APPROXIMATE ANALYTICAL SOLUTIONS FOR A CLASS OF GENERALIZED PERTURBED KdV-BURGERS EQUATION

by

Shuxian DENG ${ }^{a}$ and Zihao DENG ${ }^{b^{*}}$
${ }^{\text {a }}$ Department of Basic Science, Zhengzhou Shengda University, Xinzheng, China
${ }^{\mathrm{b}}$ International College, Krirk University, Bangkok, Thailand
Original scientific paper
https://doi.org/10.2298/TSCI2303881D

In this paper, we establish an efficient algorithm for solving a class of generalized perturbed $K d V$-Burgers equation with conformable time fractional derivative and He's space fractal derivative. An illustrative example is presented.
Key word: the generalized perturbed KdV-Burgers equation,
Adomian decomposition method, He's space fractal derivative, the conformable fractional derivative,

Introduction

Many physical phenomena in the natural and engineering sciences can be modelled by non-linear PDE. The classical perturbed Burgers equation appears in the study of gas dynamics and also in free surface motion of waves in heated fluids [1-3]. In recent years, the nonlinear differential equations with fractional derivative have gained considerable importance due to their varied applications in different fields of applied sciences [4, 5]. Several authors have investigated the non-linear PDE involving conformable fractional derivative [6, 7]. The derivative satisfies almost all the classical properties that the derivative holds, and was successfully applied to many problems [8-10]. In classic mechanics, we always assume that the space is continuous. But, if we study the phenomena in fractal media, the fractal derivative has to be used [11, 12]. Explanation of the two-scale fractal theory is available in [13, 14]. The fractal derivative can model porous medium problems, for examples, N/MEMS system in a porous space [15], porous heat transfer [16], non-linear vibration systems in a porous medium [17-19], thermal oscillation [20], fractal population dynamics [21], fractal economical dynamics [22], and fractal solitary theory [23, 24].

In this work, we study the following generalized perturbed Burgers equation in fractal media:

$$
\begin{equation*}
\mathrm{D}_{t}^{\alpha} u=\left(k_{1} u+k_{2} u^{2}\right) \frac{\partial u}{\partial x^{\beta}}+\left(k_{3} u+k_{4}\right) \frac{\partial u}{\partial x^{2 \beta}}+k_{5} \frac{\partial u}{\partial x^{3 \beta}}+k_{6}\left(\frac{\partial u}{\partial x^{\beta}}\right)^{2} \tag{1}
\end{equation*}
$$

subject to:

$$
\begin{equation*}
u(x, 0)=f\left\lfloor\frac{x^{\beta}}{\Gamma(1+\beta)}\right\rfloor \tag{2}
\end{equation*}
$$

[^0]where $0<\alpha, \beta \leq 1$, and $k_{i}(i=1, \cdots, 6)$ are constants, D_{t}^{α} - the time conformable fractional derivative [6, 7], and $\partial /\left(\partial x^{\beta}\right) \mathrm{D}_{t}^{\alpha}-$ the He's space fractal derivative [14].

In general, there exists no method that yields an exact solution for eqs. (1) and (2). So such problems must be solved by approximate analytical methods. These methods include the direct algebraic method [25-27], the tanh-function method [28], variational iteration method [29, 30], Jacobi elliptic function method [31], homotopy perturbation method [32-34], Adomian decomposition method [35, 36], the differential transform method [37], and fractional power series method [38].

The main goal of this work is to solve a class of generalized perturbed KdV-Burgers equation with conformable fractional derivative.

Conformable fractional derivative

In this section, we review some basic definitions and properties of conformable fractional calculus theory, for more details see [6, 7].

Definition 1. Let $\alpha \in(0,1)$ and $f:[0, \infty) \rightarrow R$. The conformable fractional derivative of J of order α is defined by:

$$
\begin{equation*}
\mathrm{D}_{t}^{\alpha} f(t)=\lim _{\varepsilon \rightarrow 0} \frac{f\left(t+\varepsilon t^{1-\alpha}\right)-f(t)}{\varepsilon} \tag{3}
\end{equation*}
$$

for all $t>0$. Often, we write $f^{(\alpha)}$ instead of $\mathrm{D}_{t}^{\alpha} f(t)$ to denote the conformable fractional derivative of f of order α. If the conformable fractional derivative of f of order α exists, then we simply say that f is α-differentiable. If $f(x)$ is α-differentiable in some $t \in(0, a), a>0$, and $\lim _{t \rightarrow 0^{+}} f^{(\alpha)}(t)$ exists, then we define:

$$
\begin{equation*}
f^{(\alpha)}(0)=\lim _{t \rightarrow 0^{+}} f^{(\alpha)}(t) \tag{4}
\end{equation*}
$$

Theorem 1. If a function $f(x):[0, \infty) \rightarrow R$ is α-differentiable at $t_{0}>0$, then f is continuous at t_{0}.

