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This study contains an algorithmic solution of the Sine Gordon equation in three
space and time dimensional problems. For discretization, the central difference
formula is used for the time variable. In contrast, space variable x, y, and z are
discretized using the non-polynominal cubic spline functions for each. The pro-
posed scheme brings the accuracy of order O(h? + k? + o2 + 2h? + 2k? + %6°) by
electing suitable parametric values. The paper also discussed the truncation er-
ror of the proposed method and obtained the stability analysis. Numerical prob-
lems are elucidated by this method and compared to results taken from the lit-
erature.
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Introduction

In scientific research, there are numerous problems that are mathematically ex-
pressed by PDE. Non-linear phenomena also play a significant part in various fields of sci-
ence like engineering, mathematics and physics. Many experiments are modeled by non-linear
PDE [1]. One, two and three space-dimensional models are discussed in literature boundless-
ly. Three space-dimensional versions of PDE have the capability to illustrate diverse wavelike
phenomena, e.g., atmospheric waves, sound waves, electromagnetic and gravitational waves.
For many grounds, e.g., modeling sound propagation of sound in a solid, this PDE presents a
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convenient discrete model of a 3-D solid. Solitonary solutions of non-linear evolution equa-
tions offer improved understanding. The acquaintance of approximate solution of the non-
linear evolution equations smooths the progress of the testing of numerical solvers, support
the study of stability analysis and concludes with a better understanding that are modeled by
these equations [2]. Accurate numerical solution for these problems is helpful for their appli-
cation but there are many challenges are ssociated with computing these solutions especially
in 3-D cases. Furthermore, finding the exact solution for non-linear PDE is very tough. Con-
sequently, numerical methods are very supportive of solving these equations. Appropriate
numerical techniques are always required to get more accurate results in this context, Soysal
et al. [3] presented a study to improve the design of blades used to distribute the fertiliter in
the wide area field. The discrete element method is utilied for the numerical simulation of
their new design and successfully verified by experiment. Another study presented in pro-
vides the instantaneous data study for the vibration of the harrow disc in the farmland [4].

The PDE that illustrate, the non-linear waves related to the Sine Gordon equation
has substantial significance in the research. The Sine Gordon equation emerges in the propa-
gation of fluxions in dislocations in crystals, Josephson junctions and in non-linear optics
etc. [5-7]. In this paper, we are considering one of the non linear equations in the domain, the
Gordon equation, that has been persistently explored and methodically solved in recent years
[8-12] particularly in three space dimensions.

We consider a three space-dimensional Sine Gordon equation:

2 2 2 2
a—;‘—cz(a—‘;ﬁ—‘z‘ﬁ—‘:}sin(u), t>0 (1)
ot ox- oy° oz
where the solution domain is given by:
R={(x¥,2);Lyo <X<Ly,Lyo <y<ly Ly <z<ly}

along with initial conditions:

U(X, Y.z, 0) = (P(Xv Y, Z)

2
Ut(X,y,Z,O) zl//(X, y,Z) ( )

subject to the boundary conditions:
u(Loy.y.z.0) = f (v.z,t), u(ly,,y.z,t) = f_ (y.2.0)
u(x, Loy, z,t) = fLyo (x,z,t), u(xLy,zt)= fLyl (x,z,1) 3)
U(X, y! LO,Z ’t) = szo (X, y,t), U(X, yi Liz !t) = szl (Xr y,t)

where u(x, Y, z,t) is a function and c? is a constant (as the speed of a wave). The ¢ and y giv-
en in the initial condition are time independent but differentiable functions.

Furthermore, Johnson et al. [13] dealt with the 2-D Sine Gordon equation and pre-
sented three exact solutions. Chen and Lin [14] developed another exact solution for 2-D Sine
Gordon equations. The Sine Gordon equations and it exact solution are available in literature
[15-17]. Although exact solution provide brief description of physical phenomena to con-
comitant with the problem discussed, numerical methods are still indispensable.

Several numerical techniques have been originated throughout the preceding three
decades mto obtain the solution for the Sine Gordon equation. The Local Kriging Meshless
Method is developed by Guo et al. [18] to solution the non-linear Sine Gordon equation in
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two dimensions. Djidjeli et al. [19] produced a precise numerical technique to solve a damped
Sine Gordon equation in two space variables.

