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Introduction 

Fractional differential equations (FDE) have been widely applied in computer sci-

ence and engineering areas, including physics, fluid dynamics, biology, finance, and thermo-

dynamics. For examples, fractional advection-reaction-diffusion [1], fractional wave travel-

ling [2-6], fractional population dynamics [7], fractional economy [8], and fractional thermo-

dynamics [9]. Generally, FDE can be given by the modifications of the classical differential 

equations with the fractional time or space derivatives. Due to the non-local property of frac-

tional derivatives, FDE can be used to model the non-linear physical phenomena that depend 

on the time instant and the time history [10, 11]. In past three decades, Burgers-type equations 

and their fractional modification equations have attracted much attention. In [12, 13], 1-D 

Burgers equations was used to describe the transport process of turbulence and flow in vis-

cous fluid. The coupled Burgers equation (CBE) proposed by Esipov can be seen as a mathe-

matical model of sedimentation or evolution of scaled volume concentrations of two kinds of 

particles in fluid suspensions or colloids, under the effect of gravity [14, 15]. There are also 

some modifications of 1-D Burgers or coupled Burgers equations, such as KdV-Burgers equa-

tion and 2-D Burgers equation [16, 17]. In real applications, the time or space fractional de-

rivatives are suggested to modify these Burgers-type equations. Yildirim and Kelleci [18] 

studied the numerical behavior of CBE with time or space fractional derivatives by HPM. Al-

buohimad and Adibi [19] considered the time-fractional coupled Burgers equations by using a 

hybrid spectral exponential Chebyshev method. Fractional homotopy analysis transform 

method was presented [20] for the coupled system of non-homogeneous Burgers’ equations 

with time fractional derivatives. Numerical approximations to the non-linear time-fractional 

coupled Burger’s equations were given by the homotopy perturbation Sumudu transform 

method [21].  
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In this paper, we will consider the time fractional Burgers-type equations with He’s 

fractional derivative [11] as an example to investigate the numerical behavior and physical 

meaning of FDE. We will focus on the fractional modification of 1-D Burgers equation and 

the coupled Burgers equation, which can be formulated. 

(P1) Time fractional 1-D Burgers equation: 

 D ( , ) 0t x xxu x t uu u  + − =   (1) 

where γ and μ are two arbitrary constants.  

(P2) Time fractional coupled Burgers equation: 
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where the fractional order a and β are two constants satisfying 0 , 1.    Here 

( )/( )u t    is defined by He’s fractional derivative [11]: 
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with a constant 1n n−    and a known function 0 ( , ).u x t  When a = 1, eq. (1) reduces to 

the classical 1-D Burgers equation [12, 13]. One can also obtain the coupled Burges equation 

when a = β = 1 [14, 15].  

Motivated by the improvements in [18-22], we are interested in the efficient tech-

nique for solving the fractional Burgers-type equations. We consider He-Laplace method [23, 

24] for the fractional problems (1) and (2). He-Laplace method is a modification of the HPM 

[25-28], and the couple of the Laplace transform makes the solving process much easier and 

simpler. In literature, the method was also called as the homotopy perturbation transform 

method [29] or Laplace HPM [30]. Numerical solutions to the time fractional eqs. (1) and (2) 

are given without any linearization or complicated computation. Numerical examples related 

with two initial value problems are presented to show the efficiency of He-Laplace method. 

The basic idea of He-Laplace method 

For clarity, we illustrate the basis ideas of He-Laplace method. Consider the follow-

ing non-linear partial differential equation: 

 D ( , ) ( , ) ( , ) ( , )t u x t Ru x t Nu x t f x t + + = , ( ,0) ( )u x g x=   (4) 

where ( , )tD u x t  is defined by He’s fractional derivative (3), R and N are two differential op-

erators which represent the linear and non-linear parts, respectively, and ( , )f x t  – a given 

non-linear function [22-24]. 

The first difficulty of (4) lies in the non-linear and fractional operator D ( , ).t u x t
 We 

apply the Laplace transformation to release this problem. Consider the Laplace transformation 

on the both sides of (4): 

 [D ( , )] [ ( , )] [ ( , )] [ ( , )]tL u x t L Ru x t L Nu x t L f x t + + =   
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Together with the property of Laplace transformation and the initial condition, we 

have: 

 
( ) 1 1

[ ( , )] [ ( , )] [ ( , )] [ ( , )]
g x

L u x t L f x t L Ru x t L Nu x t
s s s 

= + −  +   (5) 

We further consider the inverse Laplace transform ( 1L− ) on (5), and obtain the fol-

lowing results: 

 1 1
( , ) ( , ) [ ( , )] [ ( , )]u x t G x t L L Ru x t L Nu x t

s
−  

= −  +  
 

  (6) 

where ( , )G x t  is defined by ( , )f x t  and ( ).g x  

The second issue of He-Laplace method is based on the HPM [24-28]. By HPM, one 

can construct the homotopy for (6): 

