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The main purpose of this study is to enhance the performance of solid oxide fuel
cell systems. For this purpose, a mathematical model of a direct internal reform-
ing (DIR) methane-fed solid oxide fuel cell system with waste heat recovery was
designed in the engineering equation solver program. We optimised the perfor-
mance of the solid oxide fuel cell using a genetic algorithm and TOPSIS tech-
nique considering exergy, power, and environmental analyzes. An ANN working
with the Levenberg-Marquardt training function was designed in the MATLAB
program to create the decision matrix to which the TOPSIS method will be ap-
plied. According to the power optimization, 786 kW net power was obtained from
the system. In exergetic optimization, the exergy efficiency was found to be
57.6%. In environmental optimization, the environmental impact was determined
as 330.6 kgCO,/MWh. According to the multi-objective optimization results, the
exergy efficiency, the net power of the solid oxide fuel cell system, and the envi-
ronmental impact were 504.1 kW, 40.08%, and 475.4 kgCO»/MWh.
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Introduction

Fuel cells are a chemical fuel device capable of converting the chemical energy di-
rectly into electrical energy using an electrochemical reaction, a highly efficient and environ-
mentally friendly energy source since no combustion is required. The FC are also seen as
promising future clean energy technologies due to the natural advantages of electrochemical
conversion compared to thermal combustion systems [1, 2]. Solid oxide fuel cells (SOFC)
have desirable energy conversion efficiency and expanded fuel flexibility with little environ-
mental impact (EMI) [3]. A single-cell component of the SOFC consists of a homogenous
layer made of electrode materials and electrolytes, and the electrolyte layer is sandwiched be-
tween the anode and the cathode [4]. The anode material, the cathode material, and the solid
electrolyte are generally made of zirconia and nickel, strontium-doped lanthanum manganite
(Lao.saSro.16), and yttrium-stabilised zirconia, respectively [5, 6]. The SOFC operating princi-
ple is based on semi-electro reactions at the electrodes.
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Optimization of SOFC is a critical approach that can decline costs and develop ef-
ficiency [7]. For several years, many papers have been carried out to improve the perfor-
mance, efficiency, and reliability of SOFC. The Red Fox optimization (IRFO) algorithm,
which was developed to determine the most suitable model for a SOFC system, was used by
Zhang et al. [8]. In this article study, it was reported that the ELM-IRFO method had a min-
imum value of MSE when compared with the Grey Wolf Optimization-Rotor Hopfield Neu-
ral Network (GWO-RHNN) method in [8]. Chen et al. [7] designed an ANN to optimise the
SOFC parameters, which contain anode layer porosity, cathode layer thickness, and electro-
lyte layer thickness, using the GWO. Suboti¢ et al. [9] designed ANN to predict the SOFC
performance and validated the performance of the SOFC by combining experimental data
and two physical models. A combination of SOFC-Rankine cycle-Kalina cycle (SOFC-RC-
KC) energy systems to recover waste heat was proposed by Song et al. [10]. They created a
Duran-Grassmann optimization model and optimised the operating parameters using a GA
to enhance the power generation of this system. Bai and Li [11] have evaluated the SOFC
model parameter using a hybrid algorithm, which is acquired from the integration of GWO
and cuckoo search algorithms. Yousri et al. [12] analyzed the parameters of the SOFC using
the marine predator algorithm. The results showed that this algorithm provided highly accu-
rate identified parameters.

In this study, we aimed to improve the system performance of the SOFC system. To
improve methane-fed SOFC system with waste heat recovery performance thermodynamical-
ly, voltage, power, exergy, and emission analyzes were performed by changing the key pa-
rameters. Also, multi-objective optimization was used to achieve the optimum performance of
the designed system concerning three objectives: high net power, low emission rate, and high
exergy efficiency.

System description

The air and fuel are separately compressed and preheated in the respective preheat-
ers with the aid of the exhaust gases. Similarly, after the water pump pressurises the water, it
is preheated to produce superheated steam in the heat exchanger using the heat from the ex-
haust gases from the afterburner, and then the superheated steam is mixed with the com-
pressed fuel to perform the internal reforming reaction. While the preheated air is delivered to
the cathode, the fuel and steam mixture is sent to the anode side of this system, where an elec-
trochemical reaction takes place between the mixture and the air. The electrochemical reac-
tion is converted by an inverter to alternating current with the module of direct current elec-
tricity to store. Excess air departs the cathode out the stack exit, while unreacted fuel exits by
the anode. These two outlet streams are mixed and fully combusted in the afterburner, where
the exhaust gas is used to preheat the fuel, water, and air. The schematic diagram of a DIR-
SOFC system where exhaust gases are evaluated in the afterburner is shown in fig. 1. The ma-
terial and structure of SOFC are decisive factors in its maximum temperature gradient. In the
literature, the safe temperature gradient for the SOFC is 10 K/cm [13]. In 0.1 m x 0.1 m active
surface area, the maximum temperature difference between the fuel cell inlet and outlet can be
accepted as 100 °C [14]. Nickel (Ni) and Y2Os-stabilized zirconia catalyse steam methane re-
forming at high temperatures, usually 700 °C to 900 °C [15].

