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This paper considers viscous fluid flow in a slot between two parallel plates 
which start inclining with respect to the horizontal line. The lower plate was 
heated and had non-homogeneous temperature distribution while the upper plate 
was cooled and with homogeneous temperature distribution. The spatially 
periodic temperature distribution was gradually applied at the lower plate, after 
which the plates were slowly inclined in the positive-counterclockwise direction, 
and the fields of vorticity, stream function, and temperature are presented for 
different values of the angle of inclination. We used the vorticity-stream function 
formulation of Navier-Stokes equations, Fourier-Galerkin, and Chebyshev 
collocation method for numerical simulation of 2-D viscous fluid flow. We 
carried out numerical simulation using our in-house MATLAB code for 
subcritical uniform Rayleigh number, Rauni, and periodic Rayleigh number, Rap, 
on the lower plate. An accurate numerical scheme was developed to capture the 
full time-dependent behavior here. The interest lied in how the intensities of the 
vortexes and convection rolls changed as the inclination angle was increased 
with respect to time. Convection rolls rotating in the clockwise direction 
expanded and the rolls rotating in the counterclockwise direction shrank and 
their centers moved closer to the lower wall. Thermal drift appeared between 
them when the inclination angle started increasing. 
Key words: Boussinesq approximation, spectral method, thermal drift 

Introduction 

Natural convection is among the most frequently occurring forms of viscous fluid 
motion. A commonly found issue in natural convection is when flow in a horizontal slot is 
subjected to a spatially homogeneous heating that is applied at the lower plate. This issue is 
known as Rayleigh-Benard convection (RBC) [1, 2]. It has been studied for many years using 
different approaches [3]. Convection comes as a consequence of the transition from a 
conductive state that occurs when critical conditions are exceeded [4] and it changes the 
character of heat flow in qualitative terms. These critical conditions are expressed in terms of 
the critical Rayleigh number, Racr, with changes in flow occurring when Ra > Racr at a given 
wavenumber. In the other hand temperature non-uniformities form horizontal and vertical 
temperature gradients which in turn lead to horizontal density variations, creating motions 
often referred to as horizontal convection. 

–––––––––––––– 
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Optimal heat transfer was studied in [5]. More intense heating results in secondary 
bifurcations in 3-D fluid flows and the onset of different types of instability were analyzed in 
[6, 7], described by using the so-called Busse balloon. A sufficiently large heating intensity 
causes turbulent RBC [8-10]. Several studies have examined the effects of geometric non-uni-
formities on such convections [11]. 

Onset conditions can be affected by inhomogeneous temperature distribution in the 
plate geometry [12-14]. There is no state with conduction only that can exist in the presence 
of geometric modulations, meaning that natural convection will sets in regardless of the 
heating intensity [15]. Temperatures non-uniformities also affect the onset conditions [16], 
and can create their own convection, which once again appears regardless of the heating 
intensity [17-21]. The buoyancy driven recirculating flows within enclosures non-uniformly 
heated from either the top or the bottom surface constitute commonly-investigated classical 
problems [22-28]. 

The numerical analyses focused on convection in an infinite vertical slot which has 
one wall with a corrugated profile, and which is subject to either uniform or periodic heating 
was published in [29]. In Siggers et al. [30] it was numerically shown that horizontal 
convection may be unsteady and turbulent, possessing the capability of preserving the 
overturning circulation within a layer. Bearing in mind that the response of a system depends 
on the Prandtl number [31], we focus our discussion on water (Pr = 7). The fields of vorticity 
and the equation time dependancy are often omitted in literature for patterned heating, since 
there are no known boundary conditions for vorticity at the plates, and they have to be 
computed as part of the solution. We used the influence matrix method to circumvent this 
problem [32]. Inclined slots are of interest in the development of energy efficient ventilation 
systems, passive cooling devices, in predicting fire propagation and in removing smoke from 
structures, as presented in [33] and in references therein.  

Periodic heating applied to smooth channels in the absence of any mean pressure 
gradient results in the formation of a system of pairs of counter rotating rolls regardless of 
whether the heating is applied at the lower, upper, or both plates [19-21], and there is no net 
horizontal flow. The addition of grooves to such channels produces a net horizontal flow in 
the direction transverse to the grooves because of the creation of thermal drift whose strength 
and direction depend on the relative position of the groove and heating patterns. In this paper 
we will show that the inclination of the slot can cause the fluid temperature pattern to move 
due to buoyancy and the gravity component in the x-axis direction, and that the phase shift 
between fluid temperature pattern tips and hot spots on the lower plate can cause a stream 
tube. Structured convection, which results from the use of spatial heating patterns, possesses 
some interesting properties. It has been extensively studied in horizontal slots, but scarce 
information is available about inclined slots [33]. 

