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This paper uses the Galerkin method to find approximate solutions of some 
boundary value problems. The solving process requires to solve a system of alge-
braic equations, which are large and difficult to be solved. According to the 
Groebner bases theory, an improved Buchberger's algorithm is proposed to solve 
the algebraic system. The results show that the Galerkin approach is simple and 
efficient. 
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Introduction 

With the rapid development of natural science, various kinds of analytical methods 

were used to handle non-linear problems arising in mathematical, mechanics, economics, 

management fields and so forth, the most advanced method is the homotopy perturbation 

method [1-7] and its various modifications, e.g., the reducing rank method [8], the higher-

order HMP [9], He-Laplace method [10], Li-He’s modification [11, 12]. Other famous meth-

ods include the variational iteration method and its modifications [13, 14], and Taylor series 

method [15]. The variational-based method is also very attractive [16, 17], the variational 

principle plays a key role in both numerical and analytical analyses of a practical problem [18, 

19], the idea of which is mainly reformulate the original equation as a variational problem and 

then to minimize the corresponding variational functional within a set of trial functions. 

Sometimes it is not used possibly due to the difficulty arising in establishing its variational 

formulation. When we apply mathematical methods to solve various practical problem, the 

simpler is the better [20, 21], though there are many advanced methods for theoretical analy-

sis of the non-linear behavior for a practical problem [22-25]. 

The Galerkin approach [26, 27] is more flexible than the variational approach be-

cause it is applicable to a broader range of problems, for example, when a variational refor-

mulation of the original equation is not possible. 
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Boundary value problems arise everywhere in engineering [28], the purpose of this 

paper is to give a demonstration of the application of the Galerkin method to some boundary 

value problems. 

Groebner bases 

In the following, we list the basic results of Groebner bases theory [29].  
Definition 1. Let f a x =   be a non-zero polynomial in 1[ , , ]nk x x  and let > be 

a monomial order. 

– The multidegree of f is: 

 0multideg ( ) = max( : 0)nf a    

(the maximum is taken with respect to >). 

– The leading coefficient of f is: 

 multideg( )LC( ) = ff a k  

– The leading monomial of f is: 

 
multideg ( )LM( ) = ff x  

(with coefficient 1). 

– The leading term of f is: 

 LT( ) = LC( )LM( )f f f  

Definition 2. Let 1, [ , , ]nf g k x x  be non-zero polynomials, 

– If multideg(f) =  and multideg(g) = β, then let 1( , , ),n  = , where max( , )i i  =  

for each i. We call xγ the least common multiple of LM(f) and LM(g), it can be written 
LCM[LM( ),LM( )].x f g =  

– The S-polynomial of f and g is the combination: 

 ( , )
LT( ) LT( )

x x
S f g f g

f g

 

= −  

Definition 3. Let 1[ , , ]nI k x x  be an ideal other than {0},  

– We denote by LT( )I  the set of leading terms of elements of I. Thus: 

 LT( ) = { : there exists with LT( ) = }I cx f I  f cx   

– We denote by LT( )I the ideal generated by the elements of LT( ).I  

Theorem 1. (Improved version of Buchberger's algorithm [29]) Let I = 1, , sf f  

be a polynomial ideal. Then a Groebner basis I can be constructed in a finite number of steps 

by the following algorithm: 

Input:  1( , , )sF f f=   

Output:  G, a Groebner basis for 1, , sI f f=  
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{initialization}  : ( , ) :1B i j i j s=     

:G F=  

:t s=  

{iteration} WHILE B    DO 

Select ( , )i j B  

IF LCM(LT( if ),LT( if ))  LT( if )LT( if ) AND 

Criterion ( , , )i jf f B is false THEN 

: ( , )
G

i jS S f f=   

IF 0S   THEN 

: 1; :tt t f S= + =   

: { }tG G f=   

: {( , ) :1 1}B B i t i t=   −   

: {( , )}B B i j= −   

Galerkin method for the ODE boundary value problems 

Consider the following example [30]:  

 '' 0y y x+ + =  (1) 

with the boundary conditions: 

 (0) 0, (1) 0y y= =  (2) 

where 'y  is the differentiation with respect to x. 

We choose a trial function satisfying all the boundary conditions: 

 ( ) ( 1) ( 1,2, )n
n x x x n = − =  (3) 

the approximate solution can be expressed: 

 
1 1

( ) ( 1)
n n

i
n i i i

i i

y x a a x x
= =

= = −   (4) 

Case 1. 1n =   

 1 ( 1)y ax x= −  (5) 

where a is an unknown constant to be further determined. 

Substituting (5) into the following Galerkin equation: 

 

1

1

0

d 0iG x =  (6) 

where '' ( 1,2, , ).i i iG y y x i n= + + =  From eq. (6), we obtain: 

  
1 3

0
12 10

a
− − =  (7) 

and we have 5/18,a = −  and the first-order approximate solution of eq. (1) is: 



Tian, Y., et al.: Galerkin Approach to Approximate Solutions of … 
1960 THERMAL SCIENCE: Year 2023, Vol. 27, No. 3A, pp. 1957-1964 

 1

5
( 1)

18
y x x= − −  (8) 

Case 2. 2n =   

 
2

1 ( 1) ( 1)y ax x bx x= − + −  (9) 

where ,a b  are unknown constants to be further determined. 

Substituting (9) into the following Galerkin equation: 

 

1

2

0

d 0iG x =  (10) 

where 1 2{ , }.i    From eq. (10), we obtain: 

 

1 3 3
0

12 10 20

1 3 13
0

20 20 105

a b

a b

− − − =

− − − =

 (11) 

and we have 71/369, 7/41,a b= − = −  and the second-order approximate solution of eq. (1) is: 

 2
2

71 7
( 1) ( 1)

369 41
y x x x x= − − − −  (12) 

Case 3. 3n =   

 
2 3

1 ( 1) ( 1) ( 1)y ax x bx x cx x= − + − + −  (13) 

where , ,a b c  are unknown constants to be further determined. 