This study performed analyzes under steady-state conditions and in thermodynamic
equilibrium. Potential and kinetic energy changes were ignored. The SOFC system is mod-
elled according to the assumptions stated in [14, 16].
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Figure 1. Schematic of a methane-fed DIR-SOFC system with waste heat recovery

Modelling of reformer and thermodynamic evaluation

The SOFC model to simultaneously utilise H, and CO, thus contributing to energy
generation. Through DIR inside the fuel cell, methane, and CO result as a fuel mixture. For
the reforming, shifting, and electrochemical processes, the molar conversion rates are x., vy,
and z,, respectively. These chemical reactions take place in the anode and cathode electrodes
of the fuel cell as shown in egs. (1)-(3) [16-19]:

X, —>[CH,+H,0 — CO+3H,] (Reforming) Q
y, =[CO+H,0 — CO, +H,] (Shifting) (2
zZ, > [H2+%O2 — H, 0] (Overall electrochemical reaction) (3

The air utilisation factor and the fuel utilisation factor, respectively, are defined in:
z
— (Alr)consumed — (Oz)consumed — 2 (4)
(Alr)supplied (Oz)supplied r:IOZV3

a

_ (Fuel)consumed - (HZ)COHSUmEd — Z (5)
(Fuelsuppiied  (H2)suppliea ~ 3Xr + Vi

f

The constants of x, and y, are obtained by the equilibrium constant and current re-
lations. The Ks shift is the equilibrium constant for shift reaction, which is expressed as:

InK __Ag { Yr X +Yr —7) } ©)
RTece (X =y, )@5%, -y, +2z,)
The latter quantity is defined:
AS = Toco, +Ton, ~ om0 ~Tscor Ts =N —Tec,S° 7
The resulting current I and current density j are defined:
I=jA,, 2P (8)

j=——
NFCAa
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where Nrc, F, and Aq, are the cell number, Faraday constant, and the effective surface area,
respectively, Wsorc sk — the work rate produced by the SOFC stack, V,, — the cell volt-
age, V,, —the Nernst voltage, and V, ., — the sum of the different voltage losses (ohm — ohm-
ic, act — activation, and conc — concentration). These can be written in eq. (9), respectively:

WSOFC,stack = NFC IVCeII’ VCeII =VN _VLoss’ VLoss =V0hm +Vact +Vconc C)]

At a steady-state, an energy rate balance for a system component (ignore any chang-
es in potential and kinetic energy) can be written:

Q-W =>ryh - >rich, (10)

where Q denotes the heat transfer rate, W denotes work transfer rate, and h denotes molar
enthalpy [14, 16, 18].

The exergy of a system is the sum of its physical, potential, kinetic and chemical ex-
ergies. A reduction in total exergy destruction, which promotes process efficiency, increases
the system energy:

Ex = ExP" + Ex®" (11)
. T o . ’ —ch,0 =
B = S (o) ~To(§ %), Bx = n(zyiex? —RTozyilnyiJ 12)

—ch,0 . . .
where S is the molar entropy and exiC is the standard chemical exergy of a species. Exergy
efficiency definitions and equations for the SOFC system [16, 18, 20]. The exergy efficiency
calculations for the SOFC system can be written:
. . —cho . . . ... 100
EXiy = New,,, €XCH,, Ty = Wsorc;ac = Wae +Wye +Wwp)]§ (13)
in
Due to the prevailing flow rate of the CO; in the exhaust gases compared with other
harmful gases, the EMI of the suggested system was determined by the EMI factor [21, 22].
This factor is expressed:

m
EMI = —223.610° (14)
net
Muilti-criteria decision-making of TOPSIS method

The TOPSIS method determines the best solution by calculating the relative close-
ness coefficient for all alternatives. The normalized decision matrix, the weighted normalized
matrix are expressed by eq. (15) respectively:

D=| : o, Yii =—T7— Vij = YijW (15)
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The ideal, P*, and negative-ideal, P~, solutions are obtained using egs. (16) and
(17), respectively:

P* = (W', b = {(max; vy e R}, {(max Vi e R}, {(min; vylie R} (16)
P~ ={V ...V, } = {(min vij|i e R}, {(min; v |i e R}, {(max; vij|i eR"} (17)

where R’ is the system's net power, R* — the exergy efficiency, and R* — the EMI factor.