Singh S., et al. [20] present a colocation method constructed with the help of the cu-
bic Bspline function for 1 D Sine Gordon Equation. P. Guo et al. [18] present the local
Kriging meshless method for (2 + 1) - dimensional nonlinear Sine Gordon equation. Ma and
Wu [21] employed a meshless technique using a multi-quadric (M Q) quasi-interpolation. A.
Akgul et al. [22] industrialized a new approach that gives a solution to the one-dimensional
Sine Gordon equation. Wazwaz [23] utilized the basic form of Hirota's method to obtain one
and two soliton solutions for each equation while exploring the nonlinear Sine Gordon equa-
tion in one-, two- and three-dimensions. Furthermore, wazwaz [24] also developed accurate
traveling wave solutions for the double Sine Gordon equation. He used the variable separated
ODE and Tanh methods to derive the generalized form.M. Dehghan et al. [25] presented the
numerical solution of the two-dimensional Sine Gordon equation via three meshless methods.
The Sine Gordon equation has been extensively employed in various sciences, for instance,
non-commutative field theories, fluid dynamics, integrable quantum field theory and kink dy-
namics. Moreover, the Sine Gordon equation emerges in minimal surfaces in product spaces
and the theory of constant mean curvature surfaces in space forms [26-28].

Two finite difference schemes, i.e. implicit and explicit were proposed by Guo et al.
[29]. The cubic B-spline collocation method was adopted by Mittal and Bhatia [30] to get a
solution for 1-D Sine Gordon equation. To examine 1-D Burgers’ equation, a novel approach
was proposed by Arora and Singh [31] which is the “modified cubic B-spline differential
quadrature method (MCB-DQM)”. Ilati and Dehghan [32] demonstrate an appropriate tech-
nigues based on collocation method to elucidate the system of coupled non-linear Sine Gor-
don equation system depends upon two space independent variables. Zagvan and Rashidinia
[33] present the numerical solution to 2-D linear wave equation with the help of non-
polynomial spline functions.

Non-polynomial cubic spline functions

The domain set R is divided into N subintervals in each space direction and J steps
in time. So that, we got (N +1)(N+1)(N+1)J meshs. Each grid-point is represented as
(Xg1 Y1 2o tj) , Where:

X, = Loy +ah; h= by I'OX; a=01--N+1
N+1

Liy LO)’
=L, +Bk; k= . =01 N+1
Yo y N+1

Zu:LOZJ"“U; O'_Lli\l I;_OZ; p=0,21---,N+1

and  t;=jr; 0<j<J; N; J/Z*
Let S (%) Sa0, 1 (V), S34,5(2) be the non-polynomial spline function for each sub-
interval in x-, y-, and z-directions respectively, and defined:

S () = 8y + By, (X=X, ) €y, SINA (X=X, ) + 0y, COS A (X—X,) (4)

Soau(Y) =855 +0,5(Y = Y3) +CopSIN AL (Y — Yj) +d,5COS A, (Y — V) ®)
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Sa0,5(2) =g, +0y, (2 —2,) + ¢ SINA(2 - 2,,) +dg, COS (2 - Z,,) (6)

where by, ,Cy, . 01,1804.0,5.Co 5.0p5,85,,05,,,C5,,, 5, are undetermined coefficients and 2, ,
4, , A, are arbitrary controlling parameters. By using notations:

Sipu (%) =Us gy Sip (%) =Mug g So0 (V) =Ug g

S2au(Ye) =Mag g S30p(20) =Uappr S30,5(20) =My g

From the first and second derivative continuity conditions for cubic spline functions
Sipu(X) Sppu(Y), and sy, 5(z)at (X,,Y4,2,,t;), the following consistency relations can be
obtained:

2
Upg g — g pu tUgsa pp =W (@M g gy +28My, 50+ aMygi 540) (7
2
Uy pap —2Uq g U piap =K (@Moy, 510 +28Myy 50+ My, 5 41) (8)
2
Uy g1 = 2Uq g HUg pusn =0 (May 500 +283My, 5 +23Myg, 51101) 9)

where

a1=h21212 (hAcsch, ~1), az=é(kﬂzcsckﬂz—1)

oy :Gziﬂgz(a/i3 cschi; —1)

1 1 1
B Zﬁ(l—hﬂqco'[h/ﬁ)' B 2@(1—“2 cotk ), B 202—132(1—0% coto 4y)

Spline numerical method

In this section we develop an approximation scheme for eq. (1), which may be dis-
cretized at the grid point (X, Y;, zu,tj):

i 2 i j i : j
uﬁ|a’m1 =C (uxx|a’ﬂ'“ +u},y|mﬂp + uZZ|a,ﬂ,u) —sin(u; 4, (10)

we use finite difference approximation for the time derivative term in eq. (10):

