

background, permanent magnet synchronous motors (PMSMs) play an indispensable role in the 

process of vehicle electrification due to their high torque, high power density and excellent NVH [4-5]. 

Compared to ordinary motors, PMSMs usually have to push the electromagnetic and thermal loads to 

their limits in order to meet the requirements of acceleration performance as well as range, which 

leads to significantly higher electromagnetic losses and heat generation per unit volume, higher 

magnetic circuit saturation and increased difficulty in heat transfer design [6-7]. Therefore, thermal 

management is currently still a limiting factor for PMSMs to achieve higher energy densities. Without 
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effective thermal management, high temperatures will accelerate the deterioration of insulation 

materials and eventually cause insulation breakage. Worse still, after the PMSMs approach or break 

the thermal limit, the permanent magnets will produce irreversible demagnetization, seriously 

affecting the safety and service life of the PMSMs [8-10]. Consequently, it is essential to investigate 

the heat transfer mechanism of PMSMs and to find numerical methods that can establish and truly 

reflect the internal heat transfer characteristics of motors, so as to provide a theoretical basis and data 

support for the subsequent upgrading and optimization of thermal design. 

The finite element method (FEM) is a widely used numerical analysis method for heat transfer 

problems in PMSMs for electric vehicles (EVs) [11-13]. The FEM uses volumetric discretization to 

divide the calculation area into elements, which do not overlap with each other but are connected to 

each other. The solution of the entire calculation area is accomplished by generating a stable solution 

between the elements by means of an error function within each element. Li et al. proposed a finite 

element model for the study of 3-D fluid thermal coupling in order to avoid thermal demagnetization 

of the permanent magnets due to high temperatures. The finite element calculations of this model led 

to the determination of the fluid velocity and temperature distribution of different parts of the motor, 

which ultimately demonstrated the effectiveness of the hybrid cooled system [14]. To investigate the 

relationship between cooled system performance and torque density limits, Vansompel et al. integrated 

direct air-cooled and indirect water-cooled techniques, and determined the continuous stator current 

density under different thermal loads by 3-D thermal finite element simulations [15]. Boglietti et al. 

predicted the thermal behavior of the PMSM based on the FEM and searched for a model in which the 

heat transfer performance and magnetic performance were in balance in a large number of motor 

samples, ultimately providing a sample of temperature predictions and experimental data to support 

the calibration of the motor finite element model [16-17]. Although FEM is well developed and a 

reliable numerical analysis method in the field of heat transfer in PMSMs for EVs, FEM requires 

discretization of the entire model and calculation area, generates a large number of grids, takes a long 

time to calculate and requires high computer hardware. With the development of heat transfer, 

numerical computational methods have advanced tremendously and increasingly more numerical 

methods are being used to solve heat transfer problems. Among them, the Boundary element method 

(BEM) has greatly improved the computational efficiency by generating a number of elements on the 

boundary of the computational region and discretizing the boundaries of each element, which finally 

generates a smaller number of elements [18-19]. In addition to dealing with most of the heat transfer 

problems to which the FEM is adapted, the BEM can also deal with infinite domain problems that 

cannot be solved by the FEM. Qin et al. proposed a novel coupled BEM-FEM method to investigate 2-

D steady-state heat transfer in multi-scale structures and clarified the differences between BEM and 

FEM in 2-D steady-state thermal analysis [20-21]. Si et al. used BEM to numerically investigate the 

performance of photovoltaic-thermal (PVT) collectors and finally determined the thermal and 

electrical efficiencies of the collectors when using different heat sinks [22]. Zhu et al. designed and 

simulated a new type of heat exchanger using nanofluid , and used BEM to calculate the heat transfer 

efficiency of the heat exchanger under different cooling conditions [23]. 

It is remarkable that the application of BEM to the heat transfer problem of PMSMs for EVs is 

rare. Based on this, this work combines the advantages of BEM and FEM to investigate the heat 

transfer problem of PMSMs. Firstly, a boundary-integration equation (BIE) is derived for the steady-

state heat transfer problem of water-cooled PMSMs. Secondly, the system of constant coefficient 
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differential equations is obtained by boundary discretization of the BIE and the temperature results 

obtained from the BEM are compared with the simulation results of the FEM. Furthermore, the 

PMSM for EVs with a spiral water-cooled system was made, and the temperature distribution and heat 

transfer characteristics obtained from the FEM and BEM were verified twice. The results demonstrate 

that BEM has the advantages of low computational effort and high computational accuracy, and is a 

numerical calculation method that can effectively solve the heat transfer problem of PMSMs for EVs. 