Mathematical model 

We consider viscous fluid flow resulting from natural convection in a fluid layer in 
an infinite slot bounded by solid walls which are inclined with respect to the horizontal line. 
The lower wall temperature consists of two components-homogeneous temperature, Tw2, and 
spatially periodic temperature, Tp(x), and the upper isothermal wall only has the homogeneous 
part, Tw1, where Tw2 > Tw1. The heating produces a cosinusoidal temperature variation along 
the x-direction characterized by the wavenumber, α, with the amplitude expressed in terms of 
the periodic temperature Tp(x). 
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The equations that describe the viscous, Newtonian fluid flow, and heat transfer are: 
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There is no externally imposed horizontal 
pressure gradient, i.e. ∂p/∂x = 0. The boundary 
conditions for vorticity are not known and have 
to be computed as a part of the numerical 
solution. For this purpose, we apply the 
influence matrix method which can be applied 
for such problems [32]. We use equation
ω v= ∇×
   (2) instead of continuity equation

v ( ψ) 0∇ ⋅ = ∇ ⋅ ∇× ≡


 which is satisfied
identically in the vorticity-stream function (ω – 
ψ) formulation of the Navier-Stokes equation, 
so for closing the system of equations we use
ω v, v ψ, ψ k,y= ∇× = ∇× =



     to get eq. (2). In previous eqs. (1)-(3) we used the following 
notations: v – the fluid velocity vector, ω – the fluid vorticity vector, F



– the volumetric
force per unit mass, ψ – the stream function vector, T – the temperature of the fluid, n – the
kinematic viscosity (momentum diffusivity), κ = λf/ρcp – the thermal diffusivity, λf – the fluid 
thermal conductivity, ρ – the fluid density, cp – the specific heat at constant pressure, q – the 
heat flux per unit volume, ∆ = ∇·∇ – the Laplacian of scalar or vector field, as a dot product 
of nabla operator ∇ with itself and in fig. 1 H is the distance between the parallel plates, 
L – the length of the periodic slot filled with the viscous fluid, Tw1 – the temperature of the 
upper colder plate, Tw2 – the homogeneous part of the temperature of lower warmer plate, 
Tp – the peak to peak amplitude of the periodic temperature at the lower plate, α – the 
wavenumber of periodic temperature, and φ – the phase shift of periodic temperature on the 
lower wall. 

In the Boussinesq approximation density changes only in the force term in the 
momentum equation according to V = V0[1 + β(T – T0)] where β is the thermal expansion 
coefficient, where β = 1/T ~ 3·10–3 K–1 for gases, and β = 1/T ~ 5·10–3 K–1 for liquids, so we 
have eq. (5) for m = const. After substituting eq. (5) into the force term of vorticity transport 
eq. (6), which only takes into account the fluid density variations, we obtain: 
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0
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( ) ( )
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T T T T
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ρ β
− − −

= ≈ − −
+ −

(5) 

Figure 1. Physical model 
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Here we have anticipated T0 = Tw1 and that the plates can be parallel to each other 
but with some inclination angle g with respect to the horizontal line. The results of 
numerical simulation in this paper are displayed for different angles of inclinations x and y 
are the longitudinal and transverse co-ordinate, and g – the gravitational acceleration. In 
order to obtain the non-dimensional form of the previous equations, we choose the length 
scales L/2π and H/2 in the direction of the x- and y-axis, respectively,  in accordance with 
the domain of basic functions, using the Fourier expansion in the x-axis direction and the 
Chebyshev expansion in the y-axis direction, so  that the following length, time, vorticity 
and stream function scales are: 
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The field equations, which consist of vorticity transport eq. (1), the definition of 
vorticity instead of continuity eq. (2) and thermal energy transport eq. (3), now have the 
following non-dimensional form: 
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where we use the following non-dimensional parameters 
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In the previous expressions Rauni and Rap represent the uniform and periodic 
Rayleigh numbers measuring the intensity of the uniform and periodic heating component, a  
is aspect ratio of vertical to horizontal slot dimensions, and Pr  is the Prandtl number as a 
ratio of the momentum diffusivity, ν, to thermal diffusivity, κ. The initial and boundary 
conditions in the non-dimensional form are:  
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For the starting value we use the flow rate for the flow between two plates with 
homogeneous temperatures without a temperature difference between them: 
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and later this value is calculated using the Chebyshev approximation of the Fourier coefficient 
based on the Gauss quadrature formula: 
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In order to achieve such a numerical simulation, we use the four time-level, third 
order temporal discretization procedure AB/BDI3 [34, p. 51]. This semi-implicit method 
applies generally to non-linear equations such as eqs. (8) and (10) where the coefficients of 
the linear operator are constant. The details of the spatial and time discretization procedure 
were described in [35]. 