 1 1
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Assume that the exact solution to (4) can be given by: 
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Substituting (8) into (7) and collecting the same powers of p, we can obtain the non- 

-linear system with respect to p-term. By solving the non-linear equations, we can have the 

sub-solutions, and formulate the approximated solution: 
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He-Laplace method for time fractional  

Burgers-type equations 

We first consider the time fractional 1-D Burgers eq. (1) with the initial condition: 

 
2

( ,0) tanh( )
c

u x x


 
= +   (10) 

where c is an arbitrary constant. Notice that the exact solution to the initial value problem (1) 

with a = 1 is given by [16]: 

 
2

( , ) tanh( )
c

u x t x ct


 
= + −  (11) 

According to He-Laplace method, we can construct the following homotopy for (1): 

 1 1
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Assume that the solutions to (1) can be defined by: 
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We substitute (13) and (12) into the homotopy, and collect the coefficient related 

with the p-term, which results in the following system: 

 1 1
1 0 0 0

1
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s
 −  

= − + 
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It is easy to obtain the approximation solutions: 
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Then we have the third order approximation by 0 1 2 3ˆ .u u u u u= + + +  We remark 

that the higher order solutions can be given in a similar manner. 

Analysis of time fractional CBE 

We then consider the time fractional CBE (2) with the following initial condition: 

 ( ,0) ( ,0) sin( )u x v x x= =  (14) 

When the fractional derivative is defined in the Liouville-Caputo sense with , =  

eq. (2) reduces to the time fractional CBE [30].  

By He-Laplace method, the homotopy for (2) can be formulated by: 
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Similar to the technique for time fractional 1-D Burgers equation, we have the fol-

lowing system with respect to p-term: 
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It is easy to obtain the sub-solutions ui and vi. For clarity, we list the approximation 
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Then we have the following third order approximations by 0 1 2 3û u u u u= + + +  and 

0 1 2 3ˆ .v v v v v= + + +  When 1, = =  the approximations reduce to the following solutions: 

 2 31 1
sin( ) 1

2
ˆ ˆ

6
u v x t t t

 
= = − + − 

 
 (19) 

Obviously,  we can obtain the exact solution sin( ) tu v x e−= =  when n→  [16].  

Numerical results 

In this section, we consider the initial value problems associated with the time frac-

tional differential eqs. (1) and (2). Numerical results are presented to illustrate the effective-

ness of He-Laplace method. 

We first apply He-Laplace method for the time fractional 1-D Burgers eq. (1). The 

parameters γ = 1, μ = 0.01, and c = 0.1 are set in this example. For comparison, the third order 

approximation û  and the exact solution ( , )u x t  are presented in fig. 1. Numerical results 

show that the approximated solution agrees well with the exact solution. We further test the 

numerical behavior of eq. (1) with different a. Figure 2 plots the curves of the approximated 

solutions with a = 0.1, 0.3, 0.5, and 0.8. 

 

Figure 1. Comparisons of û  and u(x,t) for (1) with a = 1 

 

Figure 2. Numerical behavior of û  with different a; (a) x = 0 and  (b) x = 1 

We then test He-Laplace method for the time fractional CBE (2) with different frac-

tional order a. The comparisons between the third order approximation ˆ ˆu v=  and the exact 

solution ( , )u x t  for the classical CBE (2) are shown in fig. 3, which implies that He-Laplace 
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performs well for CBE (2) with a = 1. The numerical results for the time fractional CBE (2) 

are presented in figs. 4 and 5. Figures 4(a) and 4(b) plot the approximated solutions û  and v̂  

for (2) with a = 0.3 and b = 0.5, respectively. In order to further consider the physics behind 

the time fractional CBE, we also give the curves of the approximated solutions with different 

a at x = 5 and x = 10. Notice that the fractional order a = b is used in fig. 5, and the solutions 
v̂  is equal to ˆ.u  The curve of the approximations tends to x-axis as the value of a becomes 

small, which implies the complexity of the propagation process. 

 
Figure 3. Compared results of û  and u(x, t) for (2) with a = 1 

 
Figure 4. Numerical behavior of û  and v̂  for (2) with a = 0.3 and b = 0.5 

 

Figure 5. Propagation curves of û  with different a; (a) x = 5 and (b) x = 10 
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Conclusion 

This paper provided He-Laplace method for solving the initial value problems asso-

ciated with the time fractional Burgers equations. Numerical results confirm its efficiency. In 

the future work, we will extend this approach to other fractional differential equations for con-

trol and oscillator systems [31-37], and its potential application in machine learning [38-40] is 

also very much promising.  
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