Substituting (13) into the following Galerkin equation: 

 

1

3

0

d 0iG x =  (14) 

where 1 2 3{ , , }.i     From eq. (14), we obtain: 

 

1 3 3 19
0

12 10 20 210

1 3 13 79
0

20 20 105 840

1 19 79 103
0

30 210 840 1260

a b c

a b c

a b c

− − − − =

− − − − =

− − − − =

 (15) 

Equation (15) seems to be large and difficult to solve by hand, even by software, 

such as MAPLE and MATLAB. In this paper, we use an improved version of Buchberger’s 

algorithm to solve this problem. 

Let I be the ideal: 

 
1 3 3 19 1 3 13 79 1 19 79 103

, , [ , , ]
12 10 20 210 20 20 105 840 30 210 840 1260

a b c a b c a b c
I k a b c= − − − − − − − − − − − −  (16) 

corresponding to the system of eq. (15), and we want to find all points in ( ).IV  
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Using the improved version of Buchberger’s algorithm with the lexicographic order 

,a b c   we find the reduced Groebner basis: 

 

1

2

3

7 299

2380 12259

13811 73554

g c

g b

g a

= − +

= +

= +

 (17) 

thus, from 1 2 3 0,g g g= = =  we have: 

 1 2 3

13811 2380 7
( ) ( , , ) , ,

73554 12259 299
I g g g a b c

 
= = = − = − = 

 
V V  (18) 

and the third-order approximate solution of eq. (1) is: 

 2 3
3

13811 2380 7
( 1) ( 1) ( 1)

73554 12259 299
y x x x x x x= − − − − + −  (19) 

Galerkin method for the partial differential equation  

boundary value problems 

Consider the following example:  

 
2

tt xxu u u x t− + = +

 

(20) 

with the boundary conditions: 

 (0, ) (1, ) ( ,0) ( ,1) 0u t u t u x u x= = = =  (21) 

We choose a trial function satisfying all the boundary conditions: 

 ( ) ( 1) ( 1) ( 1,2, )n
n x x x t t n = − − =

 

(22) 

the approximate solution can be expressed: 

 
1 1

( , ) ( 1) ( 1)
n n

i
n i i i

i i

u x t a a x x t t
= =

= = − −   (23) 

Case 1. 1n =   

 1 ( 1) ( 1)u ax x t t= − −  (24) 

where a is a unknown constant to be further determined. 

Substituting (24) into the following Galerkin equation: 

 

1 1

1 1

0 0

d d 0G x t =   (25) 

where
2( ) ( ) ( ) , ( 1,2, ).i i tt i xx iG u u u x t i= − + − − =  From eq. (25), we obtain: 

 
1

( 20 ) 0
900

a− + =  (26) 

and we have 20,a =  and the first-order approximate solution of eq. (20) is: 

 1 20 ( 1) ( 1)u x x t t= − −  (27) 
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Case 2. 2n =   

 
2

2 ( 1) ( 1) ( 1) ( 1)u ax x t t bx x t t= − − + − −  (28) 

where ,a b  are unknown constants to be further determined. 

Substituting (28) into the following Galerkin equation: 

 

1 1

2

0 0

d d 0iG x t =   (29) 

where 1 2{ , }.i    From eq. (29), we obtain: 

 

40 2
0

1800

315 14 40
0

25200

a b

a b

− + +
=

− + +
=

 (30) 

and we have 1285/66, 35/33,a b= =  and the second-order approximate solution of eq. (20) is: 

 2
2

1285 35
( 1) ( 1) ( 1) ( 1)

66 33
u x x t t x x t t= − − + − −  (31) 

Case 3. 3n =   

 
2 3

3 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)u ax x t t bx x t t cx x t t= − − + − − + − −  (32) 

where a, b, and c are unknown constants to be further determined. 

Substituting (32) into the following Galerkin equation: 

 

1 1

3

0 0

d d 0iG x t =   (33) 

where 1 2 3{ , , }.i     From eq. (33), we obtain: 

 

280 14 7 6
0

12600

315 14 40 39
0

25200

205 12 39 42
0

25200

a b c

a b c

a b c

− + + +
=

− + + +
=

− + + +
=

 (34) 

Let I be the ideal: 

280 14 7 6 315 14 40 39 205 12 39 42
, , [ , , ]

12600 25200 25200

a b c a b c a b c
I k a b c

− + + + − + + + − + + +
=   (35) 

corresponding to the original system of eq. (34), using the improved version of Buchberger’s 

algorithm with the lexicographic order ,a b c   we find the reduced Groebner basis: 

 

1

2

3

490 27

5705 297

10795 594

g c

g b

g a

= +

= − +

= − +

 (36) 
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thus,  

 1 2 3

10795 5705 490
( ) ( , , ) , ,

594 297 27
I g g g a b c

 
= = = = = 

 
V V  (37) 

and the third-order approximate solution of eq. (20) is 

 2 3
3

10795 5705 490
( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

594 297 27
u x x t t x x t t x x t t= − − + − − + − −  (38) 

Conclusions 

In this paper, we use Galerkin method to solve some boundary value problems. The 

solving process requires to solve a system of algebraic equations, which are large and difficult 

to solve by hand, the Groebner bases theory (the improved version of Buchberger's algorithm) is 

applied to solve this problem, which gives the smallest Groebner basis. In the future, we will try 

do some improvements on the Buchberger’s algorithm [29, 31] for computing Groebner bases. 
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