Moreover, we believe that the results of the investigation can provide new ideas for improving the 

thermal management of PMSMs for EVs, and provide data support and application value for boundary 

element studies of PMSMs. 

2. Numerical methods 

2.1. Boundary element analysis 

In the heat transfer analysis of the PMSM for EVs, water is used as the cooling fluid. The water-

cooled system contains no internal heat source, the heat source comes from the motor. Therefore, in 

the PMSM 3-D steady state heat transfer problem, the BEM control equation can be expressed as 

follows: 
2 2 2

2 2 2

1 2 3

( ) ( , ) ( , )
  

  
  
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                                           (1) 

Where ( , )u x t  is the temperature at point x at time t, k is the heat transfer coefficient,   is the 
material density, c is the specific heat capacity, t0 is the initial moment. 

The BEM boundary conditions are set as follows: 
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                                           (2) 

Where q is the heat flux, q  is the known heat homogeneity on the boundary, uS  denotes a Dirichlet-

type boundary, Sq denotes a Neumann-type boundary,  u qS S  is all the boundaries of the 

computational domain  , and n  is the normal direction vector outside the boundary. 

The initial BEM conditions are set as follows: 

                                     
0 0

0 0

( , ) ( ),

( , ) ( ),





  


  

u x t u x x

q x t q x x
                                                          (3) 

For the control equations of the PMSM steady-state heat transfer problem, we apply the 

weighted residual approach to derive the boundary-integration equations of the control equations. 

After we introduce the weighting function, the weighted equation of equation (1) is: 

2( ) ( , ) ( ) ( ) ( , ) ( )
 

     u y,x k u x t d x u y,x cu x t d x                            (4) 

The domain integration on the left-hand side of equation (4) is transformed into the following 

integral equation according to Gauss' scattering theorem: 
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After applying the boundary topology to the BEM mathematical model of the PMSM, the 

following BIE can be obtained: 
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                                          (6) 

We can clearly see the domain integration to the left of the equal sign in equation (6), which 

contains the unknown quantity ( , )u x t  in its kernel of integration, and the radial basis function (RBF) 

is used to interpolate the approximation of the unknown quantity, and the RBF chosen is as follows: 
2 2( )  if x r s                                                              (7) 

Where r is the distance from the RBF interpolation point to the source point; s is the shape parameter; 

and i is the total number of interpolation points. After exact interpolation, the following BIE can be 

obtained, and at this point the BIE no longer involves the domain integration. 
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In the BIE (8), the first-order derivative term of temperature with respect to time has been 

replaced by an equivalent boundary integral, since the domain integration is no longer involved. 

Unlike the FEM, because the unknowns u and q are taken at the boundary, the BEM only needs to 

discretize the boundary, which gives: 
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Where j is the number of boundary cells and m is the number of nodes in the cell, we use a boundary 

cell with 16 nodes, i.e. m=16. After distributing the source points to all the boundary nodes, we obtain 

the following matrix:  

ˆˆ( ) ( ) ( ) 
 

   
 

bdbdbb b bb b bb bb d

t t c tH u G q H U GQ                                        (10) 

Where H and G are the influence coefficient matrices; the letters above the matrices are the matrix 

dimensions, where b is the number of boundary nodes and d is the number of nodes in the domain. We 

eventually rewrite the matrix in the following form: 
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Adding the boundary conditions to equation (11) yields: 
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Considering the spiral water-cooled system and its internal nodes, equation (11) can be 

rewritten in the following form: 
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At this stage, the values of the nodes in the PMSM calculation area can be expressed as: 
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The general solution of Eq. (14) is: 
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By using a level-by-level calculation to precisely identify the boundary nodes in the PMSM 

calculation area, the exponential function of the final matrix can be subdivided into the following 

forms: 

2 2

0 0

n n n n

0 0

1
(t - t ) + (t - t )

2!

1 1
(t - t ) (t - t )

! !

…+

…=

 

 

t

n

e = +

n n

A
I A A

A A

                                        (16) 

The Taylor series expansion on the left-hand side of the equal sign of equation (16) has been 

omitted in this paper due to the space limitation of the article. Furthermore, in order to more clearly 

illustrate our process of applying BEM and FEM for comparative heat transfer investigation of the 

PMSM, the calculation process of the two numerical methods is shown in Fig. 1. 
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Figure 1.  Calculation process for BEM, FEM 

2.2. Finite element analysis 

In this paper, FEM is applied to numerically calculate the temperature distribution of the PMSM 

for EVs. The temperature distribution of the motor at different speeds was investigated with the 3-D 

finite element PMSM model developed , and the heat transfer performance was tested using the made 

prototype. In the analysis, the 3-D finite element model was dimensioned identically to the prototype. 