Theorem 2. Let $\alpha \in(0,1]$ and assume f, g to be α-differentiable. Then:

$$
\begin{gather*}
\mathrm{D}_{t}^{\alpha}(a f+b g)=a \mathrm{D}_{t}^{\alpha} f+b \mathrm{D}_{t}^{\alpha} g, \quad \text { for all } \quad a, b \in R \tag{5}\\
\mathrm{D}_{t}^{\alpha}(f g)=g \mathrm{D}_{t}^{\alpha} f+f \mathrm{D}_{t}^{\alpha} g \tag{6}\\
\mathrm{D}_{t}^{\alpha} \frac{f}{g}=\frac{g \mathrm{D}_{t}^{\alpha} f-f \mathrm{D}_{t}^{\alpha} g}{g^{2}} \tag{7}
\end{gather*}
$$

If $f(x)$ is differentiable at a point $t>0$, then we have:

$$
\begin{equation*}
\mathrm{D}_{t}^{\alpha} f(t)=t^{1-\alpha} \frac{\mathrm{d} f}{\mathrm{~d} t} \tag{8}
\end{equation*}
$$

Remark. If one considers a function that is not differentiable at a point t, then the conformable derivative is not $t^{1-\alpha} f^{\prime}(t)$.

Definition 2. Let $\alpha \in(0,1)$ and $f:[0, \infty) \rightarrow R$. The conformable fractional integral of f of order α from a to t, denoted by ${ }_{a} I_{t}^{\alpha}(f)$, is defined by:

$$
\begin{equation*}
{ }_{a} I_{t}^{\alpha}(f)=\int_{a}^{t} \tau^{\alpha-1} f(\tau) \mathrm{d} \tau=\int_{a}^{t} f(\tau) \mathrm{d}_{\alpha} \tau \tag{9}
\end{equation*}
$$

where the integral is usual improper Riemann integral.
Definition 3. Let $\alpha \in(0,1)$ and $f:[0, \infty) \rightarrow R$ be real valued function. Then the fractional Laplace transform of J is defined by:

$$
\begin{equation*}
L_{\alpha}[f(t)](s)=\int_{0}^{\infty} \exp \left(-s \frac{t^{\alpha}}{\alpha}\right) f(t) \mathrm{d}_{\alpha} t \tag{10}
\end{equation*}
$$

It is easy to show that:

$$
\begin{gather*}
L_{\alpha}\left[\mathrm{D}_{t}^{\alpha} f(t)\right](s)=s L_{\alpha}[f(t)]-f(0) \tag{11}\\
L_{\alpha}\left(t^{C}\right)(s)=\alpha^{\frac{C}{\alpha}} \frac{\Gamma\left(1+\frac{C}{\alpha}\right)}{s^{1+\frac{C}{\alpha}}} \text { where } C \text { is a constant } \tag{12}
\end{gather*}
$$

Adomian decomposition method

The Adomain decomposition method (ADM) [35, 36] is a technique for solving non-linear equations in the form:

$$
\begin{equation*}
u(x, t)=v+\Omega(u) \tag{13}
\end{equation*}
$$

where $\Omega: \mathrm{M} \rightarrow \mathrm{M}$ is a non-linear mapping from a Banach space M into itself and $v \in \mathrm{M}$ is known.