The numerical procedure 
Equations (8)-(10) with boundary and initial conditions (12a) should be numerically 

solved with an appropriate procedure. For the numerical simulation we use our pseudo-
spectral code, developed in MATLAB. For the direction of the plates (x-axis) we use the 
Fourier-Galerkin method, and for the approximation in the normal direction (y-axis) we used 
Chebyshev collocation method. The dependant variables are expressed in terms of 
trigonometric polynomials in the following way:  
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where χ represents either the non-dimensional vorticity, stream function or temperature, 
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terms on the left hand side of the transport equations of vorticity (8) and thermal energy (10) 
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If we substitute these trigonometric polynomials (13)-(15) into eqs. (8)-(10), and use 
the orthogonality condition for basic functions in this case, which reads: 
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the following system of equations is obtained, and if we drop * for the non-dimensional 
notation: 

  ˆˆ ˆ( , ) 4 ( , ) 2Pr Ra cos sin ( , )k k
k

k

y t a y t a k y t
t y x x y y
w θy w y w gθ g

   ∂ ∂∂ ∂ ∂ ∂ + − − − −   ∂ ∂ ∂ ∂ ∂ ∂  
i  

2
2 2

2
ˆˆ4Pr ( ) ( , ) 0, 0,1,...,k

ka k y t l k K
y
w

w
 ∂

− + = = = 
∂ 

i (17) 

2
2 2

2
ˆˆ ˆ( , ) 4 ( ) ( , ) ( , ) 0, 0,1,...,k

k ky t a k y t y t l k K
y
y

w y
 ∂

+ + = = = 
∂  

i (18) 

 ˆ
( , ) 4 ( , )k

k

y t a y t
t y x x y
θ y θ y θ ∂ ∂ ∂ ∂ ∂ + − −

 ∂ ∂ ∂ ∂ ∂
 

2
2 2

2
ˆ ˆ4 ( ) ( , ) ( , ) 0, 0,1,...k ka k y t q y t l k K

y
θ

 ∂
− + − = = = 

∂ 
i (19) 

then we get a system of equations, for the Fourier coefficients for vorticity ˆ ( , ),k y tw  stream 
function ˆ ( , ),k y ty  and temperature ˆ ( , ),k y tθ  for each wavenumber from k = 1,...K, where
K= Nx/2, and Nx is the number of equispaced nodes on the x-axis. For discretization in the 
direction of the y-axis we use the Chebyshev collocation method, which consists of 
approximating the Fourier coefficients, used for the approximation in the x-axis direction, and 
the Chebyshev polynomials in the y-axis direction. The residuum obtained by substituting the 
Chebyshev polynomials in eqs. (17)-(19) is zero in Gauss-Lobatto-Chebyshev collocation 
points defined by yj = cos(πj/Ny) for j = 0, 1, …Ny, so the previous system of equations obtains 
the following form: 
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In this system of equations ˆˆ ˆ( , ), ( , ), and ( , )kN j kN j kN jy t y t y tw y θ represent the Che-
byshev approximation of the corresponding Fourier coefficients ˆ ˆ( , ), ( , ),k ky t y tw y

ˆand ( , ),k y tθ  and since in the Chebyshev collocation method we have ˆ ˆ( , ) ( , ),k j kN jy t y tw w=  
ˆ ˆ( , ) ( , ),kN j k jy t y ty y= and ˆ ˆ( , ) ( , )kN j k jy t y tθ θ=  in Gauss-Lobatto-Chebishev nodes. In

previous equations we used the elements of Chebyshev differentiation matrices (1)
,j ld  – the first 

order derivative, (2)
,j ld  – the second order derivative, given for the same nodes, whose 

expression can be found in [35, p. 89]. The system of equations that should be solved by some 
time discretization scheme reads: 
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In eqs. (23)-(25), all column matrices 1.
ˆˆ ˆ ˆ ˆ ˆ( ), ( ), ( ), ( ), ( ), ( ),k k k k k kt t t Q t F t N twΨ Ω Θ
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are of dimensions (Ny + 1)×1, and ,* ,*
ˆ ˆ( ), ( )k kQ t F t are of

dimensions (Ny – 1)×1, but boundary conditions are described by eq. (12) and should be 
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included in the positions y0 and yN, by the discretized boundary conditions. The 1 and 2 are 
the Chebyshev differentiation matrices without the first and last row as in [35, p. 89], whose 
elements are (1) (2)