In order to simulate the real operation of the PMSM, it is assumed that the motor is well insulated. 

Other assumptions are as follows: 

• The fluid flow velocity inside a water-cooled system is much less than the speed of sound, so 

the fluid is considered incompressible. 

• The turbulence model is used to solve for the flow field due to the large Reynolds number of 

the fluid within the water-cooled system. 

• The cooling fluid is assumed to enter the inlet of the water-cooled system at a vertical angle. 

• The copper loss, the stator iron loss, the rotor iron loss and the eddy current loss in the 

permanent magnets are evenly distributed in the windings, the stator iron core, the rotor iron core and 

the permanent magnets respectively during motor operation. 

The heat transfer process in the PMSM is theoretically governed by the law of conservation of 

energy, the law of conservation of momentum and the law of conservation of mass. Of these, the law 

of conservation of energy is as follows: 

( )
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u                                            (17) 

Where Pc  is the specific heat capacity, T is the temperature of the fluid, k is the heat transfer 
coefficient of the fluid, and TS  is the fluid heat source. 

The law of conservation of momentum is as follows: 
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where i is the coordinate direction, Fi is the volume force on the microelement, p is the static pressure 

on the fluid microelement, τxx, τxy and τxz are the viscous stress components on the surface of the 

microelement. 

The law of conservation of mass is as follows: 
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where ρ is the fluid density, t is the time, u，v and w is the fluid velocity. 

Considering the operating conditions of the PMSM and taking into account the structural 

characteristics of the spiral water-cooled system, the outer wall surface of the housing is considered as 

the boundary condition for natural convection. The other necessary boundary conditions are as 

follows: 

• The inlet of the water-cooled system is defined as the velocity inlet and the outlet as the 

pressure outlet. 

• The water temperature and flow rate at the inlet of the water-cooled system are maintained at 

45°C and 1.15ms
-1

 respectively, and subsequently change as the numerical simulation proceeds. 

• Based on the actual operation of the water-cooled system, the outer wall surface of the rotor is 

defined as a rotating wall surface with an initial speed of 4600 rpm, which is subsequently changed as 

the numerical simulation proceeds. 

In this paper, the PMSM for EVs with the spiral water cooled system is the object of study and 

the specific parameters of the motor are given in Table 1. 

Table 1. Detailed parameters of the prototype motor 

Parameter Value Parameter Value 

Rated power[kW] 60 Number of stator slots 48 

Rated voltage [V] 360 Number of poles 8 

Rated current [A] 300 Cooling mode water-cooled 

External diameter of 

stator[mm] 
238 

Inner diameter of 

stator[mm] 
155 

To accurately calculate the steady-state temperature distribution of the PMSM at each speed 

range, the 3-D finite element model shown in Fig. 2 was established and solved in this investigation. 

 
Figure 2.  3-D finite element model 

Taking the maximum speed of 50 kW, 11500 rpm as an example, the magnetic flux density 

distribution and iron loss of the motor were calculated using the combination of Ansoft Maxwell 2D 
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and Ansoft Simplorer. The distribution of the magnetic flux density of the motor is shown in Fig. 3. 

The highest magnetic density is located at the rotor isolation bridge, with a maximum density of 1.61 

T. The stator and rotor iron loss are 2.89 kW and 279 W respectively. 

 
Figure 3.  Magnetic flux density distribution of the PMSM 

Fig. 4(a) and 4(b) show the high quality grid discretization scheme and the grid independence 

verification respectively. The details of the hexahedral co-nodal grid of the PMSM are shown in the 

enlarged view in Fig. 4(a). The overall distortion of the co-nodal grid is 0.63, thus ensuring accuracy 

in the calculation of the thermal behaviour of the motor. The number of grids in the 3D finite element 

model is 17.61 million, of which 1.52 million are used for the calculation area of the water-cooled 

system. The grid independence was verified by calculating the effect of different grid quantity on the 

turbulent kinetic energy (TKE) of the water-cooled system. When the number of grids is less than 1.52 

million, the TKE decay rate of the fluid in the water-cooled system increases. However, as the number 

of grids increases, the rate of decay of the TKE tends to level off. 1.52 million grids compared to 1.87 

million grids, the decay rate of TKE tends to be the same. Considering the accuracy and efficiency of 

the calculation, the final choice of grid quantity for the calculation domain of the water-cooled system 

is 1.52 million. 