- ul= —2ud o ult
j apn” Yapp tUapp 2
Ul 50 = % +0(z%) (12)

in addition to the non-polynomial cubic spline function for the equation's spatial derivative
terms (10):

] i 2
uXX|a,/},u = Mljaﬁ,p +0(h?)

i i 2
Uy, = Moy +O(K?) (12)
u,, (J;,'ﬂ’u = M?ja,ﬂ,p +O(O‘2)
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Using egs. (11)-(12), and ignoring the truncation errors, eg. (10) might be written:

—2u) ultl . . .
aﬁu aﬁu a.B.l :
2 =c (MMM+M21(Z‘I,’“+M3’a’ﬁ’u)—sm(u;ﬁ'“)
. —2u) o oqult g .
] _ Dl /)7 K a /)7 K a,B,1 . j
Mmﬁ’“+M2MH+M3MLl o2 +C—25|n(ua,ﬂ'u) (13)

This is the consistency relation for a grid point (x,,, Yz, Z,, J) For the entire domain
in each direction, we can write:

wt ooyl

. ) . +ul 1 .
j j j _ Taflpu a+1ﬁ u a+1ﬁ u . j
Mg pp+Mogarpp + Magur g = 22 C_zsm(uail,ﬁ,u) (14)
j-1 j+1
. . . u;]ﬂﬂ’u 2ua ﬁﬂu FUMa 1
Mlja,ﬁil,u + MZJa,ﬂil,u + Msja,ﬁﬂ,p = 2,2 +C_23m(uojz,ﬁtl,p) (15)
j-1 j+l
' - - uy Bl 2ua ﬂ p+l tUpppa 1 .
Mlja,ﬂ,pil + MZJa,ﬁ,uirl + MS'Ja,/)’,pil = 22 +C_25|n(uajz,ﬂ,uil) (16)

From the consistency relation (7) and (14) we can have nine equations at each grid
point of our entire domain. Similarly, for the consistency relation (8) and (15), we can have
another nine equations at each grid point of our entire domain. The third set of the next nine
equations can be obtained from egs. (9) and (16).

The previously said set of equations is multiplied by suitable coefficients and add
them, then simplified equation can be written as:

p1UJ+1ﬁ _1ua  P2U a 1ﬁ apt plua 1ﬁ 1p T p3ua lﬂu at
+p5uj+1ﬁ|_1 + pa —1ﬁ pr 1 plu —1ﬁ+lu 1+ PUg —1ﬂ+1u + plua 1ﬁ+lu+l+
+ p4Uoj:}371,p71 + pGng-,%—l,p + p4ug$71,u+1 + p7uz§:/%’,u—1 + p8u(i-,%,p + p7u(jz-,%,|r1+1 +
+ p4ui,+é+1, p-1t p6uojz,+/1¥+l,|_1 + p4ugj¢,+;+1,p+1 + pluojzﬁ, Aip-1t pzuzjz:—]i, papt
+ pluliﬁ, pipnt psuojzill, pp1t psuojzj, snt p3u0jz:]1-, st t plu(i:]i, pp1 T

j+1 _ j-1 j-1
+PUgs g T PL="Plg 1 g1 p-1— P2U —1 A1~ Pla 150001~

-1 i1 -1
p3ua lﬂp 17 PsUg p3ua 1p pir ~ Pl 1 gaa g — P2U o 1A

j-1 i-1 j-1 j-1 -1 i-1
—Plo1 i ps1 — Pals g1 1 — Pels, g1y — Palg st — PrUg g u-1 — Psla g —

j-1 j-1 j-1 j-1 j-1
—P7Ug gt — Palg i p1 — Pela gy — Palg, prapn — Plgi1 a1 —
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j-1 j-1 j-1 -1 j-1
—P2Ugi1,p1,u~ Pilai g1 Pl g ua— PsU