, , and ,j l j ld d respectively. This system of equations is solved after time 
discretization using the four-time level, third order temporal discretization procedure 
AB/BDI3. The semi-implicit methods apply generally to non-linear equations such as (23) 
and (25) when the coefficient of the linear operator L(χ) is time-independent. This is the case 
for Navier-Stokes equations for incompressible fluids with constant viscosity. This linear term 
L(χ) is considered implicitly and the non-linear term N(χ) is explicit, so that the resulting 
discrete operator is time-independent and can be inverted or diagonalized in a preprocessing 
stage performed before the start of time integration. The high order AB/BDIm (m = 2, 3, 4) 
schemes involve the linear part L(χ) at time level n + 1 only, and can be described by: 

1
1

0 0

1 ( ) ( )
m m

n j n j n j
j j

j j
a b N L

t
χ χ χ

−
+ − − +

= =
+ =

∆ ∑ ∑  (28) 

where ˆ ˆ ˆ( ), ( ), ( )k k kt t tχ Ψ= Ω Θ are collumn matrices. The values of the coefficient for AB/BDI3:

0 1 2 3 0 1 2
11 3 1, 3, , , 3, 3, 1
6 2 3

a a a a b b b= = − = = − = = − =  (29) 

The system is then reduced to a four-time level matrix system of equations for each 
wavenumber k = 0, 1, …, K, where K = Nx/2, which should be solved for each time step ∆t. 
The equations after time discretization have the following form: 

( )2 2 1 1 2 10
1 2 1 1 2 3 ,*

1ˆ ˆ ˆ ˆ ˆ4 Pr 4Pr n n n n n
k k k k k

a a k a a a F
t t

+ − − +  + − Ω + Ω + Ω + Ω =  ∆ ∆  
   (30) 

( )1 2 2 1
1 1 2 1

ˆ ˆ4 0n n
k ka k+ +Ω + − + Ψ =   (31) 

( )2 2 1 1 2 10
1 2 1 1 2 3 ,*

1 ˆˆ ˆ ˆ ˆ4 4 n n n n n
k k k k k

a a k a a a Q
t t

+ − − +  + − Θ + Θ + Θ + Θ =  ∆ ∆  
   (32) 

1
(1)1 1 1 1

0 , 0 ,0,
0

1
(1)1 1 1 1

, ,,
0

ˆ ˆˆ ˆˆ( ) ,    ( ) ( )

ˆ ˆˆ ˆˆ( ) ,   ( ) ( )

n N
n n n nkN
kN k kN l kl

l
n N

n n n nkN
kN N k N kN l kN l

l

y g y d y h
y

y g y d y h
y

y y

y y

y
y y

y
y y

+
+ + + +

+ +
=

+
+ + + +

− −
=

∂
= = =

∂

∂
= = =

∂

∑

∑
(33) 

1
(1)1 1 1 1

0 , 0 ,0,
0

1
(1)1 1 1 1

, ,,
0

ˆ ˆˆ ˆˆ( ) ,      ( ) ( )

ˆ ˆˆ ˆˆ( ) ,    ( ) ( )

n N
n n n nkN
kN k kN l kl

l
n N

n n n nkN
kN N k N kN l kN l

l

y g y d y h
y

y g y d y h
y

θ θ

θ θ

θ
θ θ

θ
θ θ

+
+ + + +

+ +
=

+
+ + + +

− −
=

∂
= = =

∂

∂
= = =

∂

∑

∑
(34) 
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Here we use N = Ny and the following matrices notation: 

( ) ( )

( )

( ) ( )

( )

1 2
1 , 1 , 2 ,

1
2 , 3 ,

1
1 1 1

1 1 1
,* 1 1 0 1, 2, 1 1, 2,

, , , 1,..., 1, 0,..., ,

, , 0, , 0,..., .