 
Figure 4.  (a) Grid discretization scheme; (b) Grid independence verification 

It is worth noting that for the BEM, with the same time step as the FEM, The number of 

rectangular elements in the whole calculation area is 967, the number of nodes is 7651 and the number 

of RBF interpolation points is 431. It can be clearly seen that both in terms of the number of elements 

and the number of nodes, the BEM is far less than the FEM, so the computational effort of the BEM is 

extremely small compared to the FEM. 
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3. Results and Discussion 

To analyse the temperature distribution of the PMSM at different speeds, the inlet flow velocity 

of the water cooled system was fixed at 1.15ms-1 and the temperature distribution obtained for 

different parts of the motor is shown in Fig. 5. 

 

Figure 5.  Finite element temperature distribution of the PMSM at different speeds (a) Stator 

winding. (b) Permanent magnets. (c) Rotor core. (d) Stator core. 

It is clear from Fig. 5 that the temperature of each part of the motor increases as the speed 

increases, especially when the speed is greater than 4600 rpm, the temperature growth rate of each part 

increases significantly. In particular, the temperature growth rate of the stator winding and permanent 

magnet can reach 35.96% and 19.16% from 4600rpm to 6900rpm and 9200rpm to 11500rpm 

respectively. As the speed rises to 11,500 rpm, the maximum temperatures of the stator winding and 

permanent magnet reach 117.75°C and 94.65°C respectively.  

It is worth noting that they produce their maximum temperatures in completely different 

locations, with the maximum temperature of the stator winding at the end and the maximum 

temperature of the permanent magnet at the axial centre, which is directly related to the mode of 

cooling of the motor. As this motor is equipped with a spiral water cooled system, the central position 

of the stator and rotor becomes the focus of cooling. Similarly, the cooling focus of the air-cooled 

system becomes the winding end area. 
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To ensure the accuracy of the BEM calculations, four points were selected at each major part 

(stator winding, permanent magnet, rotor core and stator core): A (103.24,319.41,0), B 

(119.67,278.13,0), C (79.81,278.13,0) and D (72.36,278.35,0). The results of the BEM calculations for 

points A to D at different time steps when the motor speed is at 11500 rpm are shown in Table 2. 

Table 2. BEM temperature results for points A-D at different time steps 

Point A Point B 

Time 

[min] 

△t[s] Time 

[min] 

△t[s] 

0.1 0.5 1 2 0.1 0.5 1 2 

5 117.30 118.24 118.64 119.03 5 94.20 94.78 95.17 95.49 

10 117.58 118.77 119.54 120.10 10 94.43 95.21 95.89 96.35 

15 117.48 118.60 119.24 119.65 15 94.35 95.07 95.64 95.98 

20 117.43 118.49 118.98 119.43 20 94.31 94.98 95.44 95.81 

25 117.40 118.39 118.92 119.39 25 94.29 94.90 95.39 95.78 

30 117.38 118.39 118.86 119.32 30 94.27 94.90 95.34 95.72 

35 117.38 118.38 118.83 119.28 35 94.27 94.89 95.32 95.69 

40 117.37 118.35 118.81 119.25 40 94.26 94.87 95.30 95.66 

45 117.36 118.34 118.80 119.24 45 94.25 94.86 95.29 95.65 

50 117.34 118.33 118.78 119.21 50 94.24 94.85 95.27 95.64 

Point C Point D 

Time 

[min] 

△t[s] Time 

[min] 

△t[s] 

0.1 0.5 1 2 0.1 0.5 1 2 

5 96.64 97.43 97.87 98.03 5 75.83 76.67 77.18 77.32 

10 96.93 97.96 98.45 98.93 10 76.13 77.23 77.94 78.10 

15 96.80 97.70 98.33 98.71 15 76.04 76.96 77.60 77.92 

20 96.75 97.67 98.18 98.58 20 75.95 76.88 77.52 77.78 

25 96.74 97.61 98.11 98.49 25 75.93 76.83 77.48 77.66 

30 96.73 97.58 98.07 98.42 30 75.91 76.81 77.42 77.62 

35 96.72 97.56 98.03 98.35 35 75.91 76.80 77.40 77.60 

40 96.71 97.55 98.01 98.30 40 75.89 76.78 77.38 77.56 

45 96.70 97.52 97.99 98.29 45 75.88 76.77 77.35 77.53 

50 96.70 97.52 97.97 98.29 50 75.88 76.76 77.34 77.52 

From Table 2 it can be concluded that, at the four different time steps given, the maximum 

difference in temperature obtained by BEM compared to FEM for the stator windings and permanent 

magnets is 2.35°C and 1.70°C respectively, occurring around the 10th min moment at a time step of 2 

s. To further analyse the difference in temperature calculation between the BEM and FEM during 

