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In this paper, the Adomian decomposition method was employed successfully to 
solve the Kudryashov-Sinelshchikov equation involving He’s fractional deriva-
tives, and an approximate analytical solution was obtained.  
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Introduction  

In this paper, we use Adomian decomposition method (ADM) [1] for solving the 

following Kudryashov-Sinelshchikov equation involving He’s fractional derivative: 
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and λ, μ, and σ and are real parameters. 
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In eqs. (1)-(5), the symbols / t   and / x   (0 , 1)   denote He’s time frac-

tional derivative and space fractional derivative [2], respectively.  

The classical Kudryashov-Sinelshchikov equation describes pressure waves in the 

liquid with gas bubbles taking into consideration the heat transfer and viscosity of liquid  

[3-11]. Polymer bubbles have been widely used for fabrication of nanofibers and nanoscale 

membranes [12, 13]. Due to solvent evaporation [14], the bubble wall becomes a porous me-

dium, so the classical Kudryashov-Sinelshchikov equation has to be modified to take into ac-

count the porosity size and distribution. The PDE with He’s fractional derivative [2] is suita-

ble for this porous problem. He’s fractional derivative was applied to the fractional Camassa-

Holm equation [15], the fractional evolution equation [16], and the fractional KdV equation 

[17]. Now He’s fractional derivative was developed into the two-scale fractal derivative [18-

23]. Since the exact solutions to these non-linear problems are very rare, so researchers look 

for the approximate solutions by using various methods, e.g., the homotopy perturbation 

method [24, 25], in this paper the ADM [1] is adopted, which can solve effectively wide rang-

es of non-linear equations [26-29]. 

There are many definitions of fractional derivative are given by many different 

mathematicians and scientists. He’s fractional derivative is derived from the variational itera-

tion method [30]. Now, we recall briefly the concept introduced by He [2]. 

Consider the following linear equation of nth order: 
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By the variational iteration method [30], we can construct the following iteration 

formulation: 
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After identifying the multiplier, we have: 
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For a linear equation, from eq. (13), we have the following exact solution: 
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where u0 satisfies the boundary initial conditions. 

From eq. (9), we can define a fractional derivative in the following form, which is 

called He’ fractional derivative [2]: 
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For more details on the properties of the derivatives, see [2]. 
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Adomian decomposition method 

For the convenience of the reader, we present here a brief review on the ADM 
[1]. Let us consider a general non-linear equation of type: 

 ( , ) ( )u x t f N u= +   (11) 

where :N H H→  is a non-linear mapping from a Banach space H into itself and f H  is 

known.  

The ADM assumes that the solution u  can be expanded as a series: 
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and the non-linear term ( )N u  can be decomposed: 
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for some He’s polynomials ( )nP u  [31] that are given by: 
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Substituting eqs. (12) and (13) into (11), we get: 
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The component of ( , )nu x t  follows immediately upon setting: 

 0 ( , )u x t f=   (16) 

 1 0u P=   (17) 

 1 where ( =1,2,3...)k ku P k+ =   (18) 

 Thus we get the k-term approximate solution of (11):  

 0 1 1.ku u u u −= + + +  (19) 

Solution of the problems (1) and (2) 

By using the two-scale transform [32-35]: 
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Equation (1) can be converted into the following differential equation: 
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We re-write eq. (21): 

  1 2( ,0) [ ( ) ( ) ( )]u u y J L u N u N u= + + +   (22) 

where J  is the integral operator with respect to s  and: 
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Suppose that the solutions take the form: 
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and the non-linear terms are decomposed:  
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where ( 1,2)jkP j =  are He’s polynomials and given by: 
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and so on. 

Applying procedure defined in eqs. (16)-(18), we get:  

 0 ( , ) ( ,0)u y s u y=   (29) 

 1 0 10 20( , ) [ ( ) ]u y s J L u P P= + +   (30) 

 1 1 2( , ) [ ( ) ]m m m mu y s J L u P P+ = + +   (31) 

where 1,2,3 .m =  

Then, applying backward substitution to the computed components, we obtain:  

 1 2 3( , )u x t u u u= + + +   (32) 

Next, we give two examples to show the efficiency of the algorithm described pre-

viously. 

Example 1. Taking 0, 1, = = and 1, = − we consider eq. (1) with the following 

initial condition: 

  ( ,0) 2 ,u x E= +  where 
2

exp
(1 )

x
E





 −
=  

 + 
 

By the previous algorithms, we obtain: 
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and so on.  

Thus, the 3 term−  approximate solution in this case is: 
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Example 2. Taking –1, 3, = = and 1, = − we consider eq. (1) with the following 

initial condition: 
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In a similar way as mentioned, we obtain: 

 
2

1
0 2
( , ) 3 ,

(1 )

x E
u x t




= +

 +

2
1

1 2

6
( , )

(1 ) (1 )(1 )

t Ex x
u x t

 

 

 
= − 

 +  + + 
 

 
22

1
2 2 2

12
( , ) 18

(1 )(1 ) 2 (1 )

t Ex x
u x t

 

 

 
= − + 

 + +  + 
 

and so on.  

Thus, the 3 term−  approximate solution is: 
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Conclusion 

In this paper, we gave a fractional modification of Kudryashov-Sinelshchikov equa-

tion, its physical understanding can be referred to [36, 37]. We used ADM to obtain the ap-

proximate analytical solution of the Kudryashov-Sinelshchikov equation involving He’s frac-

tional derivative. The method is simple in its principle and convenient for computer algo-

rithms. Our examples show that the results obtained by the method are very accurate, and the 

method can be extended to more complex problems like fractional chaos synchronization 

[38, 39] and fractional control [40, 41]. 
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