The ADM assumes that the solution u can be expanded as an infinite series:

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} u_{n}(x, t) \tag{14}
\end{equation*}
$$

and the non-linear term $\Omega(u)$ can be decomposed as:

$$
\begin{equation*}
\Omega\left(\sum_{n=0}^{\infty} u_{n}\right)=\sum_{n=0}^{\infty} H_{n}(u) \tag{15}
\end{equation*}
$$

for some He's polynomials [39] $H_{n}(u)$ that are given by:

$$
\begin{equation*}
H_{n}\left(u_{0}, u_{1}, \cdots, u_{n}\right)=\frac{1}{n!} \frac{\partial^{n}}{\partial \lambda^{n}}\left[\Omega\left(\sum_{k=0}^{n} \lambda^{k} u_{k}\right)\right]_{\lambda=0}, \quad n=0,1,2, \cdots \tag{16}
\end{equation*}
$$

Substituting eqs. (14) and (15) into eq. (13) gives:

$$
\begin{equation*}
\sum_{n=0}^{\infty} u_{n}=v+\sum_{n=0}^{\infty} H_{n} \tag{17}
\end{equation*}
$$

which is satisfied formally if we set:

$$
u_{0}(x, t)=v
$$

$$
\begin{gathered}
u_{1}=H_{0} \\
u_{m+1}=H_{m}
\end{gathered}
$$

Then k-term approximate solution of eq. (12) is given by:

$$
u=u_{0}+u_{1}+\cdots+u_{k-1}
$$

The solutions of problem (1) and (2)

In this section, we derive the main algorithms for solving the problem (1) and (2).

We rewrite the eq. (1) as:

$$
\begin{equation*}
\mathrm{D}_{t}^{\alpha} u(x, t)=P(u)+\sum_{j=1}^{4} N_{j}(u) \tag{18}
\end{equation*}
$$

where

$$
\begin{gathered}
P(u)=k_{4} \frac{\partial u}{\partial x^{2 \beta}}+k_{5} \frac{\partial u}{\partial x^{3 \beta}} \\
N_{1}(u)=k_{1} u \frac{\partial u}{\partial x^{\beta}} \\
N_{2}(u)=k_{2} u^{2} \frac{\partial u}{\partial x^{\beta}} \\
N_{3}(u)=k_{3} u \frac{\partial u}{\partial x^{2 \beta}} \\
N_{4}(u)=k_{6}\left(\frac{\partial u}{\partial x^{\beta}}\right)^{2}
\end{gathered}
$$

Taking the fractional Laplace transform [40] on both sides of eq. (18), we obtain:

$$
L_{\alpha}\left[\mathrm{D}_{t}^{\alpha} u(x, t)\right]=L_{\alpha}\left\lfloor P(u)+\sum_{j=1}^{4} N_{j}(u)\right\rfloor
$$

Using eq. (11), we have:

$$
\begin{equation*}
L_{\alpha}(u)=\frac{1}{s} u(x, 0)+\frac{1}{s}\left\{L_{\alpha}[P(u)]+L_{\alpha}\left\lfloor\sum_{j=1}^{4} N_{j}(u)\right\rfloor\right\} \tag{19}
\end{equation*}
$$

Operating with the fractional Laplace inverse transform on both sides of eq. (19) gives:

$$
\begin{equation*}
u(x, t)=u(x, 0)+L_{\alpha}^{-1}\left(\frac{1}{s}\left\{L_{\alpha}[P(u)]+L_{\alpha}\left\lfloor\sum_{j=1}^{4} N_{j}(u)\right\rfloor\right\}\right) \tag{20}
\end{equation*}
$$

Suppose that the solutions take the form:

$$
u(x, t)=\sum_{k=0}^{\infty} u_{k}(x, t)
$$

and the non-linear terms can be decomposed as:

$$
N_{j}(u)=\sum_{n=0}^{\infty} H_{j n}, \quad(j=1,2,3,4)
$$

where $H_{j n}(j=1,2,3,4)$ are some He's polynomials. By eq. (16), we can get:

$$
\begin{gathered}
H_{10}=k_{1} u_{0} \frac{\partial}{\partial x^{\beta}} u_{0} \\
H_{20}=k_{2} u_{0}^{2} \frac{\partial}{\partial x^{\beta}} u_{0} \\
H_{30}=k_{3} u_{0} \frac{\partial}{\partial x^{2 \beta}} u_{0} \\
H_{40}=k_{6}\left(\frac{\partial}{\partial x^{\beta}} u_{0}\right)^{2} \\
H_{11}=k_{1}\left(u_{0} \frac{\partial u_{1}}{\partial x^{\beta}}+u_{1} \frac{\partial u_{0}}{\partial x^{\beta}}\right) \\
H_{21}=k_{2}\left(u_{0}^{2} \frac{\partial u_{1}}{\partial x^{\beta}}+2 u_{0} u_{1} \frac{\partial u_{0}}{\partial x^{\beta}}\right) \\
H_{31}=k_{3}\left(u_{0} \frac{\partial u_{1}}{\partial x^{2 \beta}}+u_{1} \frac{\partial u_{0}}{\partial x^{2 \beta}}\right) \\
H_{41}=k_{6}\left(2 \frac{\partial}{\partial x^{\beta}} u_{0} \frac{\partial}{\partial x^{\beta}} u_{1}\right)
\end{gathered}
$$