j-1
41, pu~ PaUas1 g ps1™ Plaat prap-t —
j-1

j-1 i j i i
Pyt piap — Plgst g T PisYa g T PisUgia pp T PisUa1pp + Palg g
i i i i i i
*+ Py p1,ut PisYs, gt PisUs g u-1t Piola s papt ProYea, p-1,u T ProYa—1 peap
i i j i i
+Polg1, 51,0 T ProUs prip T PioUsg prapa T Pls g + Pl gapn
i i i i i
+PoUgi1 perpst T Polgir -1 T Polgqis g1 pse1 T Poloqa p-1pu1 T Polag e
i i i i i
+Pols1 parpt + Polg 1 papin + Polpa poapcr + PilUgua g + PG g +
i i 2 ; i ; i
+Puly1 st + Pulg1pp1— 7 (PLSIN(Ugg 54 1) + PSIN(Ug_g 54 141) +
; i P i P j
+PuSIN(Ug g g ) + P1SINUG g g ) + PrSINWUgL gy ) +
. J . J . J
+PLSIN(Ugg pogper) + PLSIN(UgLg gig 1) + PLSIN(Ug. g pig pia) +
+PoSIN(UY 1 5 g) + P2SIN(UY g pi1) + PoSIN(ULL 5 )+ P2SIN(ULLg pig ) +
+P3 SIN(Ug 1 g 1) + PaSIN(UL 1 5 1) + PaSIN(UG 1 5 1) + PaSIN(UG L g i) +
+Ps Sin(uéz,ﬂ—l,u—l) + Py Sin(uojz,ﬁfl,uﬂ) + Py Sin(uzi,ﬁﬂ,p—l) + Py Sin(u;,ﬁﬂ,uﬂ) +
+Ps Sin(uojz—lﬁ,u) +Ps Sin(uojz+l,ﬁ,p) + Ps Sin(uo]z,ﬁ'—l,u) + Ps Sin(uojz,ﬂ+1,p) +

+P7 Sin(u(i,ﬁ,ufl) + Py Sin(ué,/)’,pﬂ) + Pg Sin(ué,ﬁ,p))

17
Where
PL=aonp0s Py =200, Py =203, Ps =203, Ps =40,
Ps =400, Py =43Py, Ps =8B5 0,
2.2 2.2 2.2
CT°a, CT°0qoy CT on04
= + + + 204050
Po 62 k2 hz 123
2P, 2¢°TPoyay 2077 ey
=— + + +4a0
Pro o2 % 2 10
22’ e, 2627y B 2¢2 7% 5
Pui=- k2 25 62 L2 h2 2 +40610C3ﬂ2

20,0y 26%7%a B 2c* P asfp;
- 2 3
P =-— 2 + 2 + 2 +4ay05
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4oy i, . 4c212a1ﬁ3 4c?r ﬂ2ﬂ3

Pz =— o2 2 +8a/5, 55
4P, B, ACPTPanfy  ACPTCBf
Py =— 0_2 + h2 + k2 +80!2ﬂ1ﬁ3
2.2 2.2 22
“a It 4c°r
s =— kz 3ﬂ1 + h2 3ﬂ2 + GzﬂlﬂZ +8a3ﬂ1ﬂ2
_8CAS, BB | B Bofy
Pis = 02 k2 h 16ﬂ1ﬂ ﬂS

By using the traditional Taylor series expansion, a third order approximation of
u(x,y,,z,t) at t=7 can be written:

1 0 0 ° 0 T 0 4
Uy pu =Ug pu +7 Ut|0,,ﬂ,“ e |0[’,BYu +§um|a’ﬁ’u +0(z") (18)

Since from I.C.’s (2) and (13), we have:

0 p= g ULy =V 19
0 0 00110
Ugl, 5, =C (uXX p +uW|a,ﬁ, +U,, aﬂu) sin(Ug 4., (20)
0 2 0 0 0 j
uttt|a,/;,p - (Utxx|aﬁ,p + utyy|a,/3,p + Uy, |aﬁyu)—cos(u0{ﬁ'p) (21)

using egs. (19)-(21), in eg. (18), we obtain the approximate solution u(x,y,z,t) att=1

1 _ [ 0 0 0 <0
ua,ﬂ,p_wa,ﬂ,u""rl//aﬁ,p_"g c wxx|a,ﬂ,p+¢W|a]ﬂ1“+¢lz|a,ﬂ,p _Sm(ua,ﬂ,p) +

3
T 2 0 0 0 i
e il L2 R BT P B ) (22)

The scheme derived in eg. (17), can be expressed in the following matrix form in or-
der to obtain the solution in each time level:

AUJ+1=—AUj_1+BUj—TZASin(Uj)y j=1,2,"',\] (23)

where A and B are blocked tri-diagonal matrices of order N® and U is the solution vector, A is
a block tri-diagonal matrix of order N in the form tri[®,,0,, 0, ], where each @5, and ©
are again block tri-diagonal matrices of order N in the form tri[u,,u,,u,], and tri ru3,u4,u3j
respectively.  Yet  again Uy =tri(py, Po, Py), Uy, =tri(ps, Ps o P3), Us =tri( Py, Pgs Ps),
u, =tri(p,, pg, p;) are tri-diagonal matrices of order N. Similarly B is also a nested block
tri-diagonal matrix. Each N block in diagonal is a nested block tri-diagonal of order N? in the

form of triftri(py,, Pis, P12), tri(Pis, Pugs Pis)s tri(Pra, Pras Pi2)]- And off-diagonal blocks of
order N2 are written as triftri( Py, Pyo, Po)s tri(Pyys Pis» Pry)s tri( Py, Pugs Po)l-
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Truncation error
From eq. (13), we have:

o j ' j j
] — 2 ] i
sin(U, 5.4) = uﬁ‘a'ﬁ’u -C (uXX apnt uyy|a,ﬂ,u +U, a’ﬂ]“) (24)

we have:
i

2 J
sin U —C |u +Uu
( a+p, B+, ity ( Xla+p,f+n,u+y vy

i i
s pprney )= U arppinpry 2 0‘*”’/”*’7'“*7) )

where p,n,7 =0,£1. Substituting these values in eq. (17) and then expanding both sides by
using the Taylor series in terms of u . We obtain the truncation error:
2

- 0
T) 5= (4c202 (<14 20 + 28))(ay + Bo ) (s + ﬁs)y +4c% 0% (g + B)-

2 2
(~1+ 20, + 25, )(aty +ﬂ3)%+4c2r2(a1 + B + By) -1+ 25 + 2ﬂ3>;—2+

2 2
+2¢20% (K2ary (<14 23) + e (2(W% + k), + W2 (<14 28,)) a3 + ) — 0 %
22 2 2 o* o
+2¢c°t (a2+ﬁ2)(a a3 (-1+28)+ o (2(h" + o )a3+h (- l+2ﬂ3))) 7 og? —+
+%C2h212(—1+12a1)(a2 + ) (s + ,83)6—4+ %czkzﬂz(—l+12a2)(a1 + )

4
(a3 +ﬂ3)—+ czhzrz( 1+12a))(aty + o )(ats + fBs) — 0 -+ éc k272 (-1+12a,)-
X

4 4
.(al + ﬂl)(a3 + ﬂg)% + %CZUZTZ (—1+12(Z3)((Z1 + ﬂl)(az + ﬂz)aaz_4 4

4
+ 2 ey + By + Bo) (e + ﬂs);—+ éczhzrz(—kzaz + oy (2(h? +6k?)ar, +

4
+h2 (=14 22,) (a5 + ﬂs)a—% +%C2h2r2(a2 + po)(~0as + ay (2(h? +602)ay +

+h? (- 1+2ﬂ3)))— o czk%z(al( h? +2(6h% + k?)a,) + k2ar, (-1+ 23)) etz + f5)-

2 Ad

aa ; +€15020272(a1( h? +2(6h? + 0%)a3) + o2y (—1+ 213)) ety + 3,)-
02 15, 0° o* ! )
—_ +=ht" (a, + s + T %0 (o +
Z o 3 (@ + Bo)(ag ﬂs)ax2 =% (q +B)



Sattar, R., et al.: Non-Polynomial Cubic Spline Method Used to ...
THERMAL SCIENCE: Year 2023, Vol. 27, No. 4B, pp. 3155-3170

3163
2 2 62 84 1 2 4
* 1 o> ot 1
8y ot +30' tlag(a + B)(@, +ﬁ2)6z 2 3t +%C *hz? (<14 300, ) (o, + By )z + fB3)-
1 o4 * 1, 45
® 1 5429 56 o°
x°® oy
1 o % 1
+180 c’h*o?2? (-1+ 300y ) a3 (e, +,b’2)a 550 Eczkzlo'zz'2
% o2 -
(_1+ 300.’2)0.’3(0.’1 +ﬂ1)$az—2+ "'}U(Jayﬂll-l) (26)
On selecting appropriate values of parameters o, a,, a3, £, 3,, and 3;, methods of
different classes can be obtained.
If we choose:
1 1 1
a1+ﬂ1:§1 a2+ﬂ2=§, a3+,83:§ (27)

i.  We obtain a schemes of order O(h® +k? +o? +7%h? +7%k® +
we can choose o =, =y =1/6 and B=p5 = ]J3
A schemes of order O(h* +k* +o” + 7?h? + 7%k iy %) is obtained by choosing
oy =a,=a3=112 and p =p,=L;=5/12
iii. A schemes of order O(h® +k® + &° +7%h? + 7°k? +

