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In this article, we mainly consider a modification of the high-order long water-wave 
equation with unsmooth boundaries by adopting a new fractal derivative. Its fractal 
variational principles are successfully constructed by the fractal semi-inverse meth-
od, the obtained principles are helpful to study the symmetry, to discover the con-
served quantity, and to have wide applications in numerical simulation. 
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Introduction  

Non-linear differential equations are extensively used to represent various curious 

phenomena engendering in biology, physics, thermodynamics, mechanics, chemistry, electro-

spinning and other fields, for examples, KdV-type equations [1, 2], Harry Dym equations [3], 

Klein-Gordon equation [4], and KdV-Burgers-Kuramoto equation [5]. Non-linear equations 

have attractive properties, such as chaos and bifurcation [6, 7]. The non-linear rule-based con-

troller [8], synchronization [9], chaos suppression control [10], design of extended backstep-

ping sliding mode controller [11] and extremum-seeking control technique [12] are the main 

mathematics tools in non-linear science. Non-linear differential models can be derived by 

Newton’s laws or the variational theory, but not each problem has a variational formulation, 

for example, the well-known Navier-Stokes equations have not a variational principle [13]. It 

is an inverse problem of the calculus of variations to search for a suitable variational formula-

tion from a differential equation model, and it is extremely difficult for this inverse problem. 

In this paper, we employ He’s semi-inverse method [14-16] to set up fractal variation-

al principles for a subsequent higher-order long water-wave equations (HOLWWE). The varia-

tional formulations are profitable to learn the symmetry, to find the conserved quantity, and to 

have a broad applications in both numerical simulation methods and analytical methods.  

The non-linear coupled HOLWWE are provided [17]: 

 
2

2
0

t x x x

   
 

   
− − + =

   
  (1) 

–––––––––––––– 
* Author’s, e-mail: sunjianshe@126.com 



Sun, J.: Variational Principle for Fractal High-Order Long … 
1900 THERMAL SCIENCE: Year 2023, Vol. 27, No. 3A, pp. 1899-1905 

 
2

2

( )
0

t x x

  


  
− − =

  
  (2) 

When λ = 1/2, eqs. (1) and (2) were discussed in [18], but the fractals variational 

principles for the investigated problem has not been dealt with in any literature. 

When HOLWWE with unsmooth boundaries, the fractal derivative will be employed 

to represent the model: 
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where t   and x   are He’s fractal derivatives with regard to t and ,x  respec-

tively, and they are delimited [19-21]: 
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where x  is the smallest spatial scale of the discontinuous boundaries and t  – the smallest 

time scale for studying fractal FHOLWWE. Recently the solitary waves travelling along an 

unsmooth boundary has been caught much attention, and a new branch of mathematics was 

born, that is the fractal solitary theory [22-24], which is to study the solitary wave properties 

in a fractal space, and some attractive findings were found, for example, the unsmooth bound-

ary can greatly affect the travelling velocity, but it rarely affects its shape of the solitary wave 

[23]. Tian et al. [25-27] found that the instability of a micro-electromechanical system in a 

fractal dimension space is totally different from that in a smooth space.  

Now the fractal derivatives are extensively used in a discontinuous problems, the 

two-scale fractal is simple but effective for many practical problems [28], for examples, frac-

tal vibration theory [29-33], fractal population model [34], and fractal economics [35].  

 

Fractals variational principles for HOLWWE 

The variational principle plays a crucial role in mathematics and physics, owing to 

the variational formula demonstrates the possible conservation rule of energy and solution 

structure. Wang et al. [36] set-up a variational formulation for wave traveling in fractal space. 

Wang and He [37] extended Wang's variational principle to fractal space/time, Wang and He 

[38] found that the variational method is effective to two-point boundary value problems, and 

the variational theory is the mathematical tool to identification of the Lagrange multiplier in-

volved in the variational iteration algorithm [38], furthermore, the variational-based algorithm 

is widely used to imaging processing [39-43]. In this paper, by means of He's semi-inverse 

method [14-16], the fractal variational principles of HOLWWE are originated.  
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We rewrite eqs. (3) and (4) in conservation forms: 
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In the light of eqs. (3) or (4), we can recommend a special function   conformed 

to: 
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Analogously, from eq. (4) or (8), we can introduce another special function   de-

fined: 
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Our goal in this work is to build some variational formulations whose stationary 

conditions content eqs. (3), (11) or (4), (9), and (10). For this reason, we will apply He’s semi-

inverse method [14-16] to build a trial functional: 

 ( , , ) d dJ L x t    =    (13) 

where L is a trial Lagrangian defined: 
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where F is an unknown function of ,   and/or their derivatives. The superiority of the trial 

Lagrangian is that the stationary condition with respect to   is one of the governing eqs. (8) 

or (4). 

Computing aforementioned eq. (13) stationary with respect to   and ,  we acquire 

the following Euler-Lagrange equations: 
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where /F   is a known He’s variational derivative [44] with respect to ,  which was sug-

gested by He [44], who gave the following definition: 
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We look for such an F so that eq. (15) is equivalent to eq. (9), and eq. (16) is equiva-

lent to eq. (10). So in view of eqs. (9) and (10), we put up: 
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From eq. (18), the unknown F can be calculated accurately: 
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Ultimately, we gain the following required variational principle: 
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Proof. Making the aforementioned eq. (20) stationary with respect to ,  and ,  

we acquire the following Euler-Lagrange equations: 
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Equation (21) is equivalent to eq. (8), and eq. (22) is equivalent to (10), in view of 

(10), eq. (23) becomes eq. (9).  

Analogously, we can also start with the following trial Lagrangian: 
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It is apparent that the stationary condition with respect to  is equal to eq. (7) or eq. 

(3). Now the Euler-Lagrange equations with regard to  and ,  are: 
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Considering eqs. (11) and (12), we gain: 
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In light of eq. (26), the unknown function ( , )H    can be determined: 
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As a result, we acquire another needed variational formulation: 
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Conclusion 

Zhang [17] has constructed variational formulations for HOLWWE in a continuous 

space. In this work, we successfully extend HOLWWE into a fractal HOLWWE based on 

He’s fractal derivative, and establish fractal variational principles. The obtained fractal varia-

tional principles have been proved to be correct by minimizing the corresponding functionals. 

The paper also reveals that the semi-inverse method is influential and straightforward. 
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