ˆ ˆ2Pr Ra cos sin ,

ˆ ˆ ˆ ˆˆ ˆ +

i j i j i j

i j i j

n
k k

n n n n n n
k k k k k k

d d i N j N

d i N j N

F ka t

F F a b bw w w w

d

d

g g+

+ + −

    = = = = − =        
  = = = =    

= − Θ

= − + +

  

 

  

     

i

( ) ( )
( ) ( ) ( )

1 2 2
2 1, 2,

1 1 1 1 2 2
,* 1 1 0 1, 2, 1 1, 2, 2 1, 2,

ˆ ˆ+ ,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ + +

n n
k k

n n n n n n n n
k k k k k k k k

b

Q Q a b b b

w w

θ θ θ θ θ θ

− − −

+ + − − − −

 +  
 = − + + +  

 

       

(35) 

If we introduce the following 2×1 column matrices: 
1 11 1

, , , ,1 1 1 1
, , , ,

, ,, ,

ˆ ˆˆ ˆ
, , , ,

ˆ ˆˆ ˆ

n nn n
k k k kn n n n

k k k k
k kk k

g h g h
G H G H

g gh h
y y θ θ

y y θ θ
y θy θ

+ ++ +
+ + + ++ + + +

− −− −

      
   = = = =   
           

 (36) 

and construct the following (N − 1) × (N + 1) matrices: 

( )

2 20 31 2
0 1 2 1 1 2 1 3 1

2 2 2 20
4 1 2 5 1 2 1 1

4 Pr 4Pr , , ,

4 , 4 4 , 0

a aa aa k
t t t t

aa k a k
t

 = + − = = = ∆ ∆ ∆ ∆ 
 = − + = + − = ∆ 

0

        

      
(37) 

our system of equations for the Fourier coefficients obtains the following form: 
1 1 1 1 1 1

0 1 2 3 ,* 1 4 1
1 1 2 1

5 1 2 3 ,*
1 1 1 1 1 1 1 1

2 , 3 , 2 , 3 ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ,
ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ, , ,

n n n n n n n
k k k k k k k

n n n n n
k k k k k

n n n n n n n n
k k k k k k k k

F

Q

G H G Hy y θ θ

+ − − + + +

+ − − +

+ + + + + + + +

Ω + Ω + Ω + Ω = Ω + Ψ =

Θ + Θ + Θ + Θ =

Ψ = Ψ = Θ = Θ =

0     

   

   

(38-44) 

The initial conditions read: 

p p uni uni

1
p uni

1( , ) 0, ( , ) 0, ( ) (1 ), 0 2π, 1 1, 0
2

πRa ( ) Ra sin( ), Ra ( ) Ra sin( ), 0, 0
2

20π πRa 30, Ra 500, , 0 , π
180 2

n n

x y x y T y y x y t

t t t t t

t

y w

g

g g g g+

= = = − ≤ ≤ − ≤ ≤ =

= = = ≤ ≤

= = = + ∆ ≤ ≤ ≤ ≤

(45) 

The Fourier-Galerkin spectral method gave an accurate spatial resolution with 
K = Nx/2 = 64, Ny = 128 Gauss-Lobatto-Chebyshev points, and for temporal discretization we 
used time step ∆t = π/300, the angle of inclination increment ∆γ = 20π/180 · 1/150 = π/1350. 
All results presented in this paper were obtained with an accuracy of at least four digits. 
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Numerical results 

Equations (38)-(40) with boundary eqs. (41)-(44) and initial eq. (45) conditions were 
solved numerically by using the influence matrix method and the numerical code developed in 
MATLAB. The validation of numerical results was done by carrying out numerical simulation 
for several different values of the inclination angle g, wavenumber α, periodic Rayleigh number 
Rap, and Prandtl number, to obtain the values of Q and Nuav, for the same flow geometry as in 
[33, fig. 9]. Our  results for ymax do not differ from these results for more than 2%. 

We can see the dimensionless vorticity, stream function, and temperature for 
subcritical Rayleigh numbers Rauni = 500, Rap = 30, aspect ratio a = 1, where the critical value 
for this flow is Racr = 1708 for the wavenumber of disturbance qcr = 3.16. So, for this value of 
Rauni there should not be any flow, if there were uniform temperature distribution at the lower 
wall (if Rap = 0). Figure 2 shows these three scalar fields for three different angles of 
inclination γ = 0, 10π/180, 20π/180 at the instant of time t = π/2, 3π/4, π, respectively. The 
wavenumber of periodic temperature distribution at the lower plate is α = 2 for this 
simulation, and there is no temperature phase shift (φ = 0) on the lower wall. Hot spots, 
locations where periodic temperature on the lower plate attains its maximum, are located at 
x* = 0, π, 2π, and cold spots positions where the periodic component of temperature attains its 

