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In this paper, a generalized Korteweg-de Vries equation involving a temporal 
fractional derivative and a spatial fractal derivative is studied. The temporal 
fractional derivative can describe the non-local property and memory property, 
while the spatial fractal derivative can model the space discontinuity. Its approx-
imate analytical solution is presented using He’s variational iteration method, 
which is extremely effective for the fractal-fractional differential equations. 
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Introduction  

The importance of the Korteweg-de Vries-type (KdV) equation is well known, it ap-

pears in a wide range of physical applications. Many physicists and mathematicians have sys-

tematically studied KdV equation and its various modifications, and much achievement was 

obtained [1-4]. Recently, scientists found that many non-linear phenomena in applied sciences 

and engineering can be described by fractional KdV-type equations [5-10], and the fractal sol-

itary theory has become very hot recently, it has been revealed by many authors that the soli-

tary waves are affected by the order of the fractal dimensions or the unsmooth boundary, but 

the wave morphology is rarely affected [11-20].  

The most important advantage of making use of fractional derivative in mathemati-

cal modelling is their non-local property. Fractional derivative provides an excellent instru-

ment for the description of memory properties of various processes. However, if we study the 

complex phenomena in fractal media, then the space fractal derivative has to be used [21, 22]. 

In this paper, we study the following generalized fractal KdV equation: 

 
3

D ( , ) ( , ) ( ) 0,t

u
u x t u x t u

x x



 
 

 
+ + =

 
0 1, 0 1       (1) 

subject to the initial condition: 
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where Dt


is the Caputo fractional derivative of order , /( )x  – the He’s space fractal de-

rivative [21], λ – an arbitrary constant, and ( )u and ( )x – the given functions. Physical ex-
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planation of the fractal derivative is available in [23-25], and it is now widely used for model-

ling discontinuous problems, for examples, fractal MEMS systems [26], fractal thermal dy-

namics [27], fractal vibration systems [28, 29], the two-scale population dynamics and the 

two-scale economics [30, 31], and the fractal diffusion [32, 33]. 

Usually, it is impossible to obtain exact analytical solutions of the problem of the 

eqs. (1) and (2). The main purpose of the present work is to solve eqs. (1) and (2) by using 

He’s variational iteration method (VIM) [34-36], which can provide approximate analytical 

solutions in the form of a fractional power series with easily computed terms. For more details 

in using the VIM for similar problems, see [37, 38]. 

Fractional derivative and fractal derivative  

In this section, we recall the following basic definitions of fractional calculus and 

fractal calculus which shall be used in this paper. For more details see [39-41]. 

Definition 1. A real function ( ), 0f x x   is said to be in the space ,C R    if 

there exists a real number ,p   such that 1( ) ( )pf x x f x=  where 1( ) [0, )f x C   and it is 

said to be in the space nC  if and only if 
( ) , .nf C n N   

Definition 2. The Riemann-Liouville fractional integral operator of order 0   of a 

function ( ) , 1f x C   −  is defined as: 
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Properties of the operator J can be found in [39] and we mention only the follow-

ing. For , 0, 0x     and, we have: 
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Definition 3. The time fractional derivative of u(x, t) in Caputo sense is defined:  
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for 1 , , 0m m m N x +−      and 1( , ) .mu x t C−  

Definition 4. The space fractal derivative of ( , )u x t  in the He’s sense is defined: 
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He’s variational iteration method 

In this section, we briefly describe the VIM. To illustrate the basic idea of this meth-

od, we consider the following non-linear equation: 

 ( , ) Nu( , ) ( , )Lu x t x t g x t+ =  (9) 

where L  and N are linear and non-linear operators, respectively, and ( , )g x t is the source in 
homogeneous term.  

The variational iteration method was proposed by He [34-36], the iteration algorithm 

can be constructed: 
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where   is a general Lagrange multiplier, which can be identified optimally via the varia-

tional theory, and nu  is a restricted variation which means 0.nu =  

The main steps of He’s VIM require first the determination of Lagrange multiplier 

 that will be identified optimally. Once it is determined, then the successive approximations 

1, 0,nu n+  of the solution u will be obtained by using any selective function u0. Consequent-

ly, the exact solution: 
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n
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The solution of the fractal KdV 

To use the solution procedure of the variational iteration method, we rewrite eq. (1): 
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where  
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According to the VIM, we construct the following iteration algorithm: 
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where   is the general Lagrange multiplier and nu is the restricted variation.  

By making the previous functional stationary, the following conditions can be ob-

tained: 
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From eq. (15), we can get:  

 1 ( ) 0, D ( ) 0ss s + = =   (16) 
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Thus, the generalized Lagrange multiplier can be identified as μ = –1.  

So, we obtain the following iteration formular: 
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where 0 ( , )u x t  is an initial approximation which can be freely chosen if it satisfies the initial 

conditions of the problem. 

Eventually, the exact solution is given by: 

 lim n
n

u u
→

=   

Next, we consider two typical case. 

Example 1. Consider the following time-space fractal KdV-type equation:  
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Construction the iteration formula: 
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Taking the initial value 0 ( , ) ( ,0),u x t u x=  we can get: 
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Thus, the approximate solution is: 
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Example 2. Consider following time-space fractal KdV equation:  
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subject to the initial condition: 
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Here we construction the iteration formula: 

 1
1 3

0

( , ) ( , )1
( , ) ( , ) ( ) D ( , ) ln( ) d

( )

t
n n

n n t n

u x s u x s
u x t u x t t s u x s u s

x x

 

 

−
+

  
= − − − − 

   
  

Taking the initial value 0 ( , ) ( ,0),u x t u x= we can obtain: 
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and so on.  

Hence, the approximate solution is: 
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Conclusion 

In this work, the variational iteration method has been successfully applied to obtain 

the approximate analytical solution of the generalized fractal KdV equations. Two examples 

are given to illustrate the validity and accuracy of the method. The results show that the meth-

od is efficient to handle non-linear fractal differential equation on the media.  
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