Each alternative gap from the positive, Dj+ , and negative, Dj , ideal solutions is de-
termined. The proximity coefficient for each choice is determined in the last stage. The higher
values of C were used to determine the order of the options [19, 23]:

.+_fn SRRy .—_fn R ]
DJ_ E(VU Vi), D]— E(VU Vi), C_D},+Dj_ (18)

Validation of the SOFC model

Tao et al. [24] provided experimental findings using methane as fuel and theoretical
data presented by Colpan et al. [14] and Chitsaz et al. [18] were used to verify the results of
the model used in this study, tab. 1. The experimental results showed a maximum difference
of £4.41% in cell voltage and +4.89% in power density. It is considered that this difference is
mainly due to the assumptions taken into account in the current model. In addition, it was
seen that the present study was compatible with other theoretical studies in the mentioned lit-
erature.

Table 1. Comparison of the present model with experimental and theoretical data in the literature

Current Cell voltage [V]/Power density [Wm?]

S:Qrﬂfyz] Present model Experim[zrlt]al model TheoreEichzj\]I model TheoreEilcsa]l model
0.1 0.855 0.086 0.86 0.082 0.83 0.083 - -
0.2 0.782 0.156 0.76 0.15 0.794 0.159 0.79 0.158
0.3 0.71 0.213 0.68 0.21 0.753 0.226 0.711 0.216
0.4 0.64 0.256 0.62 0.26 0.705 0.282 0.644 0.253
0.5 0.572 0.286 0.57 0.295 0.639 0.319 0.56 0.288
0.6 0.505 0.303 0.52 0.315 0.57 0.342 0.51 0.3

Results and discussion

Effects of design parameters on system performance

System performances were investigated in the operating ranges of selected desing
parameters (current density 2500-20000 A/m?, operating temperature 750-1000 °C and fuel
utilisation factor 0.6-0.9). When the effect of the relevant design parameters was not exam-
ined, the current density was fixed at 8000 A/m?, the operating temperature was 750 °C and
the fuel utilisation factor was 0.7. Literature was taken as a basis for other cell characteristics
[14, 16]. Figure 2 shows the effect of design parameters on performance parameters.
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The increase in current density caused an increase in voltage losses and a corre-
sponding decrease in cell voltage. Therefore, it is expected that the electrical power obtained
from the SOFC will increase up to a certain current density and then decrease. The increase in
net power up to the optimum current point remained below the increase in exergy destruction
with the increasing current density. Thus, as the current density increased, the exergy effi-
ciency of the system decreased, and this decrease accelerated when the optimum current den-
sity was exceeded. The fact that the rate of increase in CO2 emissions up to the optimum cur-
rent density was higher than the rate of increase in the net power of the system caused the
EMI to increase, and the acceleration in this direction increased after the optimum current
density.

When the operating temperature was increased, activation and concentration voltage
losses increased. But, ohmic losses and Nernts voltage decreased. With the decrease of the
cell voltage, there is a decrease in the electrical power and net power obtained from the
SOFC. In addition, there are an increase in the exergy destruction and a decrease in the exergy
efficiency of the system. Depending on this increase in the operating temperature, the CO>
emissions along with the CH4 mass-flow rate increased, and as a result, the EMI increased.

The increase in the fuel utilisation factor decreased the Nernts voltage, increased the
concentration losses in the anode region and thus decreased the cell voltage and also reduction
in fuel and water vapour demand decreased the power drawn by the fuel compressor and wa-
ter pump. However the system net power decreased as the rate of decrease of the electrical
power obtained from the SOFC was higher. With the decrease in net power, the decrease in
fuel input increased the exergy efficiency up to about 0.85 U and then decreased it. The op-
posite situation was observed in EMI.
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Figure 2. Effect of (a) current density, (b) operating temperature, and (c) fuel utilisation factor on
system performance

Optimizations of the system

The most crucial aim of the study was to obtain maximum power and efficiency
from the system and to realize minimum emissions. For this purpose, the system net power,
exergy efficiency and EMI factor were considered objective functions. In this study, single
objective optimizations for each purpose were carried out with the GA method in the engi-
neering equation solver (EES) program, in which the mathematical model was created. Opti-
mization results in the intervals determined for the design parameters are given in tab. 2.

A wide-range matrix was created between the design parameters boundaries to ap-
proach the optimum solution point and multi-objective optimization was performed on this
matrix. This matrix was solved in the EES program, the solution table was transferred to the
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MATLAB program, and the TOPSIS decision-making method was applied to the results.
While using the TOPSIS method, equal weights of 1/3 were given to each objective function.
The best optimum solution point of the wide-range matrix is shown in tab. 3. The design pa-
rameters lower limit and the upper limit at the best solution point calculated in tab. 3. were de-
termined as the optimum solution region. As shown in tab. 4. a training matrix and a simula-
tion matrix were created by narrowing the matrix intervals. The training matrix was solved in
the EES program, and the solution table was transferred to the MATLAB program and used in
the training of ANN.