PMSM operation and to verify the accuracy and validity of the BEM calculation results, the following 

relative errors are defined:  

                                     

 
2

FEM BEM

1

rror BEM

1

max








N

i i

i

i
j

T T

e
N T

                                                  (20) 

where M is the subdivision parameter and P is the truncation parameter. 
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Considering the relative errors of the BEM results and the FEM results at different time steps, 

the resulting results are shown in Fig. 6. 

 

Figure 6.  Relative error curve of temperature over time (a) Stator winding. (b) Permanent 

magnets. (c) Rotor core. (d) Stator core. 

Fig. 6 illustrates the relative error curves of the temperature calculations of the FEM and BEM 

with time for the PMSM at four different time steps. When the time step is 0.1s, the relative error 

curve is located at the bottom of each figure, indicating that it has the smallest relative error at the 

same moment in time. Even at the initial moments, a certain relative error does exist between the 

temperature calculation results of the FEM and the BEM, with the largest relative error occurring 

during the calculation of the stator core, where the maximum relative error is 1.97%. However, as time 

progresses, the FEM and BEM calculation results for all time steps are in increasingly high agreement. 

4. Experimental verification 

To verify the accuracy of the BEM numerical calculations and FEM simulation calculations, an 

EV PMSM with a rated power of 60kW was made and equipped with a spiral water cooled system for 

the motor. The built motor temperature test platform is shown in Fig. 7(a) and a comparison of the 

calculated and test results is shown in Fig. 7(b). To measure the stator winding temperature, 

thermocouples were placed on the inside of the motor end windings to measure the temperature.  



12 

 

 

Figure 7.  (a)Test platform (b) Comparison of FEM, BEM and test results 

To ensure the accuracy of the test, the motor was ramped up to 2300rpm, 4600rpm, 6900rpm, 

9200rpm and 11500rpm throughout the test, with a running time of 10 minutes for each speed. 

Although there was a relative error between the numerical calculations and the test results of less than 

3% around the 30th minute. However, in general, the results of the two numerical calculation methods 

still fit well with the test results and the maximum relative error meets the actual engineering 

requirements. The reason for the relative error is that, in the BEM calculation process, the RBF is used 

to interpolate the unknown quantities to approximate them. During the FEM simulation, the automatic 

repair of the residual factor leads to a slight distortion in the temperature growth rate in some speed 

intervals. 

5. Conclusion 

 For the steady-state heat transfer problem of PMSM for EVs, this work uses BEM and FEM to 

comparatively investigate it and conducts secondary experimental comparisons under multi-speed 

conditions, the results obtained verified the validity and accuracy of BEM in calculating the heat 

transfer problem of water-cooled PMSM, and summarises the following main findings. 

(1) For the field of PMSM heat transfer, the BEM is used for the first time to calculate the steady-state 

temperature distribution of the motor. The BIE applicable to the steady-state heat transfer problem of 

water-cooled PMSM is derived, a system of constant coefficient differential equations is obtained by 

discretizing the boundaries, and the temperature results obtained are compared with the simulation 

results of the FEM. 

(2) There is a relative error between the temperature calculation results of the FEM and the BEM, with 

the largest relative error occurring at the initial moment of the stator core calculation, with a maximum 

relative error of 1.97%. the RBF selection of the BEM and the residual factor of the FEM are the two 

main causes of the relative error. 

(3) Although the relative error in the numerical calculations compared to the test results is less than 

3% in the speed range of 6900rpm to 9200rpm. However, the numerical calculation results of BEM 

and FEM are still in high agreement with the test results. This proves that the BEM has the same 

reliability and accuracy as the FEM, and that the BEM has the advantages of small calculation volume 

and high calculation accuracy. 

The research in this paper is limited and the following research can be carried out on this basis 

in the future: the PMSM investigated in this paper is matched with a spiral water cooled system, for 
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which a PMSM with an axial water cooled system or a circumferential water cooled system could be 

the subject of future BEM research. 
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