726?) . Specifically if

725?) is obtained by choosing
o =a,=03=130 and p =p,=£=7/M15
iv.  The scheme is convergent of order O(h® +k® + 6® + z°h? + 7%k? + z%¢?) on choos-
ing &g =, = a3 =1/56 and 3, = S, = 3, = 27/56, and so on.
Stability analysis

The stability analysis of the scheme developed in eq. (17) is discussed here, for this
we consider the homogeneous part of the scheme (17), then we can have:

j+1 j+1 j+1 j+1 j+1
ClYafl, poapt TCaYo papa + ClYa+1, st T Cal1 papn Y Ca¥y prapnn +

j+1 j+1 j+1
+CyY,) +1 fipn T CY,) 141u1 T C,Y, ,B+1 pat ClYa+l,ﬁ+l,p—l + ClYa—l,ﬂJrl,erl +

+C4Y, ﬂ+1u+1+C1Ya+lﬁ+lp+l+C2 a- 1,8 1p+C6 aﬂ lu+C2 a+1ﬁ T

+C,Y,) 1ﬂ+1p+C6 aﬁ+lp+c2 a+1ﬂ+lu+C3 1ﬁp 1 +CY,] aﬁp 1+C3Ya+1ﬂu 1t
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j+1 j+1 j+l j+1 j+1 j+l
+C3Y, 1 st T Co Vo gt +CoVait ppsn + CyY,” S tCYa pu T CsYoii gy =

—DlY 1, -1 1+D4Y -1 - 1+D1Y o+l f-Lp— 1+D1Y 1,8—1,|J+1+D4Y p-ipat

i i i
DY g ¥ DYy prapa + D4Ya pptt DlYa+1 prapt T Dol g +

+D4Yaﬂ+lu+l+DlYa+1ﬂ+1p+l+D2Y _1,5- 1p+D6Y a,f— lu+D2Y a+l,p— 1p+DzY a1pap T

+D6Yaﬁ+1u+D2Ya+lﬁ+lu+D3Y 1,8, 1+D7Yaﬂu 1+DsY a+L, = 1+D3Y 18u1 T

+D7Yaj,ﬁ,|_1+1 + D3Y 18u T DSYa 1u 1 D8Ya Y AT DsYa+1 i (28)
where
YaJ/f n (uo]zﬁ,u' a.p, u) and Uy ﬂ w=Vapu

C=p10 C=p20 C=p30 C=p40 C=p50

Yo 1)) 2 lo 1) “ 1o 1) ™ lo 1) T lo 1
0 0 0

Ps . C = P, . Cy- Ps

0 1 0 1 0 1

Dlz(plg _(I)Jlj’ Dzz(pio _gzj, Dsz(plll _gsj, D, = (piz _p4j

D5:(pi3 _55]’ D6=[pf —gsj, D7:[pis —g7J D, = pl —psj

Let Y, ‘ﬂ . be the numerical value of Y, then &) ,, =Y}, -Y],
vector at the j time level. Thus from eq. (28) we can write:

Ce

s 1S the error

j+1 j+1
Cieaapapat C4 /5 prt Cl +1ﬂ 1t Clga 1ppn T C45a Bt T Ciégi gy +

+Clgojlt:]|-., piipa T C450j¢,+ﬁ1+1, pat Clgojz:}., pipa T Clgojzj, pp T C45;Té+1, pet
+C15a+1 Sip T nga 1pau T C65a ST Cz +1ﬁ T ngojzj,ml,p + Cﬁgojz-,%ﬂ,p +
+Cye, Jﬁﬁﬂp +C35a m 1+C75aﬁp 1+035a+1ﬂp 1+C35a 1.5, p+1+C7 ﬂp+1+
+Cse, +1ﬁp+1+C55a Ry +C75aﬁp +Cse,) +1ﬁu
= 1'90{71, RN D45(i, pap1t Dlgajﬁl, pap1t Dlgojz—l, JERTE D4gojz, papn T
+Dig, app T D15a pap1 T D4‘9 Sip1t D1€a+l pp1 T D15a 1ppn T