Table 2. Optimal values of design and performance parameters according to single objective
optimization results

Design parameter Power optimization | Exergetic optimization | Environmental optimization

J[Am2] 17611 2502 2502

Tuel celle [°C] 787.7 751.6 750.6

Ut 0.6001 0.90 0.8997
Performance parameter

Woe [KW] 786 193.1 1933

m 0.2089 0.576 0.576

EMI [kgCO2 per MWh] 911.9 330.8 330.6

Table 3. Multi-objective optimization on wide-range matrix

Design parameter Lower limit | Upper limit | Matrix range | The best solution in the matrix range

J[Am2] 2500 20000 500 8000

Thuel cell.e [°C] 750 1000 50 750

Ut 0.6 0.90 0.05 0.75
Performance parameter

Woer [kW] 517.8

m 0.392

EMI [kgCO2 per MWh] 486

Table 4. The training and simulation matrix for ANN

Design parameter | Lower limit | Upper limit Training matrix range Simulation matrix range
J[Am?] 7500 8500 100 1
Tuel celle [°C] 750 800 10 1
Ut 0.7 0.8 0.0125 0.005

In ANN training, a feed-forward backdrop was preferred as the neural network type.

As training,

adaption

learning, performance,

and transfer

functions, TRAINLM,

LEARNGDM, MSE, and TANSIG were employed. The designed ANN model is shown in

fig. 3.
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Figure 3. The ANN model designed for the DIR-SOFC training

The designed neural network is given a dataset of 594 rows, and the performance
curves are shown in fig. 4(a). According to the MSE method, the best validation performance
was 0.00097235 at epoch 707. As shown in fig. 4(b), the R value was found to be 1 in all net-
work procedures. The analysis showed that the model training, testing and validation network
procedures were significantly valid.

Best validation performance is 0.00097235 at epoch 707 Training: R = 1 Validation: R =1
; e o Data ® o Data
g’ 500 _°_ i 5 500 _°_ Fi
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10 LT 300 )
¥ ¥ 300
% o
MSE ST 200 55 200
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o (@]
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Figure 4. (a) The best validation performance and (b) the regression analysis of the ANN model

The error percent between the target outputs obtained from the ANN model and the
actual target outputs in the training dataset is shown in fig. 5. It was observed that there was a
maximum error of 0.0018% in system net power, 0.0066% in exergy efficiency, and 0.0009%
in EMI. These errors were found to be negligible for all targets. The simulation matrix created
in tab. 4 was simulated in the ANN model, and the TOPSIS decision-making method was ap-
plied to the target outputs. A common optimum solution point was determined for all target
outputs. The findings obtained from the ANN model at the optimum point were checked in
the EES program, and a minimum 99.6% similarity was found between the target outputs. The
results are presented in tab. 5.



Aybek, U., et al.: Artificial Neural Network Assisted Multi-Objective Optimization of ...

THERMAL SCIENCE: Year 2023, Vol. 27, No. 4B, pp. 3413-3422 3421
8 .
g __MGm
» 6 —1i
= —EMI
T 4
S
= ‘
Figure 5. Errors between the ANN outputs 2 ” l |M“
and actual outputs o 1| | I |
” ' l! 'l lx '1 | |
-2
—4
_60 100 200 300 400 500 600

Column

Table 5. Multi-objective optimization results using the Topsis method

Design parameter Multi-objective optimization
J[Am7?] 7850
Truel cell.e [°C] 750
Us 0.77
Performance parameter ANN EES Error [%]
V\'/net [kW] 504.1094 504.1 0.0018
m 0.3992 0.4008 -0.399
EMI [kgCO2 per MWh] 475.3548 475.4 -0.00951
Conclusions

The essential objective of this work was to improve the performance of the SOFC.
In this study, a mathematical model of a DIR methane-fed SOFC system was designed in the
EES version 9.457-3D software. The performance of SOFC was optimised using a GA and
TOPSIS technique considering exergy, power and environmental analyzes. According to the
power optimization, 786 kW net power was obtained from the system. In exergetic optimiza-
tion, the exergy efficiency was found to be 57.6%. In environmental optimization, the EMI
was determined as 330.6 kgCO2/MWh. According to the multi-objective optimization results,
the system's net power, the exergy efficiency, and the EMI were 504.1 kW, 40.08%, and
475.4 kgCO/MWh. The findings obtained from the ANN model at the optimum point were
checked in the EES program, and a minimum 99.6% similarity was found between the target
outputs. It has been seen that the target outputs of the selected ANN model are compatible
with the actual outputs, and it is a good choice for creating a decision matrix. In addition to
choosing the ANN model, obtaining an approximate solution region before the model is cre-
ated allows for reaching the optimum point with few errors.
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