and so on.
Therefore, by using the ADM, we have:

$$
\begin{gather*}
u_{0}(x, t)=u(x, 0) \tag{21}\\
u_{1}(x, t)=L_{\alpha}^{-1}\left(\frac{1}{s}\left\{P\left[L_{\alpha}\left(u_{0}\right)\right]\right\}+\sum_{j=1}^{4} L_{\alpha}\left(H_{j 0}\right)\right) \tag{22}\\
u_{m+1}(x, t)=L_{\alpha}^{-1}\left(\frac{1}{s}\left\{P\left[L_{\alpha}\left(u_{m}\right)\right]\right\}+\sum_{j=1}^{4} L_{\alpha}\left(H_{j m}\right)\right) \tag{23}
\end{gather*}
$$

where $m=1,2,3, \cdots$.

Then k-term approximate solutions of eq. (18) are given by:

$$
u=u_{0}+u_{1}+\cdots+u_{k-1}
$$

To illustrate the above algorithms and to test its effectiveness, we consider the following example.

Example. Consider the problem (1) and (2) in the form:

$$
\begin{equation*}
\mathrm{D}_{t}^{\alpha} u=\left(-u+\frac{1}{2} u^{2}\right) \frac{\partial u}{\partial x^{\beta}}+\left(\frac{3}{2} u-1\right) \frac{\partial u}{\partial x^{2 \beta}}+\frac{1}{2} \frac{\partial u}{\partial x^{3 \beta}}-\frac{1}{2}\left(\frac{\partial u}{\partial x^{\beta}}\right)^{2} \tag{24}
\end{equation*}
$$

with the initial condition:

$$
\begin{equation*}
u(x, 0)=2 \cot (X) \tag{25}
\end{equation*}
$$

where

$$
X=\frac{x^{\beta}}{\Gamma(1+\beta)}
$$

By eqs. (21)-(23), (10) and (12), we obtain:

$$
\begin{gathered}
u_{0}=2 \cot (X) \\
u_{1}(x, t)=\frac{-4 t^{\alpha}}{\alpha \sin ^{2}(X)} \\
u_{2}(x, t)=\frac{8 \cos (X) t^{2 \alpha}}{\alpha^{2} \sin ^{3}(X)} \\
u_{3}(x, t)=\frac{-16\left[1+2 \cos ^{2}(X)\right] t^{3 \alpha}}{3 \alpha^{3} \sin ^{4}(X)} \\
u_{4}(x, t)=\frac{32 \cos (X)\left[2+\cos ^{2}(X)\right] t^{4 \alpha}}{3 \alpha^{4} \sin ^{5}(X)}
\end{gathered}
$$

Thus, the 5-therm approximate solutions of problem (24) and (25) are given by:

$$
u(x, t)=u_{0}+u_{1}(x, t)+u_{2}(x, t)+u_{3}(x, t)+u_{4}(x, t)
$$

Remark. When $\alpha=\beta=1$, we get:

$$
u(x, t)=2 \cot (x)+\frac{-4 t}{\cos ^{2} x-1}+\frac{8 t^{2} \cos x}{\sin ^{3} x}+\frac{-16 t^{3}\left(1+2 \cos ^{2} x\right)}{3 \sin ^{4} x}
$$

which are approximate analytical solutions of the following classical problems:

$$
\frac{\partial u}{\partial t}=\left(-u+\frac{1}{2} u^{2}\right) \frac{\partial u}{\partial x}+\left(\frac{3}{2} u-1\right) \frac{\partial u}{\partial x^{2}}+\frac{1}{2} \frac{\partial u}{\partial x^{3}}-\frac{1}{2}\left(\frac{\partial u}{\partial x}\right)^{2}
$$

with initial conditions:

$$
u(x, 0)=2 \cot (x)
$$

Conclusion

In this paper, our main goal is to propose a method for solving a class of generalized perturbed KdV-Burgers equation with conformable time fractional derivative and He 's space fractal derivative. This goal has been achieved by using ADM, the fractional Laplace transform and He's polynomials. The presented example shows that our method is an efficient and reliable algorithm.