+D4£a Silpsl T Dl alpp T D25a apap T Dega S-ipn T D25a+1p T

i j i i i i
D56, 1 gy + De€a pary + Dobpurpiapy + Dscorpua + Dré gy + Daona gy +
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+D3gojz—1,/3,u+l + D780Jz,/3,u+l + D3'9$+1,ﬂ,p+1 + Dsgojz—l,ﬁ,p + DSgolt,/i,u + D5‘9015+1,ﬁ,p (29)
Let the solution of eq. (29) at the grid point (x,,Y,z,,t;) be of the form:
501;,@“ _ é:jei(ﬂla+62/5’+63u) (30)

where =+/-1 , 6,,0,,0, are real phase angles and & is in general complex. Substituting eq.
(28) into eq. (27) and using Euler identity €'’ =cosé +isiné, after simplification we get:

Q 0 Q —Q
= 3
{5 e 7 o

where
Q, =8(y cosf, + B,)(a, cosb, + S, ) (a3 C0S6; + ;)
Q, =(@+2cosd)(1+2cosb,)(1+2cosb;)
8
Q= W(—czhzazrz%ﬂl cos b, + c*h?a 2% e, ) c0s 0, cos By — c*k2 ot a3, COS by +
o

+c’k?o 2% as B, c0s B, cos By — c2hZk2r2 B, B, + ¢2h2k?r2 3, B, COS bs +
+2h%k%5 2y 3, B, €08 05 + o (CPk 2% B, (—1+ €05 6,) + h2 B, (P2 (~1+ c0s 0,) + 2K B,)) s +
+k2ar, €080, (02 €08 35 (62 % (~1+ €03 6,) + 2h? 3, ) + cP 2% (—1+ cos 0,) 5 +
+h? B, (c%2% (—1+ cosby) + 252 3,)) + h? cos B, (C*k 2 (—1+ €O 6,) B, +
+020, €08 6 (€2 (—1+ €03 6,) + 2k%3,) + o2 (c?2? (—1+ €03 6,) + 2k 3,) 35 +
+k2ar, €08 0, (C22% (=14 €08 65) + 2052 (C0S Bz + 33))))

Now we find the amplification matrix of the scheme developed in eq. (17):

G:(Ql 0)‘1[@ —Qlj:
0 Q) (Q o

sin? & sin? %2 sin? % (32)
2-2¢%7% | | 2 + 2 +— 2 -
= h“(eycos6, + f) k“(a,c086, +f,) o (a3€080; + ;)
1 0
The following equation is satisfied by the eigenvalues of the matrix G:
A% —2bA+1=0 (33)
sin? & sin? %2 sin? %

hereb=1-c*7%| — + o +—
h®(eqcosé + f) k“(a,c086, + 5,) o (3086, + f3;)

Using the transformation 2 = (1 + z)/(1 — z), eq. (33) takes the form:
(2+b)z® +(2—-2b)=0 (34)
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The previous transformation is used to map a unit circle on the left side of the plane.
Therefore, the stability criterion 4] <1, will be satisfied, when |b| <1.

Numerical testing

A thorough discussion of the Sine Gordon equation is presented in this section. We
apply our proposed non-polynomial cubic spline methods and L, and L. errors are tabulated
in the table. The three-dimensional surface plot is also shown in the fig. 1.

Consider a 3-D linear Sine Gordon equation:

Ug =Uy +Uy, +U,, —sin(u), -500<(xy,z) <500, t>0 (35)

Along with the initial conditions:

u(x,y,z,0) = p(x,y,z) =4° tanl[ 2 sin («/i)sech(yx)}

«/1+ 1P

tanl{ﬁsin(«/i)sech(yy)}tan1|:\/1”_23in(\/i)sech(yz)}
+u +u

~2° 1 cosy[1— pt
t 1 ) 10 = 1 ) =
h h
sech(yx)(tan{;lsj;_(ﬂ'uzy)sin( 1—y2t)ﬂ{tanl{mjf+_(;z)sin( 1—;&)}]

2
e
1+ uz

)
sech (,uy)[tan‘1 [Wsin( 1- yzt)]}[tan‘l [Wsin( 1- ﬂzt)D

+ +

+

(
sech(yz)(tan‘{wem(ﬂx)sin( 1—y2t)J (tan‘{%sin( 1—y2t)B
+

1+ {ﬂsjlcr_(;z)sin( 1—y2t)J

Boundary conditions are determined from the exact solution.
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Analytic solution of the previously discussed problem is taken from [31]:

-tanl{ ol

u(x,y,z,t)=4° tanl{

\/1+y2

\/1+ #2
sin («/1— a )sech(yy):ltanl[

£ sin(«/l—yzt)sech(yx)}

Jl“_zsin(,/l—yzt)sech(yz)} @7)
+u

We applied our proposed method to provide a numerical solution for this problem
with £ =0.7. Tab. 1 represents the error estimation for different times, i.e., t =1, 2, 3, 4, and
5 through four various time steps. For space variables, three different step sizes
(h,k,o) =(75,75,75), (25,25,25) and (20,20,20) are picked to tabulate L and L., errors.
Each spacial step size has ‘11 x 11 x 11°, ‘21 x 21 x 21 and ‘24 x 24 x 24’ grid points. From
the table, L. error changes from 3.25(-2) to 3.02(-2) for 7 =0.1 and from 3.64(-2) to 3.24(—
2) for =0.001, if (h,k,o) changes from (75,75,75) to (20, 20, 20). It is observed that more
accurate values are obtained by minimizing the space steps rather than the time steps, which
causes less iteration and low time costs. Hence, our proposed method provides better results
in terms of error and time consumption, which provides the platform to discuss the linear Sine
Gordon equation.

Table 1. L2 —error and L« — error in the numerical solution of the example with ¢ = 0.7
and h =k =6 =75, 25 and 20 over the domain 0 <X, y, z <500

ko) |Tim £=0.001 r=001 £=005 z=0i1
e[t
L, L. L L. L L. L L.
1 | 407(2) | 364(2) | 4.03(2) | 3.61(2) | 3.85(-2) | 3.45(-2) | 3.63(-2) | 3.25(-2)
2 [1115¢1) | 9.97¢2) | 111¢1) | 9.93(2) | 1.09¢1) | 9.76(-2) | 1.067(-1) | 9.554(-2)
(75é7)5'7 3 | 1.228(-1) | 1.099(-1) | 1.227(-1) | 1.099(-1) | 1.224(-1) | 1.096(-1) | 1.22(-1) | 1.092¢-1)
4 | 378(-2) | 34(-2) | 382(2) | 343(-2) | 3.98(2) | 357(-2) | 4.17(-2) | 3.74(2)
5 | 868(2) | 7.75(2) | 8.64(2) | 7.71(2) | 843(:2) | 7.53(-2) | 8.19(-2) | 7.31(-2)
1| 381(2) | 341(2) | 3.77(-2) | 337(2) | 36(2) | 3.22(:2) | 3.38¢-2) | 3.03(-2)
2 | 9.93¢2) | 889(2) | 9.88(2) | 8.85(2) | 9.7(-2) | 8.69(-2) | 9.47(-2) | 8.48(-2)
25252 | 3 | 9.55(:2) | 856(-2) | 9.54(-2) | 857(-2) | 951(-2) | 855(-2) | 9.48(-2) | 8.52(-2)
R 4 | 58(3) | 47¢:3) | 37(3) | 24(3) | 24(3) | 1(-3) | 15(3) 6'8357('
5 | 1345(-1) | 1.2(-1) | 1.341(-1) | 1.198(-1) | 1.323(-1) | 1.181(-1 | 1.3(-1) | 1.16(-1)
1| 364(2) | 326(-2) | 36(-2) | 3.22¢2) | 3.43¢-2) | 3.07(:2) | 3.38(-2) | 3.02(-2)
(2062)0'2 2 | 917¢2) | 819(2) | 9.12(:2) | 8.17(-2) | 8.94(-2) | 8.20(-2) | 9.47¢-2) | 8.:39(-2)
3 | 7.86(-1) | 7.05(2) | 7.84(-2) | 7.07(:2) | 7.82¢2) | 7.06(-2) | 9.48(2) | 852(-2)
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Numerical solution at t = 0.5 with time step 0.05 Numerical solution at { = 1 with time step 0.05
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Figure 1. The surface plot for numerical solution at t = 0.5, 1, 3, 5 with different time steps

Conclusion

This research paper contains a new technique to solve the linear sine Gordon equa-
tion based on a non-polynomial cubic spline function to approximate the terms with space
variables. Second order time derivative term is approximated by central difference approxi-
mation. Suitable values for involved parameters give efficient numerical results. The dis-
cussed method brings the order of convergence of O(h? +k? + o2 +72h? + 7%k? + 2c%). This ac-
curacy could be increased up to order O(h® +k® +o® +2h? + %2 + z%c%) here. The numerical
problem is solved and compares these results with corresponding exact solutions. The given
domain is divided into three different subintervals such that N°®=11%, 21%3and24% Each set is
discussed for time steps z=0.1, 0.05, 0.01, and 0.001, respectively. Recon error shows that the
method proposed here, gives compatible and better approximation with low time cost. It justi-
fies the accuracy of this method, which is also easy to apply.
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