Figure 2. Distribution of vorticity, stream function, for Pr = 7 for inclination angles g = 0°, 10°, and 20° 
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minimum are located in x* = π/2, 3π/2, in accordance with the temperature distribution given 
by eq. (12) and periodic temperature wavenumber α = 2 on the lower wall. In the instant of 
time t = π/2, when γ = 0, Rap, and Rauni attain their maximal values according to eq. (44), and 
they remain constant for t > π/2. In figs. 2(a), 2(c), and 2(e) – left column, where the 
dimensionless vorticity distribution ω(x, y, t) is displayed, we can see two pairs of vortexes 
which rotate in the clockwise (blue area) and counterclockwise directions (orange area). Just 
above these hot spots, the fluid motion is directed upwards, hits the upper cooler surface, 
splits into two streams parallel with plates, gets cooled and its density gets higher and then 
drops from the upper to the lower plate at x* = π/2, 3π/2 in cold spots, where the temperature 
achieves its minimum according to eq. (12). The fluid rises above the hot spots and descends 
toward the cold spots forming counter-rotating rolls displayed as stream function in figs. 2(b), 
2(d), and 2(f). The non-dimensional vorticity intensity ω(x, y, t) can be compared for three 
different inclination angles γ = 0°,  10°, and 20°, at the corresponding instant of time t = π/2, 
3π/4, and π, respectively, fig. 2 left column, after the periodic Rayleigh number achieves its 
value Rap = 30 and Rauni = 500 at the instant of time t = π/2. 

Two pair of vortexes rotate with the same intensity for γ = 0, displayed in fig. 2(a), 
but in the opposite direction, clockwise-negative direction (blue color) and 
counterclockwise-positive direction (orange color), and the extreme values of vorticity are 
ωmax(2.344, –0.049) = 54.31, ωmin(3.913, –0.049) = –54.31. The borders between vortexes 
overlap with the peaks and bottoms of fluid temperature distribution depicted in fig. 3(a), 
which also overlap with the hot and cold spots on the lower wall. But for γ = 10° (t = 3π/4), 
fig. 2(c) the same pair of vortexes has altered its vorticity to the values ωmax(1.865, –0.049) = 
46.58, ωmin(3.424, –0.049) = –58.88. We can see that the orange color vortex decreases its 
intensity of angular momentum, and the blue color roll increases its magnitude of rotation 
between these two instant of time t = π/2, 3π/4, i.e. between the two inclination angles γ = 0° 
and γ = 10°. The displacement of their centers in the negative x-direction is not the same, 
because one of them shrinks and the other one expands in the x-direction, as it will be seen 
on figs. 2(b), 2(d), and 2(f) for stream function and much clearer in figs. 3(b), 3(d), and 3(f) 
for streamlines distribution. 

This tendency continues for the higher values of the inclination angle, so for γ = 20° 
and t = π, fig. 2(e), we have ωmax(0.491, –0.098) = 20.65, ωmin(2.074, 0.00) = –56.43. We see 
that the counterclockwise rotating roll (orange one) gets weaker, loses its intensity of rotation 
and shrinks in the x-direction, but the clockwise (blue one) rotating vortex gets stronger, 
increases its magnitude of vorticity and extends in the x-direction with the increasing angle of 
inclination γ. For the angle γ = 20° and time t = π, fig. 2(e), we can notice that minimal 
vorticity, ωmin, declines in its absolute value with respect to value at γ = 10° and time t = 3π/4. 
In figs. 2(a), 2(c), and 2(e), we can see that besides the existing main two vortex pairs in the 
middle of the slot, there exist two vortexes with the opposite sign on the upper and lower wall 
just above and below the rolls (central vortex) considered. These small vortexes on the walls 
change its magnitude depending on the inclination angle, γ, too. Two positive small vortexes, 
above and below the clockwise rotating central vortex in the middle of the slot, increase its 
magnitude together as the clockwise rotating central vortex increases its absolute value. The 
two negative small vortexes on the walls, above and below the counterclockwise rotating 
central vortex, decrease their intensity as the magnitude of central positive vortex decreases 
its magnitude with the increasing inclination angle, γ. The position of these small vortexes on 
the upper and lower wall moves in the direction of the negative x-axis with rising γ, and is 
fixed with respect to the central vortexes in the middle of the slot. The position of these small 
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Figure 3. Distribution of temperature and streamlines for five angle of inclinations g = 0°, 10°, and 20° 