Acknowledgment

Key Scientific Research Project of Colleges and Universities in Henan Province (No.22B110019)

References

[1] Jawad, A. J. M., et al., Soliton Solutions of Burgers Equations and Perturbed Burgers Equation, Applied Mathematics and Computation, 216 (2010), 11, pp. 3370-3377
[2] Yu, J., et al., Dynamical Behavior in the Perturbed Compound KdV-Burgers Equation, Chaos Solitons and Fractals, 33 (2007), 4, pp. 1307-1313
[3] Kudryashov, N. A., Sinelshchikov, D. I., Periodic Structures Described by the Perturbed Burgers-Korteweg-de Vries Equation, International Journal of Non-Linear Mechanics, 72 (2015), 10, pp. 16-22
[4] Deng, S. X., Ge, X. X. Analytical Solution to Local Fractional Landau-Ginzburg-Higgs Equation on Fractal Media, Thermal Science, 25 (2021), 6B, pp. 4449-4455
[5] Dong, M., et al., A New RLC Series-Resonant Circuit Modeled by Local Fractional Derivative, Thermal Science, 25 (2021), 6B, pp. 4569-4576
[6] Gao, F., Chi, C., Improvement on Conformable Fractional Derivative and Its Applications in Fractional Differential Equations, Journal of Function Spaces, 2020 (2020), Aug., 5852414
[7] Hashemi, S. M., Invariant Subspaces Admitted by Fractional Differential Equations with Conformable Derivatives, Chaos Solitons and Fractals, 107 (2018), Feb., pp. 161-169
[8] Abdeljawad, T., et al., Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos, Solitons and Fractals, 119 (2019), 1, pp. 94-101.
[9] Meng, F.W., et al., Exact Solutions with Variable Coefficient Function Forms for Conformable Fractional Partial Differential Equations by an Auxiliary Equation Method, Advances in Mathematical Physics, 2018 (2018), 4596506
[10] Iyiola, O. S., Nwaeze, E. R., Some New Results on the New Conformable Fractional Calculus with Application Using D'Alambert Approach, Progress in Fractional Differentiation and Applications, 2 (2016), 2, pp. 115-122
[11] Qian, M. Y., et al., Two-Scale Thermal Science for Modern Life -Making the Impossible Possible, Thermal Science, 26 (2022), 3B, pp. 2409-2412
[12] He, J. H., Seeing with a Single Scale is Always Unbelieving: From Magic to Two-Scale Fractal, Thermal Science, 25 (2021), 2B, pp. 1217-1219
[13] He, J. H., El-Dib, Y. O., A Tutorial Introduction to the Two-scale Fractal Calculus and its Application to the Fractal Zhiber-Shabat Oscillator, Fractals, 29 (2021), 8, 2150268
[14] He, J. H., Fractal Calculus and its Geometrical Explanation, Results in Physics, 10 (2018), Sept., pp. 272-276
[15] Tian, D., et al. Fractal N/MEMS: from Pull-In Instability to Pull-In Stability, Fractals, 29 (2021), 2, 2150030
[16] He, C. H., et al., A Fractal Model for the Internal Temperature Response of a Porous Concrete, Applied and Computational Mathematics, 21 (2022), 1, pp. 71-77
[17] He, C. H., A Variational Principle for a Fractal Nano/Microelectromechanical (N/MEMS) System, International Journal of Numerical Methods for Heat \& Fluid Flow, 33 (2022), 1, pp. 351-359
[18] He, C. H., et al., A Modified Frequency-Amplitude Formulation for Fractal Vibration Systems, Fractals, 30 (2022), 3, 2250046
[19] Shen, Y., El-Dib, Y. O., A Periodic Solution of the Fractional Sine-Gordon Equation Arising in Architectural Engineering, Journal of Low Frequency Noise, Vibration \& Active Control, 40 (2021), 2, pp. 683-691
[20] Liu, F. J., et al., Thermal Oscillation Arising in a Heat Shock of a Porous Hierarchy and Its Application, Facta Universitatis Series: Mechanical Engineering, 20 (2021), 3, pp. 633-645
[21] Anjum, N., et al., Two-Scale Fractal Theory for the Population Dynamics, Fractals, 29 (2021), 7, 2150182