wall vortexes is locked in with the position of central vortexes, and is located just above and 
below them. These values on the lower plates for γ = 0 are ωmaxL(x = 3.866, y = –1, t = π/2) = 
= 46.92, and in the middle of the slot ωmaxM(x = 5.473, y = 0, t = π/2) = 54.63. Further we can 
notice the same tendency, where the maximal values of vorticity on the lower plate and in the 
middle of the slot have the following values for γ = 10° ωmaxL(x = 3.375, y = –1, t = 3π/4) = 
= 56.65, ωmaxM(x = 5.00, y = –0.024, t = 3π/4) = 46.57, and finally we obtain for γ = 20° the 
vorticity ωmaxL(x = 1.939, y = –1, t = π) = 60.14, ωmaxM(x = 3.632, y = –0.098, t = π) = 20.65. 
We can conclude that the maximal vorticity in the middle slot of counterclockwise rotating 
vortexes declines rapidly and these positive vortexes shrink, but the maximal vorticity in the 
wall positive vortexes climbs slowly and achieves the asymptotic value at ωmaxL(g = 20°) = 
= 60.14. 

This could be explained by the fact that with the rising inclination angle g the fluid that 
ascends from the hot spot hits the upper plate and splits into two equal streams if g = 0, and into 
two unequal streams if g ≠ 0. In our case for g > 0 the greater amount of hot fluid streams 
upwards beneath the upper plate in the positive direction of the x-axis, and a smaller amount of 
hot less dense fluid streams downward, beneath the upper plate in the negative direction of the 
x-axis, and this tendency is more pronounced with the rising angle of inclination, g. We obtained 
these results but because of limited space in this paper, these fields of velocity components are 
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omitted. The results for the u-velocity component, clearly indicates that the balance between the 
positive and negative values of the u-velocity component at x = π, y = 1 which exists for g = 0, is 
compromised for the case g > 0, and for increasing g this misbalance is more pronounced in favor 
of the positive values of  the u-velocity component. The amount of fluid, which enters the 
clockwise rotating roll right after hitting the upper wall, increases with rising g, so the central 
negative roll extends, but since the smaller amount of fluid goes downwards left beneath the 
upper plate and enters the counterclockwise-rotating roll, this roll shrinks, see figs. 2(b), 2(d), 
and 2(f) and more clearly figs. 3(b), 3(d), and 3(f). Afterwards, the strength of these central rolls 
is not equal any more, and the strength of the clockwise-rotating rolls increases and the strength 
of the counterclockwise-rotating rolls decreases, as shown in figs. 2(b), 2(d), and 2(f). The 
explanation for such behavior could be explained by the result of the formation of a non-zero 
component of the buoyancy force that acts along the x-axis direction. 

One can interpret  this process as a hot plume impacting an oblique upper flat plate. 
Some of the fluid is permanently trapped inside the rolls while the reminder travels along the 
slot. The cumulative net flow is a function of both the inclination angle and the heating 
intensity and it seems that positive rotating rolls significantly weaken as the inclination angle 
increases. Indeed, we note that  the counterclockwise rotating rolls were completely washed 
away once the inclination angle reaches g > 20°. The fact that both component of buoyancy 
force differ from zero at some g > 0°, since its curl is defined as F ( / / )k,y xF x F y∇× = ∂ ∂ − ∂ ∂




 
has the impact on vorticity redistribution inside the slot. The curl of force term in vorticity 
transport equation is defined as the limit of circulation to the area as the area tends to zero. As 
the gradients difference in F∇×



becomes greater in some points in the domain, i.e. in the 
points close to walls for counterclockwise rotating rolls the vorticity gets stronger. The same 
is valid for clockwise rotating rolls in the middle of the slot. Since the components of 
buoyancy force are dependant on temperature, eq. (6), its temperature gradients and 
inclination angle determine the vorticity distribution inside the slot. As the fluid starts sliding 
downward for g > 0°, these gradients become stronger, and the magnitude of vorticity 
increases but to some limiting value in our case g = 20°. After this angle the fluid flow is not 
structured any more. Thermal drift  becomes evident at higher values of g, in our case it is 
obvious in fig. 3(f) and in the case of streamlines plotted together with stream function for 
g = 20° at t = π or in fig. 2(f). During this process of increasing the inclination angle, g, with 
time, the centers of rolls move in the direction of the negative x-axis, and the center of 
counterclockwise rotating rolls moves also in the direction of the negative y-axis, in the 
direction closer to the lower wall. The distance ∆x between the center position of two positive 
rotating rolls at g = 0 and the position when g > 0 is increased. 