[22] He, J. H., et al., Evans Model for Dynamic Economics Revised, AIMS Mathematics, 6 (2021), 9, pp. 9194-9206
[23] He, J. H., et al., Variational Approach to Fractal Solitary Waves, Fractals, 29 (2021), 7, 2150199
[24] He, J. H., et al., A Fractal Modification of Chen-Lee-Liu Equation and its Fractal Variational Principle, International Journal of Modern Physics B, 35 (2021), 21, 2150214
[25] Guedria, N., et al., A Direct Algebraic Method for Eigensolution Sensitivity Computation of Damped Asymmetric Systems, International Journal for Numerical Methods in Engineering, 68 (2010), 6, pp. 674-689
[26] Yan,W. J., et al., A Direct Algebraic Method to Calculate the Sensitivity of Element Modal Strain Energy, International Journal for Numerical Methods in Biomedical Engineering, 27 (2011), 5, pp. 694-710
[27] Seadawy, A. R., The Solutions of the Boussinesq and Generalized Fifth-Order KdV Equations by Using the Direct Algebraic Method, Applied Mathematical Sciences, 82 (2012), 6, pp. 4081-4090
[28] Elwakil, S. A., et al., Modified Extended Tanh-Function Method and Its Applications to Non-linear Equations, Applied Mathematics and Computation, 161 (2005), 2, pp. 403-412
[29] Anjum, N., He, J. H., Analysis of Non-Linear Vibration of Nano/Microelectromechanical System Switch Induced by Electromagnetic Force Under Zero Initial Conditions, Alexandria Engineering Journal, 59 (2020), 6, pp. 4343-4352
[30] Skrzypacz, P., et al., A Simple Approximation of Periodic Solutions to Microelectromechanical System Model of Oscillating Parallel Plate Capacitor, Mathematical Methods in Applied Sciences, On-line first, https://doi.org/10.1002/mma.6898, 2020
[31] Fan, E. G., Zhang,J., Applications of the Jacobi Elliptic Function Method to Special-Type Non-linear equations, Physics Letters A, 305 (2002), 6, pp. 383-392
[32] Anjum, N., et al., Li-He's Modified Homotopy Perturbation Method for Doubly-Clamped Electrically Actuated Microbeams-Based Microelectromechanical System, Facta Universitatis Series: Mechanical Engineering 19 (2021), 4, pp. 601-612
[33] He, J. H., El-Dib, Y. O., The Enhanced Homotopy Perturbation Method for Axial Vibration of Strings, Facta Universitatis Series: Mechanical Engineering, 19 (2021), 4, pp. 735-750
[34] He, J.-H., et al., Homotopy Perturbation Method for the Fractal Toda Oscillator. Fractal Fract., 5 (2021), 3, 5030093
[35] Hashim, I., et al., Solving the Generalized Burgers-Huxley Equation Using the Adomian Decomposition Method, Mathematical and Computer Modelling, 11-12 (2006), 43, pp. 1404-1411
[36] Hashim, I., et al., Accuracy of the Adomian Decomposition Method Applied to the Lorenz System, Chaos Solitons and Fractals, 5 (2006), 28, pp. 1149-1158
[37] Ozgumus, O. O., Kaya, M. O., Flapwise Bending Vibration Analysis of Double Tapered Rotating EulerBernoulli Beam by Using the Differential Transform Method, Meccanica, 6 (2006), 41, pp. 661-670
[38] Cui, R.Q., Hu, Y., Fractional Power Series Method for Solving Fractional Differemtial Equation, Journal of Advances in Mathematics, 4 (2016), 12, pp. 6156-6159
[39] Mohyud-Din, S., et al., Travelling Wave Solutions of Seventh-Order Generalized KdV Equations Using He's Polynomials, International Journal of Non-linear Sciences and Numerical Simulation, 10 (2009), 2, pp. 223-229
[40] Shokhanda, R., et al., An Approximate Solution of the Time-Fractional Two-Mode Coupled Burgers Equation, Fractal and Fractional, 5 (2021), 4, 196

[^0]: * Corresponding author, e-mail: 857931663@qq.com