With increasing ∆x, the phase shift, φf, between fluid temperature pattern and the 
periodic temperature  distribution on the lower plate increases, and attains its highest value at 
t = π, (g = 20°). The displacement of roll centers for this time period is 
∆x = x3 − x1 = 2.086 − 3.783 = −1.697 ≈ −π/2 = φf,  and it causes the flow pattern  phase shift 
between the locked in fluid flow pattern [36] and the periodic temperature pattern on the 
lower plate, which  results in the appearance of thermal drift, described in [37-39] for the case 
of the phase shift, φ, between two sinusoidal functions applied to the lower plate temperature 
and corrugation distribution. In our case, practically φf is a phase shift between hot spots in 
the periodic temperature distribution on the lower wall and the fluid temperature tips. This is a 
consequence of the negative non-dimensional volumetric flow rate y(y = 1) < 0, and the 
displacement of fluid flow pattern in the negative direction of the x-axis if there exists some 
positive inclination angle g > 0. The centers of the positive counter-rotating rolls are shifted 
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toward the lower wall when g > 0, and this can be noticed for g = 20°, when the center of the 
positive diminishing roll is moved significantly to the lower wall, as can be seen in fig. 2(f) 
for ymax(x = 3.62, y = −0.67, t = π) = 0.03795. The results displayed in figs. 2(b), 2(d), and 
2(f) for  stream function ymax(x, y, t) demonstrate that the position of the roll centers remain 
constant with respect to the y-axis for low values of the inclination angle, g, and once when 
certain value g = 10° is reached, the counterclockwise (positive) rotating roll centers start 
moving downward and go away from the center of the slot for higher values of g > 10°. 
However, in the same time period these rolls shrink, decrease their width and height, and 
weaken the strength of the rolls. 

Figure 4. shows the Nusselt number and skin friction coefficient average number as 
a function of g. We can see that both of them have a tendency to decline with the increasing 
inclination angle, g. Both values have been calculated for the lower plate, where the Nusselt 
number is displayed in the absolute value, since its values on the lower plates have a negative 
sign. This can be explained by the fact that thermal energy goes from the lower to the upper 
plate, and the lower one loses and the upper one gains thermal energy. This results are in 
accordance with the results presented in [33, 40, 41].  

Figure 4. Distribution of Nusselt average number, Nuav, and average friction coefficient, Cf,av, 
multiplied by Re/2 for five different angles of inclination g = 0,5°, 10°, 15°, and 20° 

Conclusions 
We have discussed the response of a system that combines uniform and periodic 

heating components in a slot that starts tilting with respect to time. We can notice that the 
intensity of counterclockwise rotating central vortexes in the middle of the slot declines 
with the increasing g, and the magnitude of  clockwise rotating small vortexes on the upper 
and lower wall just above and below this central positive vortex also descends with the 
increasing inclination angle, g. The opposite is also true, the magnitude of clockwise 
rotating central vortexes in the middle of the slot increases with the rising angle g, and the 
magnitude of counterclockwise rotating small vortexes on the upper and lower wall just 
above and below this central negative vortex also ascends with the increasing inclination 
angle, g. This can be demonstrated by comparing positive rotating vortexes on the walls 
and in the middle of the slot.  

If the hot spots overlap with the tips of the fluid flow temperature distribution, 
convection takes on the shape of counter rotating rolls, which come in pairs and whose size 
is determined by the heating wavelength. The formation of the stream tube, is found in all 
other relative positions occupied by the hot spots and the fluid flow temperature tips. This 
stream tube is formed in the presence of  both the periodic heating on the lower plate and 
the periodic fluid temperature distribution which slides down due to inclination and gravity 
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component in x-axis induced flow, and it can then be directed, depending on the phase 
difference ϕf between the periodic heating and the fluid flow temperature distribution, in the 
positive as well as in the negative x-axis flow direction. In our case it depends on  the 
negative or positive values of inclination angle, g, whether the component of gravitational 
acceleration in the direction of the x-axis is positive or negative, and stream tube is a very 
strong function of phase difference, in our case the largest stream tube occurred for 
inclination angle g = 20° at the instant of time t = π. If g ≠ 0 the fluid temperature pattern 
starts sliding in the direction of the gravity component parallel to the x-axis. For the case of 
g > 0 it is in the negative, and for g < 0 it is in the positive direction of the x-axis. Figures 2 
and 3 show patterns for phase shifts ϕf = 0, …, π/2, with the flow topology comprising sets 
of rolls separated from each other by a stream tube weaving  up and down and carrying fluid 
in the negative x-direction, for our case g > 0. 
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